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ABSTRACT

Linear motifs are short segments of multidomain
proteins that provide regulatory functions indepen-
dently of protein tertiary structure. Much of
intracellular signalling passes through protein
modifications at linear motifs. Many thousands of
linear motif instances, most notably phosphoryla-
tion sites, have now been reported. Although
clearly very abundant, linear motifs are difficult to
predict de novo in protein sequences due to the dif-
ficulty of obtaining robust statistical assessments.
The ELM resource at http://elm.eu.org/ provides an
expanding knowledge base, currently covering 146
known motifs, with annotation that includes >1300
experimentally reported instances. ELM is also
an exploratory tool for suggesting new candidates
of known linear motifs in proteins of interest.
Information about protein domains, protein struc-
ture and native disorder, cellular and taxonomic
contexts is used to reduce or deprecate false
positive matches. Results are graphically displayed
in a ‘Bar Code’ format, which also displays known

instances from homologous proteins through a
novel ‘Instance Mapper’ protocol based on PHI-
BLAST. ELM server output provides links to the
ELM annotation as well as to a number of remote
resources. Using the links, researchers can explore
the motifs, proteins, complex structures and
associated literature to evaluate whether candidate
motifs might be worth experimental investigation.

INTRODUCTION

Linear motifs (LMs) are short elements embedded within
larger protein sequence segments that operate as sites of
regulation (1–5). They can be found in telomeric proteins
(6), in proteins of the extracellular matrix (7)—and
seemingly every macromolecular complex in between.
Many are post-translationally modified, but not all.
The essence of their function is embodied in the linear
amino acid sequence and is not dependent on the
tertiary structural context. Nevertheless, as a consequence
of low affinity binary binding interactions, they usually
act in a concerted and cooperative manner, enabling reg-
ulatory decisions to be made on the basis of multiple
inputs (8–12). These properties may be important for
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the inherent robustness of cellular systems (13), as cell
regulation is increasingly revealed to be cooperative, net-
worked and redundant in nature (14–20).
Over the time that we have worked to develop

the Eukaryotic Linear Motif resource ELM, our convic-
tion has grown that there will be well over a million LM
instances in a higher eukaryotic proteome. (Phosphopro-
teomics is on the way to revealing �100 000 phosphory-
lation sites, for example.) If these estimates reflect reality,
one might expect that experimentalists should be
stumbling across new motifs with every experiment. But
they are not. The paradox is that it remains difficult to
establish the existence of LM instances whether by exper-
iment or computationally. The bioinformatics problem is
simple to state: LMs are too short (and the information
content too poor) to be statistically significant in protein
sequence searches. Experimentalists are similarly afflicted:
while trying to identify LMs, they are likely to spend a lot
of resources, time and effort performing experiments on
the false motif candidates, which usually vastly outnumber
the genuine ones in any set of proteins of interest (1).
Nevertheless, useful advances are now being made in

the bioinformatics tools that address the remarkable
modularity of eukaryotic regulatory proteins. Thus,
two dedicated LM databases now exist: ELM (21) and
the Minimotif Miner (22). (Users should utilize both
resources as there are many differences in approach
and the datasets only partially overlap.) Specialized
databases for phosphorylation sites include PhosphoSite,
Phospho.ELM and Phosida (23–25). Resources such as
HPRD (26) and UniProtKB/Swiss-Prot (27) annotate
a broader range of Post-Translational Modifications
(PTMs). Furthermore, numerous predictive tools for
identifying natively disordered protein segments—the
main harbour for LMs (28–30)—have become available
(31,32), complementing the more established globular
domain resources Pfam, SMART, PROSITE and
InterPro (33–36). The ELM datasets have been used by
bioinformaticians to develop and benchmark novel pre-
diction strategies such as hunting for motifs in interaction
data and to provide likelihood estimates for motif
candidates based on structural and sequence conservation
contexts (37–41). While LM discovery remains challeng-
ing, if progress continues apace, it should become possible
to address the intricate subfunctionalization of proteins
like p53, CBP/p300, APC and Tau with ever-greater
effectiveness.
Here, we provide an overview of the current status

of the ELM resource and the research contexts in which
it is being used. The utility of ELM is threefold: for
researchers, it is first a knowledgebase, second a predictive
tool but ELM has a third important function too; it can
also be used for more general educational purposes, as it
covers a topic that is often poorly served in text books.
ELM provides written text summaries and links to the
experimental literature that are a useful starting point
for people who, for any reason, wish to gain an under-
standing of the role of LMs in cell regulation. We
also take the opportunity here to provide a summary of
progress made by the pioneering community of
bioinformatics teams that are applying ELM to develop

new tools for LM discovery. Finally, we provide some
guidance about good practice and warnings about
pitfalls for researchers seeking to apply ELM in experi-
mental motif discovery.

WHAT ARE LMs?

To use ELM effectively, a user will need to grasp why such
a resource is needed. The earliest definition of LM known
to us was written in 1990 by Tim Hunt to introduce the
new Protein Sequence Motifs column in Trends in
Biological Sciences (42).

The sequences of many proteins contain short, conserved
motifs that are involved in recognition and targeting activities,

often separate from other functional properties of the
molecule in which they occur. These motifs are linear, in the
sense that three-dimensional organization is not required to

bring distant segments of the molecule together to make the
recognizable unit. The conservation of these motifs varies:
some are highly conserved while others, for example, allow

substitutions that retain only a certain pattern of charge
across the motif.

This definition was written at a time when it was becoming
apparent that many cellular proteins would have complex
multidomain architectures and the first LMs such as
KDEL, NLS, the Destruction Box of cyclin B and the
fascinating KFERQ starvation-dependent lysosomal tar-
geting motif were being reported (43–46). The definition
has stood the test of time and can still serve very well
today.

Sequence motifs contributing to the tertiary structure
and primary function of globular domains are excluded
by the definition of LM. An LM is effectively an irreduc-
ible unit of structure and function. Although LMs may be
found in exposed parts of globular folds, they must be able
to function independently to fit the definition: conversely,
the globular domain would still have the same function if
the LM was inactivated, although of course that domain
function might well be dysregulated in the absence
of the motif. The need to separate motif/domain functions
applies to methods that seek to define new motifs.
Historically, it has been difficult to develop computational
methods that can distinguish short conserved segments of
protein domains from LMs. Failure to make the distinc-
tion is likely to lead to false LM assignment (1), as has
often happened for the nuclear export sequence (NES) as
discussed by Hantschel et al. and Kadlec et al. (47,48).

Over the last few years, it has become increasingly clear
that most LMs do not reside inside globular domains but
instead are present in segments of natively disordered
polypeptide. Often many LMs are clustered within one
segment of native disorder. LMs quite frequently
overlap, providing the potential for switch-like mutually
exclusive functionality. For example, overlapping peptides
from p53 are present in solved structures of several differ-
ent protein complexes (20). Therefore, an overview of the
types and locations of protein architecture modules
existing in regulatory proteins provides an essential
adjunct to LM investigation.
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ELM RESOURCE ARCHITECTURE

At the core of the ELM resource is a PostgreSQL
relational database with 69 tables storing data about
LMs. Not all of this complexity is fully utilized: it
anticipates current and future Eltering strategies as well
as information retrieval by users. The key information
content is summarized in Figure 1. Users should make
sure they grasp the importance of the three fundamental
nodes in the hierarchy: the top level ‘Functional Site’ links
to ‘ELM Motif’ which includes ‘ELM Instances’. The top
level of ‘Functional Site’ is essentially a biological desig-
nation with general information: for example, ‘Nuclear
export signal’. The ‘ELM Motif’ is given a more specific
description, links to information pertaining to the given
LM, including key literature and Gene Ontology (GO)
assignments, and includes the Regular Expression
pattern representing the motif: see, for example, the
NES entry at http://elm.eu.org/elmPages/TRG_NES_
CRM1_1.html. Of note, ELM is effectively motif-
centric—if a regular expression cannot be defined, there
is no entry in ELM. An ‘ELM Instance’ embodies the
specific information for a motif match in a protein
sequence: for example, click on the links for the NES
instance in MAPKAPK2. The instances provide the essen-
tial information that supports the ELM hierarchy.
Instance-containing sequences are mapped to their respec-
tive UniProt entries. A well-annotated instance may also
have links to the experimental literature, the types of
experiments undertaken and to informative structure
entries in the PDB (49). Importantly, an instance may
have a reliability value assigned by the curator: many
false positive motifs have been claimed in the literature.
(Note: some of the older ELM entries do not yet have
well-annotated instances).

All data input is by manual curation. Annotating each
ELM entry typically involves extensive literature searches,

BLAST runs, multiple alignment of relevant protein
families, perusal of Swiss-Prot and other online databases
and, where practical, discussion with experimentalist
experts from the Eeld. In order to promote interoperability
with other bioinformatics resources, we use two public
annotation standards. GO identiEers are used for cell
compartment, molecular function and biological process
(50) while the NCBI taxonomy database identiEers (51)
are used for taxonomic nodes at the apex of phylogenetic
groupings in which an LM occurs. A third standard—
POSIX regular expressions (http://standards.ieee.org/
regauth/posix/)—is used to represent the motif patterns.
These ‘RegExps’ are conveniently usable in the Python
and Perl scripting languages. They are analogous to
PROSITE motifs (35), but with a different syntax. For
example, the C-terminal motif LIG_CAP-Gly_1 that
binds to CAP-Gly domains for microtubule plus-end reg-
ulation (52) is represented by the RegExp

[ed].{0,2}[ed].{0,2}[edq].{0,1}[YF]$

where $ is the protein C-terminus, preceded by a
conserved aromatic residue and a flexibly spaced run of
negatively charged residues. See the help page http://elm
.eu.org/help.html#regular_expressions for guidance on the
ELM expressions.
Table 1 provides some representative examples of dif-

ferent motif categories. Based on the type of function of
the LM, we have defined four classes of ELM motif
(Cleavage, Ligand, Modification and Target), which are
summarized in the table. Some of these motifs have com-
plicated regular expressions, others are very simple, e.g.
with just two conserved positions. It has become clear that
the most common conservation pattern is for three (semi-)
conserved positions in the motif. A substantial minority of
motifs have one or more positions that tolerate gaps

Figure 1. The ELM Resource hierarchy represented as a pyramid. ‘Functional Site’ provides a general description of the biology, for example, MAP
Kinases have a docking motif in their substrates. There are more than one class of MAPK docking motifs and ELM currently provides two ‘ELM
Motif’ entries. These contain the motif regular expression and are annotated with more specific information as well as linking out to remote resources
including PubMed, NCBI Taxonomy and GO. At the base of the pyramid are the ‘ELM Instances’ that belong to a given ‘ELM Motif’ entry. The
instances are annotated with information about experimental methods and instance quality and link to external resources including UniProt, PDB
and PubMed.
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(indels). The length range of indels can usually be accu-
rately determined from sequence alignments: the most
common indel is to allow a one-residue insertion.

Table 2 provides a summary of the data that have so
far been entered into the ELM DB in its current state.
The most noteworthy numbers are 146 ELM motifs, the
>1300 instances and the >1100 citations of LM literature.
Our goal is to create representative, not comprehensive,
LM entries. For abundant motifs like the sumoylation
site, with thousands of instances per proteome, we will
not try to annotate more than a small fraction of experi-
mental instances, since the appropriate location for these
data are the protein annotation resources such as Swiss-
Prot and HPRD.

ELM is primarily developed and deployed with open
source software and is hosted on CentOS Linux.
Pipeline software is mainly developed in Python including
some modules from the http://BioPython.org project to
retrieve information from SWISS-PROT and PubMed.
The web interface software uses the CGImodel framework
(53). The server output is HTML and Javascript.

WHY USE REGULAR EXPRESSIONS IN ELM?

The three most commonly used methods for bioinfor-
matical representation of sequence conservation patterns
are: Profile/HMMs (54); Artificial neural networks
(ANNs) (55); and RegExps (http://en.wikipedia
.org/wiki/Regular_expression). Of these, RegExps are
considered the worst approach to encapture protein
sequence information. They are ad hoc—typically
created by annotators without applying a consistent for-
malism. The motif characters are represented with integer
values, so RegExps cannot use position-weighting to
capture weaker preferences. They are over-determined
and can only capture exactly what is specified (whereas
the more probabilistic HMMs and ANNs can rank near
misses too). They do not support searching for an exact
number of a given amino acid character within a specified
range [which would better approximate the charged runs
in e.g. CAP-Gly and NLS motifs (56)]. Despite these
shortcomings, using RegExps to establish ELM has
proved to be the correct decision. Many LMs have short
indels in the pattern. HMM software does not (yet)
provide for variable gaps with exactly bounded ranges
while ANNs do not account for gaps at all: a motif such
as the NES with multiple short indels is hard to represent
with these algorithms. The scoring of presence/absence
matches for LM RegExps simplifies statistical analyses
of motif searches. These two advantages have been
critical to the first wave of development of motif-hunting
software.

Thus we consider that it was appropriate to initiate LM
database resources with RegExps. Of course, HMMs and
ANNs are used in a number of useful predictive tools, e.g.
Scansite (57) and NetPhorest (58) and there is little doubt
that HMMs, neural networks and other methods will
grow in importance for LM analyses in future, once the
contexts can be better controlled.T
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ACCESSING ELM

The ELM resource is freely accessible to users. The data
in ELM can be accessed via the Web either interactively
or programmatically. Motif entries are available to be
browsed from the browse links page at http://elm.eu
.org/. Details from the browse page for the LIG_CAP-
Gly_1 entry are shown in Figure 2. A user can also
submit a protein sequence of interest through the main
submission page and will receive an output page with
the matched candidates. The key data retrieved by the
ELM resource for the sequence is displayed in a ‘bar
code’ style graphical output as shown for the motif-rich
endocytic protein Epsin-1 (Figure 3). Mouse-over
provides annotation and there are many links to
summaries in tabular and text form. Help is available
online to explain the meanings of the elements and
colour code in the output.

Programmatic access takes advantage of SOAP/XML
Web Services (WS) interfaces for six ELM resource
modules listed in Table 3. [See the EMBRACE registry
for a large collection of Bioinformatics WS (59)].
Programmers can use the ELM DB WS interfaces to
collect data—for example, a query might be to retrieve
all regular expressions stored in ELM or another query
might be for all ELM instances, or a defined subset
thereof. Other WS interfaces allow LM matching to a
query sequence and structural and conservation filtering.

Upon request, we can provide a SQL dump if for any
reason, the WS interface is not suitable. At some future
point, we would like to provide a standardized ELM DB
dump, probably using the BioMart format (60).

THE ELM RESOURCE FILTERS

Searches of sequence databases with short motifs do not
yield significant results (due to the large number of non-
functional sequences matching the motif consensus) and
therefore, it is necessary to evaluate the context of the
match. Essentially, any aspect of a protein that can be
informative might provide contextual filtering. Filters
might be simple or complicated and ELM provides
examples of both. Originally, three simple filters (21)
were implemented in ELM: (i) Cell compartment
filter: an LM is only meaningful in appropriate cell
compartments; (ii) Taxonomy filter: an LM is only
meaningful in an organism that is known to possess its

interaction partners; and (iii) SMART globular domain
filter: LMs are interaction sites and must be accessible,
hence they are much more common in natively disordered
sequence. ELM does not provide benchmarked scores for
the simple filters. Two more complicated filters have been
implemented and benchmarked to provide reliability
assessments, for structural context and evolutionary
conservation.
The ELM structure filter (SF) assesses the accessibility

and secondary structure components of LM candidates
whenever a reference globular domain structure is avail-
able (41). The benchmarked scale shows that most LMs
are in exposed and accessible loops. Although a few
genuine LMs are quite inaccessible in the available struc-
tural conformation, the benchmarking indicates that it is
usually not worth experimental testing of the inaccessible
motifs unless there is an indication of, for example,
allosteric rearrangement that might enable the site to
become exposed. When it applies, the SF is much more
informative than the simple globular domain filter. The SF
is implemented in the ELM resource output (Figure 3),
and can be accessed independently as a web service
(Table 3).
The ELM conservation score (CS) filter assesses the

conservation of motif candidates in related proteins (61).
LMs tend to be more evolutionarily dynamic than
globular domains—it is uncommon to find an LM
instance that is conserved between yeast and mammals
(e.g. see the GLEBS and FFAT motif entries for counter-
examples). The CS filter is a pipeline to collect and align
homologous sequences and test ELM motifs for conserva-
tion, using a benchmarked scoring scheme. The CS filter
has already proven its value in motif discovery efforts
(62,63) but, due to the resource reengineering required,
is not yet implemented in the ELM output. For the time
being, therefore, it is offered as a stand-alone server
(http://elm.eu.org/conscorer) and web service (Table 3).
Figure 4 shows variation in conservation of some of the
motif matches from the Epsin-1 example used above
(Figure 3).

THE ELM INSTANCE MAPPER

It is not uncommon that all the experimentation
demonstrating the existence of a particular LM instance
has been undertaken in a single model organism, e.g.

Table 2. Summary of the data stored in the ELM RDB

Number of
functional
site entries

ELM
motifs

Instances Links to PDB
structure
entries

Go terms PubMed links

Totals 110 146 1327 100 308 1125

By category LIG 89 Human 828 Biological process 152 From ELM motif 704
MOD 30 Mouse 104
TRG 19 Rat 65 Cell compartment 69 From instance 683
CLV 8 Fly 47

Yeast 88 Molecular function 87
Other 195
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Figure 2. Details from browse pages for the entry LIG_CAP-Gly_1 (http://elm.eu.org/elmPages/LIG_CAP-Gly_1.html). The upper window shows
the description and the regular expression for the motif. Scrolling down past the references and the GO terms (not shown) leads to the table of
known instances (middle window). Key information in the table includes whether an instance is a true positive, a link to the UniProt sequence entry
and, if available, links to PDB structure entries (49). Clicking on the linked sequence for the instance in the EB1 protein (MARE1_HUMAN) opens
a new page summarizing the annotated experimental evidence for the given instance. In this case, the motif has been exhaustively analysed and the
supporting evidence is solid.

D172 Nucleic Acids Research, 2010, Vol. 38, Database issue



yeast, or cell lines from one of mouse, chicken or human.
For a given LM class, the set of known instances may have
been identified in a range of different species. Therefore,
researchers are routinely faced with the issue of mapping
experimental results from diverse organisms onto the
protein sequence of their model organism. The instance
mapper module addresses this issue for the ELM server.

A rarely used BLAST variant, PHI-BLAST, is at the
core of the ELM instance mapper (64). PHI-BLAST

requires a regular expression in addition to the query
sequence: the pattern must have at least one match in
the query. We found PHI-BLAST to be ideally suited
for mapping known LM matches from homologous
sequences, so that the instance mapping issue was
reduced to developing a protocol to utilize it effectively.
The flow scheme of the instance mapper is summarized

in Figure 5. Sequences harbouring known instances are
stored in a small BLAST formatted database. For each

Figure 3. Graphic from the output page of the ELM server queried with Epsin-1 sequence from the UniProt entry EPN1_HUMAN.
The key indicates the content of the various coloured bars, e.g. the three connected by dotted arrows. Thirteen true LM instances are annotated
either in this sequence or an orthologue from another species (magenta and red bar codes, respectively). Mouseover provides panels with different
information depending on context, three examples of which are shown. One indicates an ENTH domain retrieved from SMART. A second points
at an annotated DPW motif. The third mouseover provides the most detail: a structure for the ENTH domain (PDB entry d1h0) was used by the SF
(41) to report that a cyclin motif candidate is too buried to be significant. Clicking on any object in the graphic will link to further details.
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pattern matching the query, this database is searched by
PHI-BLAST. The instance mapper then parses the output
and assigns a divergence-based score to any matches that
are retrieved. These are then displayed in the ELM server
graphical output (Figure 3).
PHI-BLAST calculates an E-value, based on the

BLAST bit score, which is useful for determining the
statistical signiEcance of a given alignment. However,
this statistic does not reflect how similar the query
sequence is to the LM instance sequence, which is partic-
ularly relevant for our purpose. To address this issue,

we have devised an ELM instance score Sei that is
calculated from the PHI-BLAST alignment:

Sei ¼
i� g=la

min lq,ls
� �

where i is the number of identical positions in the
alignment, g is the number of gaps, la is the length of
the alignment (minus gaps), lq is the length of the query
sequence and ls is the length of the subject sequence.
The assumptions behind the score are that false matches
are more likely at higher divergence and in longer

Figure 4. Representative results from the CS web interface, displayed with the annotated sequence alignment editor JalView (86). The alignment
shows the set of sequences obtained by the CS filter with the human Epsin1 query sequence at top: the sequences belong to several paralogous
families of Epsins. Four motif matches are highlighted in the reference sequence (magenta, annotated in this sequence; red, assigned by the instance
mapper; blue, unannotated match) and in other sequences that align to the reference motif (green). The left-most match is a known instance of
TRG_AP2beta_CARGO_1 and gives a top score of 1.00 despite only being present in sequences belonging to two of the Epsin paralogues. This is
because most sequences that lack the motif have gaps aligned to it that do not affect the CS score. The second motif is a candidate instance for
MOD_PKA_2 but is poorly conserved, scoring 0.05. This candidate would probably not be worth investigating unless there was prior evidence of
phosphorylation at the site. The remaining two motifs are known instances of LIG_Clathr_ClatBox_1 and LIG_EH_1, which obtain the maximum
CS score since they are conserved in all Epsin paralogues.

Table 3. Web Service interfaces for the ELM tool suite

Resource module Purpose of resource module Links to WSDLs

ELM Database Retrieve data stored by ELM http://elm.eu.org/webservice/ELMdb.wsdl
http://api.bioinfo.no/wsdl/ELMdb.wsdl

ELMMatcher Map ELM Motifs to query sequence http://elm.eu.org/webservice/wsELMMatcher.wsdl
http://api.bioinfo.no/wsdl/ELMMatcher.wsdl

ELM CS Filter Evaluate conservation of LM matches in reference sequence http://conscore.embl.de/webservice/CS.wsdl
ELM SF Evaluate accessibility and structure context of LM matches

in query sequence given a reference structure
http://structurefilter.embl.de/webservice/structureFilter.wsdl

GlobPlot Evaluate disorder propensity in query sequence http://globplot.embl.de/webservice/globplot.wsdl
Phospho.ELM Retrieve phosphorylation data stored by Phospho.ELM http://phospho.elm.eu.org/webservice/phosphoELMdb.wsdl
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sequences. At higher divergence, the sequences may be
nonorthologous (or only partially so) or, in orthologous
sequences, nonorthologous matches may also be
superposed, especially for common, simple motifs.
Therefore, while the instance matcher can retrieve
genuine instances in sequences that are as low as 30%
identity, a low score serves as a warning to evaluate the
match. Note that this score is designed for evaluation of
pairwise matches: if we had a multiple alignment and were
confident that the alignment was correct for a motif, then
the conservation can be scored as ‘more’ significant at
higher divergence (61).

The instance mapper is a key addition to the resource as
it unites the information content of the experimental
instances stored in the ELM database with the motif
exploration capabilities afforded by the ELM regular
expressions.

USER COMMUNITY FEEDBACK AND INTERACTION

In common with other bioinformatics resources, only a
few of the ELM users choose to communicate with us.

Users should know that certain types of communication
are very useful to us. Obviously, if a server problem
persists for a few hours, we should be informed immedi-
ately. Suggestions about the ELM resource interface
would also be welcome—though we can probably only
respond slowly to good ideas.
Of most use to ELM and the user community would

be information to improve the data stored in
ELM. Sometimes this might be a simple update such
as an important instance that has been omitted, a new
structure or a useful reference. More substantial
help with creating or improving entries would be par-
ticularly valuable. In several cases, experts have
contributed or reviewed entries for ELM. Entries
with expert involvement include: LIG_CAP-Gly_1,
LIG_EH_1, LIG_SxIP_EBH_1, LIG_ULM_U2AF65_1,
LIG_RRM_PRI_1, TRG_AP2beta_CARGO_1 (65–70).
The obvious reason why researchers may be chary of

getting involved with improving ELM is the time and
effort that it costs. There is an upside that scientific infor-
mation now disseminates to a great extent through the
web: ELM can provide another route to showcase your
work and, presumably, the prouder you are of your
achievements, the more visible you would like them to
be. We thank those researchers who have already helped
us improve ELM and hope that their research will receive
some reciprocal benefit.

ROLE OF ELM IN LM RESEARCH/DISCOVERY

As ELM has become more widely known to researchers,
experimental investigations of candidate matches to
known motifs have begun to appear in the literature.
For example, an HCMV transmembrane protein has
been shown to have LMs for cooption of cellular retention
systems, aiding viral immune evasion (71). A candidate
14-3-3-binding phosphosite has been validated in the
cytosolic C-terminus of integrin-a4 (72). Several reg-
ulatory motifs have been investigated in Drosophila
cryptochrome, a regulator of circadian rhythm (73).
Collectively such studies afford optimism that our work
to establish the ELM resource will increasingly be justified
by experimental application.
We take the view that by applying ELM ourselves,

we can better evaluate and optimize our methodologies.
We have sometimes been able to employ a protocol
involving GO term enrichment to reveal sets of proteins
with LM matches that are significantly enriched in specific
contexts. Thus, we have reported a bioinformatics survey
(63) of KEN box anaphase destruction motifs enriched in
mitotic proteins: KEN box motifs in CHFR and C13orf3
are thought to aid in defining their roles in mitosis, though
experimental validation is still needed (74,75). In a second
example, while annotating the SUMO motif, we were able
to define a larger motif, KEPE, superposed on a subset of
sumoylation sites (62). It is, however, too soon for the role
of KEPE to have been investigated.
The ELM instance dataset has been deployed by several

bioinformatics groups in ways that have provided insight
into LM context and/or to develop and benchmark

Figure 5. Flow scheme for the ELM Instance Mapper. For each pre-
dicted LM from an ELM database search, a PHI-BLAST search is
performed against a database containing all sequences with known
instances of the predicted LM. Input to PHI-BLAST is the query
sequence and the ELM Regular Expression (which is adapted for use
with PHI-BLAST). Each of the aligned motifs, between query and
ELM instance sequence, are evaluated and scored (see main text). If the
motif in the ELM instance sequence is a known instance, and the calcu-
lated score is above a threshold (Sei� 0.3), it is reported as a mapped
instance. Both the ELM instance mapper and the underlying PHI-
BLAST results are returned to the ELM server, for the user to inspect.
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novel strategies for LM discovery. Thus, the anecdotal
observation that LMs are more abundant in natively dis-
ordered protein sequence (21) has been verified by more
systematic analyses using benchmarked native disorder
predictors (28,29). More recently, this research line has
been extended with the ANCHOR server providing
benchmarked prediction of short stretches of sequence
that have strong interacting potential (76). The local
context of LMs has been further investigated, revealing
that the adjacent peptide sequence often has a role in
modulating LM function (77,78). Stemming from an
awareness that viruses utlilize numerous LMs to hijack
cellular systems, Dinkel and Sticht (37) developed and
benchmarked a pipeline to apply conservation and
domain masking to motif candidates. Observing that
multiple sequence alignment software has been over-
trained on globular sequences and therefore performs
quite poorly with short conserved motifs, the BAliBASE
alignment benchmark suite was extended with an LM
benchmark in the hope that this will lead to improved
alignment algorithms (79).
While the ELM resource per se is not suited to de novo

discovery of hitherto unknown motifs, the instances have
been used by others to develop and benchmark tools for
just this purpose. Yeast 2-hybrid data includes candidate
LM-mediated interactions and both DILIMOT and
SLiMFinder use interaction sets to search for enriched
motifs in the binders of a protein (38,39,80). These
methods depend on overrepresentation of a motif and
therefore are probably not suited to motifs that have
few biological instances. However, another promising
approach uses amino acid preferences to sample 3D struc-
tural surfaces for sites with high peptide binding values
(40): such methods have the potential to reveal LMs that
have only a single functional instance in a proteome.
These strategies illustrate how other data (interactions,
structures) can be integrated into bioinformatics LM
discovery pipelines, complementing experimental
approaches for motif definition such as peptide libraries
and arrays (81–83).
When we began the ELM project, LM bioinformatics

was essentially nonexistent (21). The progress in the last
few years has been impressive and exciting. There is
growing awareness that the study of protein interactions
is not just about globular–globular interfaces (5,84).
Protein interaction data and domain surfaces can now
be explored for possible LM interactors. There is much
more to be done before researchers can pull up strong
LM candidates as easily as running BLAST searches,
but this goal—so important if we are to understand
cell regulation—no longer seems to be impossibly
fanciful.

EVALUATING AND APPLYING THE ELM SERVER
RESULTS

Candidate LMs require experimental validation. The key
to using ELM is to select good candidates for experimen-
tal validation and not waste time on the poor ones. Since
LMs are always interaction sites, they must be in the same

cell compartment as their ligand. There is little point in
experimentally testing a candidate cyclin-binding motif in
a collagen sequence. Likewise, a motif that is deeply
buried in a solved structure makes a poor choice for exper-
imentation (41). Therefore, it is first necessary to establish
if a motif match is conserved, exposed and in the right cell
compartment, according to the ELM filters. Motifs that
pass these tests can then be further examined using a range
of bioinformatics tools. Figure 6 shows a flowchart for
how a typical motif evaluation might proceed. After the
initial ELM tests, native disorder predictors and domain
databases can give an indication of structural context.
If the motif is within a known 3D structure, the context
should be visualized; e.g. with PyMol (http://pymol
.sourceforge.net/). Swiss-Prot features, the HPRD entry
and phosphorylation databases may provide additional
structure–function context. A user should always
prepare a multiple sequence alignment and examine the
motif conservation. Note that multiple alignment
software sometimes struggle with motif alignments, with
MAFFT (85) perhaps being the best current choice (79).
If motifs are present but misaligned, an alignment editor
such as JalView (86) may be helpful. Is the motif
conserved in a specific lineage, e.g. vertebrates? If the
motif is conserved, is the adjacent sequence less so? If
things are looking good, it is important to ask whether
the proposed LM function makes any sense for the
protein; if this is unfamiliar, it is advisable to spend
some time reading the literature: the ELM links to
PubMed are a useful starting point, but unlikely to be
exhaustive.

If LM candidates have survived the routine tests, there
are other bioinformatics tools that might provide further
insight. Protein interaction resources such as STRING
(87), MINT (88) and IntAct (89) can reveal if a ligand
protein is known to be close in the network. Interaction
data can also be supplied to DILIMOT and/or
SLiMFinder to evaluate whether there is statistical
support for motif enrichment (38,39). Enrichment of
motifs with UniProt GO terms and other keywords can
sometimes provide statistical support for sets of motifs
(62,63,90). SIRW is an online tool (http://sirw.embl.
de/index.html) that allows keyword exploration for
RegExps (91). If enrichment is found, SIRW can
provide a probability estimate using Fisher’s Exact Test.
Of course, motif enrichment can be an artefact of sequence
length or amino acid bias so judgement of the results is
required. If the enriched set is not more conserved than the
background, then it is unlikely to be biologically
meaningful.

After doing all this, ask once again: Is the motif buried?
We think it likely that inaccessible motifs are the most
common reason for erroneous LM reports in the
literature.

Even when an LM candidate is in the right cell com-
partment, and survives many other tests, it does not have
to be functional as it still may never contact the ligand
protein (20). There is increasing evidence that cell signal-
ling decisions are made in large dynamic protein
complexes. If a motif-containing protein is never in the
same complex as a ligand protein, the motif will be false.
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Figure 6. Workflow diagram illustrating how a user might explore LM candidates with ELM. The pipeline proceeds through three main phases
utilizing the ELM resource (beige background) ELM associated tools (green) and more general bioinformatics resources (pink). Candidate LMs can
be rejected by ELM filters if in unsuitable contexts. Sequence conservation and enrichment in interaction data using DiLiMot or SLiMFinder
can provide additional scores to rank motifs. In the final phase any potentially relevant bioinformatics resources should be examined to provide
further context to motif candidates. If promising candidates survive this process, the end point of the bioinformatics pipeline has been reached and
laboratory validation is now required.
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For this reason, cell localization assays are useful,
although they can be misleading if overexpression is
used. Coimmunoprecipitation and pull down experiments
are also widely used as part of motif validation. We
thought it might be of interest to list the most
commonly annotated methods applied in motif validation
and these are presented in Table 4. Since no one experi-
ment is definitive, many of these methods will have been
applied to a well-validated motif instance.

CURRENT LIMITATIONS AND FUTURE
DIRECTIONS

In common with LM bioinformatics, in general, ELM has
advanced to a state of practical usefulness, yet there is
much more to do. LM RegExp matches cannot yet be
taken as indicators of true functional sites and the
candidates must be experimentally verified. The ELM
dataset is incomplete with respect to motifs reported in
the literature and there is work to be done to extend the
coverage of the database: currently, users should not use
ELM as a sole source of LM information. We have
identified a need to improve the data captured regarding
interactions of the ELM instances, which currently are of
limited use for systems modelling in silico. ELM filtering
can be improved in the short to medium term by
embedding the CS filter and by using Swiss-Prot
topology domains for automated cell compartment filter-
ing of transmembrane proteins. In the ELM output, we
would like to present the user with phosphorylation sites
and other readily available information about the struc-
ture/function modules of query proteins. It is our hope
that most of these goals will have been achieved when
we next report on ELM.
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