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The recent outbreak of SARS-CoV2 has emerged as one of the biggest pandemics of our
century, with outrageous health, social and economic consequences globally.
Macrophages may lay in the center of COVID-19 pathogenesis and lethality and
treatment of the macrophage-induced cytokine storm has emerged as essential.
Specialized pro-resolving mediators (SPMs) hold strong therapeutic potentials in the
management of COVID-19 as they can regulate macrophage infiltration and cytokine
production but also promote a pro-resolving macrophage phenotype. In this review, we
discuss the homeostatic functions of SPMs acting directly on macrophages on various
levels, towards the resolution of inflammation. Moreover, we address the molecular events
that link the lipid mediators with COVID-19 severity and discuss the clinical potentials of
SPMs in COVID-19 immunotherapeutics.

Keywords: resolution of inflammation, lipid mediators/specialized pro-resolving mediators (SPMs), cytokine storm,
macrophage activation syndrome (MAS), severe acute respiratory syndrome corona virus (SARS-CoV2)
INTRODUCTION

The recent outbreak of the corona virus disease 2019 (COVID-19) from Wuhan, China (1) has
evolved to one of the biggest global pandemics of the 21st century. The infectious virus named by
the World Health Organization as severe acute respiratory syndrome corona virus (SARS-CoV2)
counts up to date (November 2020) more than 55.6 million people infected and 1.34 million deaths,
since the start of the pandemic. According to the latest knowledge, disease pathogenesis is driven by
a dysregulated immune response against SARS-CoV2, characterized among others by impaired type
Abbreviations: ALOX5, 5-lipoxygenase; ALOX15, 15-lipoxygenase; ARDS, Acute respiratory distress syndrome; (AT)-Rv,
aspirin-triggered resolving; CCL, Chemokine (C-C motif) ligand; COVID-19, Corona virus disease 2019; CXCL, Chemokine
(C-X-C motif) ligand; DHA, Docosahexaenoic acid; EPA, Eicosapentaenoic acid; IFN, Interferon; IL, Interleukin; LPS,
Lipopolysaccharide; LTB4, Leukotriene B4; MaR, Maresin; MAS, Macrophage activation syndrome; NET, Neutrophil
extracellular trap; NF-kB, Nuclear factor-kB; NLRs, NOD-like receptors; PMN, Polymorphonuclear leukocyte; PRRs,
Pattern recognition receptors; PTX3, Long pentraxin 3; PUFAs, Polyunsaturated fatty acids; Rv, Resolvin; RLRs, RIG-1 like
receptors; SARS-CoV2, Severe acute respiratory syndrome corona virus; SPMs, Specialized pro-resolving mediators; TLRs,
Toll-like receptors; TNFa, Tumor necrosis factor a.
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I IFN production, sustained inflammation and aberrant cytokine
production (2, 3) similar to the “cytokine storm” syndrome that
can become life-threatening. The consequences of this hyper
immuno-activation, lead eventually to the clinical manifestations
of severe COVID-19 including respiratory failure, systemic
inflammation, acute respiratory distress syndrome (ARDS),
multi-system inflammatory syndrome and multi-organ fibrosis
and malfunction (4).

It is currently believed that alveolar macrophages may lay in
the center of COVID-19 pathogenesis and lethality. SARS-CoV2
infection in the lungs and failure of rapid virus clearance, leads to
severe inflammation as well as, tissue damage and fibrosis. This
prolonged overactivation of resident macrophages by SARS-
CoV2 and augmented release of pro-inflammatory cytokines in
the circulation, results in clinical manifestations similar to those
described in the macrophage activation syndrome (MAS) (5).
Therefore, identifying the factors that will regulate the
macrophage responses in severe COVID-19 cases is essential
for the disease recovery. In this review, we discuss the role of
Specialized Pro-resolving lipid Mediators (SPMs) in driving the
macrophages immuno-functions and thus regulating the
macrophage-induced inflammation. Moreover, we address
the molecular events that relate the lipid mediators with the
disease pathology and discuss the clinical potentials of SPMs in
COVID-19 treatment.
MACROPHAGES AS KEY
ORCHESTRATORS OF THE
INFLAMMATORY MILIEU DURING
CORONAVIRUSES INFECTIONS

Macrophages represent an immune cell type of the myeloid lineage
with broad spectrum of functions including among others
phagocytosis of pathogens and debris, secretion of reactive species
and cytokines, as well as, matrix remodeling and tissue repair (6, 7).
Although they are considered as part of the innate immune system,
they are known to bridge an adaptive immune response via
presentation of antigens to T cells and activation of the latter in
the tissues, via expression of co-stimulatory molecules and secretion
of cytokines (6, 7). Recent evidence is also suggestive of the existence
of memory macrophage populations driven by epigenetic
modifications events, described under the term “trained
immunity” (8). These exact “innate memory” properties of
macrophages are currently under investigation in COVID-19
immunotherapeutics (9). Traditionally, the functional
heterogeneity of macrophages is represented in vitro by a rather
oversimplified model, dividing macrophages into two main
phenotypes (M1 and M2). M1 phenotype refers to pro-
inflammatory or classical activated macrophages, associated with
Th1 responses and IFNg and/or LPS activation, while the M2
phenotype refers to anti-inflammatory or alternatively activated
macrophages, associated with Th2 responses and IL-4 and/or IL-13
activation (10, 11). The terms “killing” or “healing” are also regularly
used to describe M1 or M2 populations respectively. However,
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in vivo, there is not a clear cut off between these phenotypes but
rather a continuum of functional states (11, 12) with M1 and M2
representing the opposing extremes of activation, thus delineating
the need for reassessment of the current M1/M2 definition (13).
Aiming for a lingua franca, a recent macrophage nomenclature has
recommended the latest guidelines for macrophages activation,
including the usage of the activator used in vitro instead of the
typical M1 or M2 [e.g., M(IFNg)] and the combinational
employment of multiple membrane markers as well as,
transcription factors for phenotypic characterization of
macrophages subtypes (14).

Along with neutrophils, macrophages constitute the first line of
immune defense against microbial or viral infections. Invader
sensing via a vast variety of pattern recognition receptors (PRRs),
including Toll-like receptors (TLRs), RIG-1 like receptors (RLRs)
and NOD-like receptors (NLRs) (15), located either on the cell
surface or in intracellular compartments, leads to macrophage
phenotype shift and pro-inflammatory activation. The single
strand RNA receptor TLR7 has been addressed as a sensor for
SARS-CoV2 (16). Of note, loss of function studies of TLR7 showed
correlation with disease severity and dysregulated IFN type I
response (17). Activation of the RNA sensing receptors like the
TLR7 and TLR8 triggers downstream signaling pathways like NF-
kB which in turn leads to transcription of various pro-inflammatory
cytokines e.g., IL-1b, TNFa, IL-6, known as the first cytokine wave
[reviewed in (18)]. A delayed IFN type I response, either due to
genetic reasons or via direct viral-induced immuno-suppressive
mechanisms (19–22), leads to impaired virus control and increased
accumulation of inflammatory monocytes and macrophages with
negative effects on T cells, as shown in amousemodel of SARS-CoV
infection (23). Paradoxically this hyperactivation was induced by the
type I IFN per se, pointing to the importance of timing for an
efficient clearance of the virus. In any case, an increasing viral load
results in continuously elevating numbers of activated macrophages
and sustained hyperinflammation—known as the second cytokine
wave—with severe tissue damage and life-threatening consequences
[reviewed in (18)]. Very recently, several molecules associated with
macrophages functions, such as the plasma levels of long pentraxin
3 (PTX3), as well as, the ratio of the transcription factors MAFB/
MAF have been suggested as potential prognostic indicators of
disease progression and severity (24, 25). Of note, it has been
speculated that the differences in disease severity between adults and
children might be explained by the potential age-heterogeneity of
macrophage populations in lungs and other organs during
development (26) as well as, by the potential development of
memory macrophages upon frequent adjuvant-involving
vaccination during childhood (27).

Single-cell analysis has identified an FCN1+ inflammatory
macrophage phenotype in critical COVID-19 cases expressing the
pro-inflammatory mediators IL-1b, IL-8, TNF, CCL2, CCL3,
CCL20, CXCL1, CXCL3, and CXCL10 (28). It is believed that
this macrophage population actively regulates disease progression
and fuels inflammation by continuously recruiting monocytes from
the circulation and driving their differentiation. Same cytokines
were also found in plasma from deceased COVID-19 patients (21).
Similarly, the bronchoalveolar lavage fluid (BALF) from patients
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with severe COVID-19 was found rich in pro-inflammatory
monocyte-derived macrophages (29). Moreover, lung
macrophages from severe disease were found to produce higher
levels of inflammatory cytokines (IL-6, IL-1b) as well as, monocyte
and neutrophil chemoattractants (IL-8, CCL2, CCL3, CCL4, CCL7),
whereas macrophages from moderate COVID-19 patients
produced higher volumes of the T-cell chemokine CXCL16 (29).
Indeed, hypercytokinemia is considered a hallmark of the disease,
while the serum levels can differentiate the disease severity (30). The
direct implication of the cytokines involved in disease
pathophysiology and the associated pneumonia, found both in
MAS and in COVID-19, is highlighted in preliminary trials
against SARS-CoV2, where blockade of IL-6 with tocilizumab
showed promising clinical efficacy (31). However, whether IL-6 is
detrimental or beneficial in COVID-19 remains unclear and is
highly probable that timing is the most important factor in
determining the success or not of anti-IL-6 treatments. Blockade
of IL-6 at the early stages of the disease development might
negatively affect effective virus clearance [reviewed in (32)].

To this extent, treating the inflammation and the cytokine
storm has emerged as a legitimate approach in COVID-19
therapeutics and appears to be equally important to anti-viral
therapies. Various strategies have been proposed in this vein,
including cytokine inhibitors (e.g., tocilizumab), corticosteroids,
intravenous immunoglobulin (IVIG) and cytokine absorption
devices [reviewed in (18, 33)]. Since macrophages may also stand
out as the key cell population in the resolution of inflammation
and healing of the damaged tissue, identifying the factors
inducing their phenotypic shift from the ‘‘pathologic’’
phenotype to the ‘‘healing’’ one, is essential in COVID-19.
SPMS IN INFLAMMATION AND COVID-19

Specialized pro-resolving mediators (SPMs)—consisting of lipoxins,
resolvins, maresins, and protectins—represent a novel class of
bioactive lipids that are generated by enzymatic oxygenation of n-
3 and n-6 polyunsaturated fatty acids (PUFAs) after the initial stages
of the inflammatory cascade (34). Endogenous biosynthesis of
SPMs involves cell–cell interactions and is mediated by
lipoxygenases (35). As the acute inflammatory response matures,
accumulation of cells containing lipoxygenases (LOs) and
corresponding pro-inflammatory products, such as prostaglandins
(PGs), leukotrienes (LTs) and hydroxy acids (HETES), favors the
‘‘lipid mediator class switching’’. This phenomenon, as was initially
described in neutrophils gives rise to the synthesis of SPMs through
pathways that are spatially and temporally distinct from those
involved in the generation of pro-inflammatory lipid mediators
(36, 37). Lipoxins are synthesized through a series of enzymatic
reactions starting with the oxidation of arachidonic acid (AA) by
15-LO through the process of transcellular biosynthesis, resulting in
15-S-hyroxy-(p)-eicosatetraenoic acid' [15-S-H(p)ETE].
Accordingly, 15-S-H(p)ETE is further acted on by 5-LO to
generate lipoxins, such as lipoxins A4 (LXA4) and B4 (LXB4) (36,
37). Similar effects can be reproduced by exogenous administration
of low-dose aspirin, which acetylates cyclooxygenase-2 via 15R-LO,
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promoting the biosynthesis of epimeric (aspirin-triggered) (AT)
forms of SPMs (15-epi-LXs or ATLs) (38).

E-series resolvins are produced by vascular endothelium via
aspirin-modified COX-2 that converts eicosapentaenoic acid (EPA)
to 18R-hydro-peroxyeicosapentaenoic acid (18R-HEPE) and 18S-
hydro-peroxyeicosapentaenoic acid (18S-HEPE). These
intermediates are rapidly taken up by human neutrophils and are
metabolized to resolvin E1 (RvE1) and RvE2 by 5-LO. RvE1
biosynthesis can also be initiated by microbial cytochrome P450
mono-oxygenase in an aspirin-independent manner, which can
contribute to its production in vivo (39, 40). D-series resolvins and
protectins derive from docosahexaenoic acid (DHA) via subsequent
15-LO and 5-LO-mediated actions, while maresins are generated
through 12-LO-mediated pathways (41). Thus, even though
qualitatively the same enzymes are involved in either SPMs or
eicosanoid biosynthesis, the exact molecular and biochemical
mechanisms driving temporal relationships during the lipid
mediator class switching remain to be further elucidated.

The balance of PUFAs-derived mediators in leukocytes has been
associated with the localization of 5-LO (42). In fact, studies on
macrophages in heightened inflammatory lesions such as advanced
atherosclerotic plaques described abundant nuclear localization of
5-LO. Nuclear 5-LO because of its proximity to LTA4 hydrolase,
seems to promote the conversion of AA to pro-inflammatory LTs in
macrophages (43). On the contrary, non-nuclear localization of 5-
LO, possibly due to its proximity to 12/15-LO, may favor the
conversion of AA or DHA to lipoxins or D-series resolvins
respectively and has been therefore linked with enhanced SPMs
formation (42–44). Interestingly, RvD1 has been described to shift
5-LO from the nucleus to the cytoplasm inducing a negative
feedback loop that suppresses LTB4 formation and promotes
generation of LXA4 in macrophages (44). In addition to the
relocalization events, lipid mediator biosynthesis may be also
affected by post-translational modifications, including miRNAs.
For instance, increased expression of miR-466I in macrophages at
early stages of inflammation promoted the synthesis of RvD1 in
macrophages and the resolution of inflammatory exudates in mice
(45). The regulation of resolution of inflammation by miRNAs via
increasing the synthesis of SPMs and mediating resolution-phase
macrophage polarizations needs to be further investigated. Once
generated, SPMs act as agonists at specific G-protein-coupled
receptors expressed on various cells including monocytes and
macrophages and activate the resolution of inflammation, without
causing systemic immunosuppression (46).

Among these receptors is ALX/FPR2, which apart from SPMs
binds also protein ligands, such as, the acute-phase protein serum
amyloid A (SAA) (47). Recently, SAA plasma levels were found to
be dynamically increased with COVID-19 disease severity and this
protein has been therefore proposed as a biomarker indicative of the
severity and prognosis of the disease (48). Of note, SAA can
antagonize the signaling of LXA4 and vice versa through allosteric
inhibition of the receptor, inducing opposite intracellular effects
(47). In fact, SAA inhibited the LXA4-mediated protective signaling
in patients with chronic obstructive pulmonary disease resulting in
defected activation of anti-inflammatory circuits providing a
molecular explanation for SAA-mediated impaired resolution (49).
February 2021 | Volume 12 | Article 632238
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Apart from SAA overexpression, COVID-19 has been
characterized by elevated production of macrophage-derived
eicosanoids that further enhance inflammation (50). In
addition, a recent lipidomic analysis study showed a significant
shift in the profile of lipid mediators with increased levels of
arachidonate-derived proinflammatory lipid mediators
(prostaglandins) in the sera of COVID-19 patients (51).
Grouping of lipid mediators according to the oxygenase-
mediated synthesis pathway, demonstrated a greater activity of
ALOX5, ALOX15, and cytochrome p450 (CYP) enzymes in the
severe group (51). Further examination on the cell types
responsible for the addressed lipidomic imbalance in this
severe COVID-19 group, alluded neutrophils, as well as, a
trend for CD14+, and CD16+ monocytes. Elevated ALOX5
expressing monocyte/macrophage populations have also been
associated with severe disease (51). Similarly, increased ALOX5
activity related to symptom severity has been addressed in other
viral infections e.g., in influenza (52).

Recently, COVID-19 has been also linked to dyslipidemia
associated with deficiency of apolipoprotein E (ApoE) (50).
ApoE is generated among other cells by lung macrophages and
alveolar epithelial cells and exerts its protective effects by
downregulating VCAM‐1, inducing NO synthesis, inhibiting
endothelial activation, and decreasing adhesion of monocytes
to the endothelium (53). ApoE−/− mice under an omega-3 fatty
acid-deficient diet presented significant overexpression of pro-
inflammatory eicosanoids in the lungs as well as endothelial
dysfunction which can contribute to increased blood coagulation
found in severe COVID-19 (54). It has been therefore suggested
that deficiency in ApoE found in SARS-CoV2 dyslipidemia may
be linked to disease progression and complications (50). Of note,
supplementation with EPA and DHA downregulated the levels
of pro-inflammatory eicosanoids such as thromboxane B2 in the
lungs of ApoE−/− mice and the effect was even more pronounced
with the addition of aspirin treatment (54).

Known risk factors for severe COVID-19, including diabetes,
obesity and chronic obstructive pulmonary disease (COPD), have
been also related to dysregulated concentrations of SPMs (55, 56).
Collectively these findings underscore the importance of fine-tuned
lipid mediators’ responses to achieve resolution in inflammation-
associated pathologies. Severe COVID-19 may be characterized
among others by a lipidomic imbalance in key cell populations
contributing to the disease progression, such as neutrophils and/or
monocytes/macrophages. As such, understanding the full anti-
inflammatory and pro-resolving spectrum of these lipid mediators
is of major importance in the current coronaviruses pandemics.
SPMS IN REGULATING MACROPHAGE
IMMUNO-FUNCTIONS: MACROPHAGE
INFILTRATION AND MOBILITY

Recent evidence suggests that severe clinical manifestations found in
COVID-19 are associated with excessive infiltration of
inflammatory monocytes in the lungs, in the expense of tissue-
resident alveolar macrophages (29) and the subsequent release of
Frontiers in Immunology | www.frontiersin.org 4
pro-inflammatory cytokines in the circulation (5). Moreover, a
population of these infiltrated monocyte-derived macrophages
may be associated with the pulmonary fibrosis (57, 58), also
found in progressed COVID-19 cases. Following a gradient of
chemoattractant molecules and cytokines, circulating monocytes
massively infiltrate the lungs, kidneys and other organs. In this vein,
SPMs have been shown to inhibit monocyte recruitment into the
tissues by regulating the leukocyte-endothelial interactions.
Exogenous addition of resolvin E1 (RvE1) in whole blood was
found to downregulate monocyte surface expression of adhesion
molecules, mediating both early activation and rolling (i.e. L-
selectin), as well as subsequent stable adhesion on the
endothelium and transmigration into the tissues (e.g., CD18
integrin) (59). Incubation with RvE1 reduced the migration of
M1-like macrophages (activated with LPS) towards the
chemotactic protein chemerin, concomitant with a
downregulation in the expression of ChemR23 receptor on
macrophage surface, pointing to the regulatory role of this
receptor in migration of macrophages to the inflamed area (60).
Local application with RvE1 also decreased the numbers of
infiltrating neutrophils, as well as, Th1 and Th17 cells in the
cornea of mice with HSV-1-induced stromal keratitis (61).
Similarly, other SPMs (LXA4 and RvD1), in solution or
incorporated into nano-proresolving medicines, reduced
monocyte trafficking toward LTB4 (62). Of note, in a bacterial
and viral lung co-infection model with robust recruitment of
infiltrating monocytes and increased counts of exudative
macrophages, exogenous delivery of AT-RvD1 during the acute
phase of infection (day 4–6 post-pneumococcal inoculation),
resulted in ∼50% reduction in infiltrating monocytes/macrophage
numbers (CD11bHi, CD11cLow) (63). Since transcript or protein
levels of key cytokines and chemokines associated with monocyte
recruitment such as IL-1b, IL-6, CCL2 and monocyte
chemoattractant protein-1 (MCP-1) were not significantly
reduced by this SPM, the authors suggested that AT-RvD1
directly affected the chemotactic properties of inflammatory
monocytes (from the infected bronchioles to the distal lung
alveoli) per se (63). In addition, halting further monocyte
recruitment could prevent a monocyte-induced secondary phase
of neutrophil migration into the lungs that would perpetuate acute
lung injury. Interestingly, treatment with AT-RvD1 did not reduce
exudative macrophages (CD11bHi, CD11cHi) (63), a subpopulation
of particular importance in the resolution processes represented by
their ability to clear apoptotic neutrophils and facilitate the return to
tissue homeostasis (64). Thus, SPMs may hold promising
therapeutic potentials in decelerating the pathologic macrophage
infiltration in inflamed lungs, during COVID-19 development.
SPMS IN REGULATING THE CYTOKINE/
CHEMOKINE EXPRESSION OF
MONOCYTES/MACROPHAGES

A growing body of evidence points to the regulatory role of SPMs
in pro-inflammatory cytokine secretion by a variety of immune
cells, including monocytes and macrophages. SPMs inhibit the
February 2021 | Volume 12 | Article 632238
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secretion of TNF, IL-1b, IL-8 by activating the GSK3b anti-
inflammatory axis in LPS-stimulated primary human monocytes
(65). Resolvins inhibit the production of TNF-a and IL-6 by
alveolar macrophages derived from both COPD and non-COPD
individuals, although with a stronger potency in the latter (56).
In addition, AT forms of SPMs were shown to decrease the
secretion of macrophage migration inhibitory factor (MIF),
plasminogen activator inhibitor-1 (PAI-1) and chemokine
CCL2 in human monocyte-derived macrophages (66).
Research focus on SPMs has recently resulted in the
identification of novel peptide-containing conjugates with
docosahexaenoic acid (DHA)-derived backbones. Resolvin
peptide-containing conjugates in tissue regeneration (RCTRs),
down-regulate inflammatory chemokines CXCL9 and CCL7 and
increase IL-10 in human macrophages (67). Thus, in addition to
the downregulation of pro-inflammatory molecules, SPMs and
SPMs-peptide conjugates stimulate the production of anti-
inflammatory cytokines by macrophages such as IL-10 and
TGF-b (56), as well as of molecules associated with alternative
macrophage activation (M2) and tissue healing e.g., IL-4, IL-11,
and TGF-a (67). Physiologically, human macrophages may
respond to different pathogens differently, as regards the lipid
mediators’ synthesis, depending on their activation phenotype. It
was shown that Escherichia coli and Staphylococcus aureus
stimulated the production of LTB4 and PGE2 in M1
macrophages, while favored the secretion of SPMs, including
RvD2, RvD5 and maresin-1 in M2 macrophages (68).
Mechanistically, SPMs act by regulating a variety of downstream
signaling pathways including: both canonical and alternative NF-
kBpathways, STAT3, cAMPresponse elementbindingprotein and
MAPK signaling pathways (56, 69). In vivo evidence is also not
lacking; RvD1 downregulates various pro-inflammatory cytokines
and chemokines including TNF-a, IL-6, CCL2, and IL-1b in
peritoneal macrophages in mice (70). Of note, the involvement
of macrophages in COVID-19 and the therapeutic potential of
SPMs in the disease is further highlighted in a recent study; short
incubation (3h) of monocyte-derived macrophages isolated from
cystic fibrosis (CF) individuals with S1, S2 and N proteins from
SARS-CoV-2 resulted in rapid release of chemokines such as IL-8
in cell-free supernatants (71). Most importantly, treatment with
SPMs of CF macrophages stimulated with S1 protein resulted in a
significant reduction in the release of IL-8, MCP-1 and
macrophage inflammatory protein MIP-1a (CCL3) and MIP-1b
(CCL4) (71). Thus, treating the macrophage-generated cytokine
storm in severe COVID-19 with SPMs, has emerged as a
legitimate approach.
SPMS IN REGULATING THE
MACROPHAGE-MEDIATED
EFFEROCYTOSIS AND THROMBUS
RESOLUTION

As noted above, clearance of dead cells and debris by professional
phagocytes in the inflamed area—following the removal of the
Frontiers in Immunology | www.frontiersin.org 5
pathogen—is essential part of the resolution process. In fact, the
uptake of dead cells (efferocytosis) per se or the extracellular
vesicles secreted by dead cells, drive the reprogramming of
macrophages towards an anti-inflammatory state (72–74).
Macrophages play a critical role in orchestrating infectious
inflammation towards its resolution (68). Accumulating
evidence has documented a significant increase in macrophage
uptake of apoptotic cells, following in vitro stimulation with
SPMs, underlining their role as potent enhancers of macrophage
efferocytosis (75, 76). Inflammation is characterized by a hypoxic
milieu that develops, in part, via increased oxygen consumption
by infiltrating leukocytes (77). SPMs promoted macrophage
efferocytosis of neutrophils and erythrocytes in hemorrhagic
exudates under hypoxic conditions in vivo. Of note, the
engulfment of apoptotic PMNs and PMN microparticles by
macrophages during efferocytosis increases the autocrine SPMs
biosynthesis (78). In this vein, uptake of apoptotic cells by M1
macrophages (activated with IFNg+LPS) induced the production
of SPMs, while suppressed prostanoids and leukotrienes,
suggesting the presence of an endogenous negative feedback
loop (79). In addition, aspirin-triggered forms of SPMs identified
in patients with coronary artery disease receiving n-3 PUFA
supplementation, significantly upregulated macrophage
phagocytosis of blood clots, thereby promoting clot removal
(80). Given the high risk for thrombosis found in severe COVID-
19 this may represent an additional protective function of SPMs
related to their regulatory role on macrophages. Moreover,
SARS-CoV2 was recently shown to stimulate the formation of
neutrophil extracellular traps (NETs) in human neutrophils.
The activation and release of NETs (NETosis) was found to be
associated with increased levels of intracellular Reactive
Oxygen Species (ROS) in these cells and was suggested to play
an important role in thrombosis formation in COVID-19
patients (81). Interestingly, in vivo treatment with SPMs in
mice was recently described to inhibit NETosis, indicating
another protective effect of SPMs in thrombus resolution
that could be of particular importance for COVID-19 (82, 83).
SPMs may therefore have a beneficial effect on different cell
types against COVID-19, towards the removal of dead cells
and blood clots, as well as the resolution of inflammation
and thrombroinflammation.
SPMS IN REGULATING THE
MACROPHAGE POLARIZATION

Given the accumulating number of inflammatory macrophages
infiltrating into lungs and other tissues and the natural plasticity
of macrophages, a phenotypic shift of this pathogenic population
may hold strong therapeutic potentials in COVID-19. Recent
findings underlined the potential of SPMs to induce changes in
macrophage phenotype towards a resolving profile, as indicated
by a significant downregulation in the expression of M1-
associated markers (CD54 and CD80) concomitantly with an
increase in M2-associated ones (CD163 and CD206) (84). Along
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these lines, RvD2 prevents cigarette smoke extract (CSE)-
induced M1 polarization (CD80) and enhance M2 polarization
(CD206) in monocyte-derived macrophages (56). Further
evidence is suggestive for the existence of distinct lipid
mediator profiles among different macrophage subtypes; M2
macrophages (CD163 and CD206) have been found to
generate higher levels of SPMs, whereas M1 macrophages
(CD68 and CD86) have been shown to produce elevated
amounts of prostanoids and leukotrienes, thereby promoting
the amplification of inflammation (85). Moreover, the activating
protein of ALOX5 enzyme was induced in M1, but not in M2
macrophages, while ALOX15 was upregulated in M2, but not in
M1, macrophages (85). It was recently found that macrophages
produce also a family of DHA-derived SPM molecules, named
maresins (MaRs) with autocrine actions (79). In vitro treatment
with the bioactive SPM, 13,14-epoxy-MaR resulted in higher
levels of MaR1 in M2 macrophages (CD163 and CD206)
compared to M1 macrophages (CD54 and CD80), suggesting a
higher predisposition towards the proresolving activity of this
macrophage subtype (84). Remarkably, in vivo administration of
RvD2 favored a macrophage phenotype (Ly6Clo), with unique
pro-resolving properties, stimulating inflammation resolution
and tissue (muscle) regeneration (86).

A key phenotypic characteristic of mouse pro-inflammatory
macrophages (M1) is the excessive production of nitric oxide
(NO) (10, 14) and other reactive species, as part of their oxidative
burst anti-microbial mechanisms. Maresin-like lipid mediator
14S,21R-dihydroxy-docosahexaenoic acid was shown to reduce
the hyperglycemia-induced ROS production by macrophages (87)
and modulate the ability of mesenchymal stem cells to induce ROS
generation from macrophages under ischemia/reperfusion
conditions (88). LXs and their aspirin-triggered epimers were
shown to interfere with reactive species production by various cell
types including monocytes and neutrophils (89, 90). Given the
potential relationship of oxidative stress with the pathogenesis of
COVID-19 (91), SPMs may have further beneficial effects in the
current pandemic.

Thus, and in line with the previous functional effects
mentioned above, a growing body of evidence points to the
SPMs-induced phenotypic shift of macrophages towards an anti-
inflammatory and pro-resolving subtype.
SPMS IN REGULATING THE VIRAL CELL-
INFECTION AND TISSUE FIBROSIS

Apart from their regulatory role in monocytes and macrophages,
SPMs may also exhibit direct anti-viral effects, further enhancing
their therapeutic potentials in complementing current anti-viral
strategies. Stimulation of isolated macrophages from volunteers
with CF with S1 protein from SARS-CoV2 triggered the
biosynthesis of RvD1 pointing to the activation of pro-
resolving signals in response to SARS-CoV2 (71). Activation of
TLR7, an important pattern recognition receptor of viral RNA as
noted above, is also known to stimulate SPMs production (92).
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Of note, a direct mechanistic effect of SPMs was also shown;
protectin 1 interacts with the RNA replication machinery of
influenza virus and inhibits viral RNA nuclear export, thereby
suppressing the pathogenicity of the virus (93). Although similar
protective events have not yet addressed for SARS-CoV2, given
the similarities in the replication of RNA viruses, one cannot
exclude the high possibility of such speculation. Of note, 17-
HDHA has been shown to increase antibody production (IgM,
IgG) by enhancing B cell differentiation towards an antibody-
secreting B cell phenotype (CD80, CD86) in H1N1 influenza
infection in mice (94) alluding to the regulatory effects of SPMs
in the humoral immune response against viruses.

As noted above, advanced COVID-19 is also characterized by
excessive fibrosis in lungs and other organs, most probably as a
consequence of failures in the regulation of inflammation;
unresolved inflammation has been closely related to tissue
fibrosis and impaired organ function (95). Proinflammatory
eicosanoids, such as leukotrienes, promote tissue fibrosis,
whereas AT-LXs and synthetic benzo-LXA4 analog have been
shown to reduce bleomycin-induced pulmonary fibrosis and
renal fibrosis respectively (96, 97). SPMs protective effect
against fibrosis, is mediated at least in part by the reduction in
collagen deposition (97). Thus, SPMs may also hold additional
therapeutic modalities against severe COVID-19 manifestations,
such as multiple organ fibrosis.
CONCLUSIONS AND PERSPECTIVES

Corona virus pandemic of 2019 has emerged as one of the biggest
threats of our times, with outrageous health, social, economic
and financial consequences globally. Since the identification of a
cytokine storm in severe COVID-19 and the central role of
pathogenic alveolar macrophage populations in the maintenance
of hyperinflammation, characterized the severe disease, many
current therapeutic research efforts have focused on anti-
inflammatory approaches. However, treating individual
cytokines may not be sufficient. SPMs have the advantage of
stimulating the physiological homeostatic processes towards the
resolution of inflammation, acting directly on macrophages on
various levels (Figure 1), without inducing systemic immuno-
suppression. Moreover, clinical experimentation has alluded to
the safety of SPMs in humans. Exogenous administration of EPA
and DHA (Lovaza) restored the endogenous SPMs levels in
coronary artery patients, without any severe adverse effects being
reported (80). Furthermore, SPMs may also hold beneficial
effects against COVID-19, beyond regulating macrophages
responses. Table 1 summarizes the immuno-regulatory
functions of SPMs in relation to disease pathology, as discussed
here. Interspecies differences in macrophage functions may well
exist [discussed in (98)]; however many of the studies on SPMs
addressed here, have used human primary macrophages. The
importance of lipid mediators in COVID-19 progression is
highlighted by studies showing a direct link between a lipidomic
imbalance and disease severity. Even though SPMs are excessively
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FIGURE 1 | The potential therapeutic role of SPMs in COVID-19. Specialized pro-resolving regulators (SPMs) mediate their anti-viral effects via directly inhibiting the
viral replication and thus export of viral particles from infected cells and/or via regulating the functions of key immune cell types. SPMs act on neutrophils inhibiting
NETosis and thrombroinflammation, while they regulate the macrophages responses on various levels including: inhibition of monocytes infiltration to the inflammed
lungs, as well as, stimulation of homeostatic processes, via induction of efferocytosis, phagocytosis of debris and blood clots and anti-inflammatory and pro-resolving
macrophages polarization. All these effects may eventually lead to the resolution of SARS-CoV2-induced inflammation and thus, potential management of COVID-19
pathologies. Blue lines indicate inhibition, whereas red arrows indicate induction. (Templates from Servier Medical ART, https://smart.servier.com/, were used to
create this image) MF, Macrophage; ROS, Reactive oxygen species.
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TABLE 1 | Immunoprotective actions of SPMs in relation to COVID-19 pathology.

SPM Cell-type/disease model Mechanism of action Reference

Leukocytes adhesion, chemotaxis and migration
Resolvin E1 Human whole blood, intravital microscopy in

mice venules
Downregulates leukocyte expression of adhesion molecules
Reduces leukocyte rolling (∼ 40%) on the endothelium

Dona et al.
(59)

AT- Resolvin D1 Bacterial and viral lung co-infection model in
mice

Reduces infiltrating monocytes/macrophage numbers (CD11bHi,
CD11cLow)

Wang et al.
(63)

Resolvin E1 Human M1-like macrophages Reduces migration of M1-like macrophages (activated with LPS)
towards the chemotactic protein chemerin

Herova et al.
(60)

Resolvin D1
Lipoxin A4

In vitro microfluidic inflammation model based
on primary human neutrophil and monocytes

Suppress monocyte trafficking toward LTB4 Jones et al.
(62)

Generation of cytokines and chemokines
Resolvin D1
Resolvin D2

Human macrophages from cystic fibrosis
individuals stimulated with S1 protein from
SARS-CoV2

Reduce release of IL-8, MCP-1, MIP-1a and CCL4
Upregulates expression of IL1RA

Recchiuti
et al. (71)

AT- Resolvin D3
AT-Lipoxin A4

Human monocyte-derived macrophages Decrease secretion of MIF, PAI-1 and CCL2 Gilligan et al.
(66)

Resolvin D1
Resolvin D2
Maresin 1

LPS-stimulated primary human monocytes Inhibit secretion of TNF-a, IL-1b, IL-8 by activating the GSK3b
anti-inflammatory axis

Gu et al.
(65)

Resolvin D2 Alveolar macrophages from COPD and non-
COPD individuals

Downregulate production of TNF-a and IL-6, stimulate the
production of IL-10 and TGF-b

Croasdell
et al. (56)

Resolvin peptide-containing
conjugates in tissue regeneration
(RCTRs)

Human monocyte-derived macrophages Downregulate CXCL9 and CCL7 Increase IL-10, IL-4, IL-11 and
TGF-a

De la Rosa
et al. (67)

Resolvin D1 Peritoneal macrophages in mice Decreases TNF-a, IL-6, CCL2 and IL-1b Kain et al.
(70)

Phagocytosis and efferocytosis
Resolvin peptide-containing
conjugates in tissue regeneration
(RCTRs)

Human monocyte-derived macrophages Stimulate phagocytosis and efferocytosis De la Rosa
et al. (67)

Resolvin D2 Alveolar macrophages from COPD and non-
COPD individuals

Restore cigarette smoke-induced defects in phagocytosis Croasdell
et al. (56)

AT- Resolvin D3
Resolvin D6
AT-Protectin D1
AT-Lipoxin B4

Human monocyte-derived macrophages Upregulate macrophage phagocytosis of blood clots and promote
blood clot removal

Elajami et al.
(80)

Macrophages polarization
Maresin 1
Resolvin D1

Human monocyte-derived macrophages Downregulate M1-associated markers (CD54 and CD80) and
increase M2-associated markers (CD163 and CD206)

Dalli et al.
(84)

Resolvin D2 Human monocyte-derived macrophages Prevents cigarette smoke extract (CSE)-induced M1 polarization
(CD80) and enhance M2 polarization (CD206)

Croasdell
et al. (56)

13,14-epoxy-Maresin Human monocyte-derived macrophages Increases the levels of SPMs in M2 macrophages (CD163 and
CD206)

Dalli et al.
(84)

Resolvin D2 Muscle-infiltrating macrophages from mice Increases Ly6Clo macrophages and promotes regeneration Giannakis
et al. (86)

NETosis and thrombus resolution
Resolvin D1 Abdominal aortic aneurysm model in mice Suppresses NETosis markers,

IFNg, IL-1b, CXCL10 and MCP-1
Spinosa
et al. (82)

Resolvin D4 Deep vein thrombosis model in mice Inhibits ionomycin-induced release of NETs and promotes
thrombus resolution

Cherpokova
et al. (83)

Oxidative stress
14S,21R-dihydroxy-
docosahexaenoic acid

Murine macrophages isolated by peritoneal
lavage

Improves diabetes-impaired pro-healing functions of macrophages
by reducing hyperglycaemia-induced ROS production

Tian et al.
(87)

14S,21R-dihydroxy-
docosahexaenoic acid
Lipoxin A4
AT 15-epi-LXA4

Murine macrophage cell line (RAW264.7) Modulate the ability of mesenchymal stem cells to induce ROS
generation from macrophages under ischemia/reperfusion
conditions

Tian et al.
(88)

Human neutrophils and monocytes Reduce superoxide and peroxynitrite (ONOO−) formation
Inhibit increase in intracellular diamino-fluorescein fluorescence
(indicator of NO formation)

József et al.
(90)

Anti-viral effects
Protectin 1 Influenza in mice Interacts with the RNA replication machinery of influenza virus,

inhibits viral RNA nuclear export and improves the survival
Morita et al.
(93)

17-HDHA H1N1 influenza infection in mice Increase the number of antibody-secreting cells in vitro protecting
against live pH1N1 influenza infection

Ramon et al.
(94)

(Continued)
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attractive as potential therapeutic candidates in COVID-19 (99–
102), either exogenously administered or by inducing their
endogenous production in patients, the relevant clinical evidence
is still lacking, yet highly anticipated.
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