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Abstract

EBV latent antigen EBNA3C is indispensible for in vitro B-cell immortalization resulting in continuously proliferating
lymphoblastoid cell lines (LCLs). EBNA3C was previously shown to target pRb for ubiquitin-proteasome mediated
degradation, which facilitates G1 to S transition controlled by the major transcriptional activator E2F1. E2F1 also plays a
pivotal role in regulating DNA damage induced apoptosis through both p53-dependent and -independent pathways. In this
study, we demonstrate that in response to DNA damage LCLs knocked down for EBNA3C undergo a drastic induction of
apoptosis, as a possible consequence of both p53- and E2F1-mediated activities. Importantly, EBNA3C was previously
shown to suppress p53-induced apoptosis. Now, we also show that EBNA3C efficiently blocks E2F1-mediated apoptosis, as
well as its anti-proliferative effects in a p53-independent manner, in response to DNA damage. The N- and C-terminal
domains of EBNA3C form a stable pRb independent complex with the N-terminal DNA-binding region of E2F1 responsible
for inducing apoptosis. Mechanistically, we show that EBNA3C represses E2F1 transcriptional activity via blocking its DNA-
binding activity at the responsive promoters of p73 and Apaf-1 apoptosis induced genes, and also facilitates E2F1
degradation in an ubiquitin-proteasome dependent fashion. Moreover, in response to DNA damage, E2F1 knockdown LCLs
exhibited a significant reduction in apoptosis with higher cell-viability. In the presence of normal mitogenic stimuli the
growth rate of LCLs knockdown for E2F1 was markedly impaired; indicating that E2F1 plays a dual role in EBV positive cells
and that active engagement of the EBNA3C-E2F1 complex is crucial for inhibition of DNA damage induced E2F1-mediated
apoptosis. This study offers novel insights into our current understanding of EBV biology and enhances the potential for
development of effective therapies against EBV associated B-cell lymphomas.
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Introduction

The role of the pRb-E2F pathway in the regulation of cell-cycle

progression, particularly the G1-S transition, is well established

[1]. Several lines of evidence have suggested different roles for

individual members of the E2F family of proteins in regulating cell

proliferation [2,3]. There are eight different E2F genes (E2F1-8)

belonging to this family in mammals and can be sub-grouped into

two classes on the basis of their transcriptional activity [3,4]. E2F1-

3, referred to as the ‘activator E2Fs’, bind to pRb and their ectopic

expression was shown to be sufficient for driving cells into S-phase

[4]. E2F4-8 largely function as transcriptional repressors and are

referred to as the ‘repressor E2Fs’ [4]. The repressor E2Fs can be

further divided into two subfamilies. E2F4-5 repress gene

expression in an Rb family-dependent manner, whereas E2F6-8

exert transcriptional repression through Rb-independent mecha-

nisms [4].

Interestingly, only E2F1 was shown to play a dual role in

controlling both cell growth and apoptosis [2,5,6]. For example,

elevated expression of E2F1 promotes cell-cycle progression by

driving quiescent cells into S phase [7], and in cooperation with

activated ras, E2F1 can transform rat embryo fibroblast cells [8].

However, E2F1 expression can also induce apoptosis in the

absence of proliferative signals [9]. A physiological role for E2F1-

mediated apoptosis has been documented in several studies.

E2F12/2 knockout mice develop tumors with high incident rate,

signifying that E2F1 is also engaged with growth inhibitory and

tumor suppressive activities [10,11]. Moreover, over-expression of

E2F1 in mouse embryonic fibroblasts results in cells entering

premature S phase and significant apoptosis [6].

E2F1 mediated apoptosis is known to be associated with both

p53 dependent and independent mechanisms [4]. E2F1 acceler-

ates p53 mediated apoptotic activity either by inducing the

expression of p19/p14ARF, an inhibitor of the Mdm2 ubiquitin

ligase that specifically targets p53 for ubiquitin-proteasome

mediated degradation or by enhancing p53 phosphorylation

[2,4]. Moreover, E2F1 can also induce apoptosis by transactivat-

ing the p53 homologue p73 and Apaf-1 (apoptosis activating

factor-1) in response to DNA damage signals [2,4,12,13,14].

The signaling events that lead to E2F1 induction upon DNA

damage response have also been documented [9,15,16,17]. In

response to DNA damage, unlike other members of the E2F

PLoS Pathogens | www.plospathogens.org 1 March 2012 | Volume 8 | Issue 3 | e1002573



family, E2F1 is uniquely induced by both ATM (ataxia

telangiectasia mutated) and ATR (ATM and Rad3-related)

through specific phosphorylation at serine 31 [17]. E2F1 is also

shown to be phosphorylated by Chk2 [16]. In general, these

phosphorylation events lead to stabilization and activation of E2F1

[16]. In addition to phosphorylation, both acetylation as well as

ubiquitination have also been recognized to play an important role

in activation and stabilization of E2F1 in response to DNA

damage [9,15,18]. Thus, it appears that several DNA damage

signaling pathways are actively engaged with the induction of

E2F1 mediated apoptosis.

EBV is a lymphotropic c-herpesvirus that asymptomatically

persists in more than 90% of the world population [19,20].

However, EBV intermittently causes a self-limiting disease,

infectious mononucleosis in adolescents and has been shown to

be associated with the development of several B-cell lymphomas

and epithelial cancers primarily in immuno-compromized indi-

viduals [19,21]. In vitro, EBV can efficiently transform quiescent B-

cells into continuously proliferating lymphoblastoid cell lines

(LCLs), providing a surrogate model for EBV associated B-cell

tumorigenesis [19,21,22]. These latently infected LCLs carry the

viral genome as extra-chromosomal episomes that express only a

small subset of genes including six nuclear antigens (EBNA- 1, 2,

3A, 3B, 3C and LP), three membrane associated proteins (LMP- 1,

2A, and 2B) and several non-coding RNAs [19,21]. Genetic

studies using recombinant viruses from a number of different

groups have established that EBNA1, EBNA2, EBNA3A,

EBNA3C and LMP1 are important for EBV mediated transfor-

mation of naı̈ve B-cells in vitro [19,21,23,24,25]. Interestingly,

EBNA-LP is not absolutely required for in vitro B-cell transforma-

tion, but necessary for efficient long-term growth of transformed

B-cell lines [26].

EBNA3C was initially identified as a transcriptional modulator

that can efficiently regulate the transcription of both viral and

cellular genes [27,28,29]. Coupled with RBP-Jk, EBNA3C

mediated regulation of Notch-induced transcription was shown

to be one of the major signaling pathways important for LCL

propagation [30,31,32]. In addition, EBNA3C was also shown to

interact with a wide range of transcription factors and modifiers,

such as c-Myc [33], SUMO1 [34], SUMO3 [34], HDAC1 [35],

CtBP [36], DP103 [37], p300 [38], prothymosin-a [38], Nm23-

H1 [39], p53 [40] and its regulatory proteins Mdm2 [41], ING4

[42] and ING5 [42]. Recently, we showed that EBNA3C can

repress p53 dependent apoptotic activity by either blocking its

transcriptional activity or recruiting Mdm2 activity for ubiquitin-

proteasome mediated degradation [40,41]. Moreover, EBNA3C

attenuates the p53 function through blocking the interaction

between p53 and its regulatory proteins, inhibitor of growth family

proteins ING4 and ING5 [42].

In this study we address the influence of EBNA3C on

suppressing E2F1 mediated apoptosis, independent of p53 in

EBV transformed LCLs. We find that EBNA3C can prevent cells

from entering E2F1-dependent apoptosis both at early and latent

stage of infection and possibly that this effect is critically dependent

on the specific interaction between the DNA binding domain of

E2F1 and EBNA3C. Regulation of E2F1 mediated apoptosis

correlates with EBNA3C-dependent inhibition on E2F1 transcrip-

tional activity at apoptosis related genes, including p73 and Apaf-

1. Moreover, EBNA3C specifically targets E2F1 for an ubiquitin-

proteasome mediated degradation. Most importantly, we show

that E2F1 plays a dual role in regulating LCLs outgrowth. In the

presence of growth factors, E2F1 promotes cell proliferation while

DNA damage signals can trigger E2F1 mediated apoptosis and cell

death. Our data define a new interplay between EBNA3C and

E2F1 mediated apoptosis that occurs independently of p53.

Overall, this study supports a model where EBNA3C can

antagonize the apoptotic properties of both E2F1 and p53 to

maintain EBV transformed cells in a continuous state of growth

stimulation.

Materials and Methods

Cell cultures, plasmids, antibodies and transfection
HEK 293, HEK 293T, and both p53 and pRb null Saos-2 cells

were maintained as described previously [41,43]. Burkitt’s

lymphoma cell lines DG75, Ramos, BJAB, BJAB stably expressing

EBNA3C clones (E3C7 and E3C10) and the in vitro EBV-

transformed lymphoblastoid cell lines (LCL1 and LCL2) have

been previously described [40,41,43].

pEGFP-EBNA3C expressing GFP-fused wild-type EBNA3C

(residues 1–992) and myc-tagged EBNA3C constructs (expressing

amino acids 1–992, 1–365, 366–620, 621–992, 1–159, 1–129 and

1–100) in pA3M vector have been previously mentioned [41,43].

Other myc-tagged truncated EBNA3C constructs (encoding amino

acids 1–300, 1–250, 50–300, 130–300, 160–300, 200–300, 621–

950, 621–850, 621–800, 621–750 and 700–900) were generated by

PCR amplification followed by directional cloning in pA3M vector

at EcoRI and NotI restriction sites. pGEX-E2F1 plasmid expressing

GST-fused wild-type E2F1 (encoding residues 1–437) was kindly

provided by Pradip Raychaudhuri (University of Illinois, Chicago,

IL, USA) and used to generate wild-type and different truncated

versions of E2F1 (expressing residues 1–437, 1–400, 1–310, 1–243,

243–437 and 1–150) fused with either C-terminal flag-epitope or N-

terminal GST-tag into pA3F [33], and modified pGEX-2TK

vectors [43], respectively at EcoRI and NotI restriction sites. E2F1

reporter plasmids (pGL2-basic-3X-WT-E2F1-Luc and pGL2-basic-

3X-Mut-E2F1-luc) containing either three wild-type E2F1 binding

sites (CTGCAATTTCGCGCCAAACTT) or three mutant E2F1

binding sites (CTGCAATTGCTCGACCAACTT) fused upstream

of the luciferase gene were generously provided by Stefan Gaubatz

(Philipps University, Marburg, Germany) [44]. Human wild-type

p73 [45] and Apaf-1 [46] promoters linked to luciferase gene were

obtained as kind gifts from Mirko Marabese (Istituto di Ricerche

Farmacologiche ‘‘Mario Negri’’, Milan, Italy) and Kristian Helin

(European Institute of Oncology, Milan, Italy), respectively.

Lentiviral packaging vectors, sh-RNA expressing lentiviral vectors

directed against either EBNA3C (pGIPZ-Sh-E3C.1) or control that

lacks any complementary sequence in the human genome (pGIPZ-

Author Summary

Aberrant cellular proliferation due to deregulation of E2F1
transcriptional activity as a result of either genetic or
functional alterations of its upstream components is a
hallmark of human cancer. Interestingly, E2F1 can also
promote cellular apoptosis regardless of p53 status by
activating a number of pro-apoptotic genes in response to
DNA damage stimuli. Epstein-Barr virus (EBV) encoded
essential latent antigen EBNA3C can suppress p53-
mediated apoptotic activities. This study now demon-
strates that EBNA3C can further impede E2F1 mediated
apoptosis by inhibiting its transcriptional ability, as well as
by facilitating its degradation in an ubiquitin-proteasome
dependent manner. This is the first evidence, which shows
through targeting EBNA3C function linked to the E2F1-
mediated apoptotic pathway, an additional therapeutic
platform could be implemented against EBV-associated
human B-cell lymphomas.
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Sh-Con) were previously described [43]. Sh-RNA directed against

E2F1 was cloned into pGIPZ vector (Open Biosystems, Inc.

Huntsville, AL). The sense strand of E2F1 sh-RNA sequence #1

is 59-tcgagtgctgttgacagtgagcgaGACTGTGACTTTGGGGACCT-

tagtgaagccacagatgtaAGGTCCCCAAAGTCACAGTCgtgcctactgc-

ctcggaa-39 [47]. The sense strand of another E2F1 sh-RNA

sequence #2 is 59-tcgagtgctgttgacagtgagcgaGACTGTGACTTT-

GGGGACCTtagtgaagccacagatgtaAGGTCCCCAAAGTCACAG-

TCgtgcctactgcctcggaa-39 [47]. Upper-case letters indicate 20-

nucleotide (nt) E2F1 target sequence and lowercase letters indicate

hairpin and sequences necessary for the directional cloning into

pGIPZ at Xho I and Mlu I restriction sites. All constructs and

mutations were verified by DNA sequencing (University of

Pennsylvania DNA sequencing facility).

Rabbit polyclonal antibodies reactive to E2F1 (C-20), Apaf-1

(H-324), Cyclin E (M-20) Ubiquitin (FL-76); goat polyclonal

antibody against p73 (S-20); and mouse monoclonal antibodies

against PARP1 (F-2) and GFP (F56-BA1) were obtained from

Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). Mouse

monoclonal antibody against GAPDH was bought from US-

Biological Corp. (Swampscott, MA). Mouse monoclonal antibod-

ies reactive to myc epitope (9E10), flag epitope (M2), EBNA3C

(A10), LMP1 (S12) and EBNA2 (PE 2) have been described

previously [40,41,43,48,49]. Rabbit polyclonal antibody specific

for EBNA3C was obtained from Cocalico Biologicals, Inc.

(Reamstown, PA) and has been described previously [35].

Adherent cells were transiently transfected either by electropo-

ration with a Bio-Rad Gene Pulser II electroporator as previously

described [40,41,43], or using Lipofectamine 2000 (Invitrogen,

Carlsbad, CA) according to manufacturer’s protocol. LCLs were

transfected with 50 ı̀g of plasmids via electroporation (Bio-Rad

Gene Pulser II; 230 V, 975 mF). Transfected LCLs were cultured

in RPMI medium with 10% FBS for 48 h.

Immunoprecipitation (IP), Western blotting (WB), and
Immuno-fluorescence (IF)

10 million transiently transfected cells or 50 million B-cells were

harvested, washed with ice cold PBS and subsequently lysed in

0.5 ml ice cold RIPA buffer [1% Nonidet P-40 (NP-40), 10 mM

Tris pH 8.0, 2 mM EDTA, 150 mM NaCl, supplemented with

protease inhibitors (1 mM phenylmethylsulphonyl fluoride

(PMSF), 1 mg/ml each aprotinin, pepstatin and leupeptin]. Lysates

were precleared with normal control serum plus 30 mL of a 1:1

mixture of Protein-A/G Sepharose beads (GE Healthcare

Biosciences, Pittsburgh, PA) for 1 h at 4uC. Unless and otherwise

stated, approximately 5% of the precleared lysate was saved for

input control and the protein of interest was captured by rotating

the remaining lysate with 1 mg of specific antibody overnight at

4uC. Immuno-complexes were captured with 30 ml Protein-A/G

beads, pelleted and washed 5X with ice cold RIPA buffer.

Input lysates and IP complexes were boiled in laemmli buffer

[50], fractionated by SDS-PAGE and transferred to a 0.45 mm

nitrocellulose membrane for WB analyses. The membranes were

then probed with specific antibodies followed by incubation with

appropriate infrared-tagged secondary antibodies and viewed on

an Odyssey imager. Image analysis and quantification measure-

ments were performed using the Odyssey Infrared Imaging System

application software (LiCor Inc., Lincoln, NE).

IF experiments were performed essentially as described

previously [41,43]. Briefly, Saos-2 cells plated on coverslips were

transfected with expression vectors as indicated, using Lipofecta-

mine 2000. After 36 h of transfection, cells were fixed by ice cold

acetone: methanol mixture (1:1) for 10 min at 220uC. LCLs were

air-dried and fixed similarly. Ectopically expressed E2F1 was

detected using M2-antibody, and GFP-EBNA3C was detected by

GFP fluorescence. In LCLs, endogenously expressed EBNA3C

and E2F1 proteins were detected using their specific antibodies.

The slides were examined with a Fluoview FV300 confocal

microscope (Olympus Inc., Melville, NY).

Purification of GST-proteins and GST-pulldown assays
Escherichia coli BL21 competent cells were transformed with

plasmids for each Glutathione S-transferase (GST) fusion protein

and protein complexes containing the tagged proteins were

purified essentially as previously described [40,41,43].

For in vitro GST-pulldown experiments, GST fusion proteins

were incubated with in vitro-translated 35S-labeled protein in

binding buffer (16phosphate-buffered saline [PBS], 0.1% NP-40,

0.5 mM dithiothreitol [DTT], 10% glycerol, supplemented with

protease inhibitors). In vitro translation was done with the TNT T7

Quick Coupled Transcription/Translation System (Promega Inc.,

Madison, WI) according to the manufacturer’s instruction.

Promoter assays
Promoter assays were performed as previously described

with few modifications [40,42]. Briefly, either 10 million Saos-2

(pRb2/2) cells were transiently transfected by electroporation with

indicated plasmids. Cells were additionally transfected with

pEGFP-C1 and pCMV-bgal constructs for measuring the

transfection efficiency. After 36 h of transfection, cells were

harvested, lysed in reporter lysis buffer (Promega Inc., Madison,

WI) and the luciferase as well as b-galactosidase activities were

measured using either an LMaxII384 luminometer (Molecular

Devices, Sunnyvale, CA) or VERSAmax microplate reader

(Molecular Devices, Sunnyvale, CA), respectively. The results

are shown as representation of duplicate experiments.

ChIP assay
Chromatin immunoprecipitation (ChIP) assay was performed as

previously described [51]. Briefly, 20 million HEK293 cells were

transiently transfected by electroporation with E2F1 reporter

plasmid and expression vectors for flag-E2F1 and myc-EBNA3C.

36 h of post-transfection, cells were cross-linked by 1% formalde-

hyde, harvested, sheared DNA to an average length of 700 bp by

sonication. Cross-linked DNA was immunoprecipitated by anti-

flag antibody and subjected for PCR analysis using primers

designed either for E2F1-responsive promoter fused with luciferase

gene or control SV-40 promoter region of pGL2-basic vector.

Primers for E2F1-promoter: 59-TTGCCGATTTCGGCCTAT-

TG-39 and 59-CATCCTCTAGAGGATAGAATGG-39; primers

for SV-40 promoter: 59-CGTTGTTGTTTTGGAGCACGGA-

39 and 59-TTGGACTTTCCGCCCTTCTTG-39. For EBV-posi-

tive cells (LCL1 with either Sh-Con or Sh-E3C), 50 million cells

were collected, immunoprecipitated with either control rabbit

antibody or E2F1 specific antibody and processed as above. Eluted

DNA fragments were analyzed by subsequent PCR with primers

specific for the p73 and Apaf-1 human promoters. Primers used in

this assay are: for p73 promoter: 59- TGAGCCATGAAGA-

TGTGCGAG-39 and 59- GCTGCTTATGGTCTGATGCT-

TATG-39 [52]; for Apaf-1 promoter: 59-GCCCCGACTTCTT-

CCGGCTCTTCA-39 and 59-GGAGCTGGCAGCTGAAAGA-

CTC-39 [53].

Colony formation assay
10 million Saos-2 (p532/2) cells were transfected by electropo-

ration with indicated expression plasmids for flag-E2F1 and myc-

EBNA3C. Cells were additionally transfected with a GFP

EBNA3C Manipulates E2F1-Regulated Apoptosis
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expression vector (pEGFP-C1, BD Biosciences Clontech). After

24 h of transfection the cells were serum starved (DMEM with

0.1% FBS) with 5 mM etoposide (MP Biomedicals) for 12 h,

followed by selection with DMEM supplemented with 5 mg/ml

G418 (Invitrogen, Inc., Carlsbad, CA) for 2 weeks. After selection,

cells were fixed on the plates with 4% formaldehyde and scanned

for GFP expressed colonies using Typhoon 9410 imaging system

(GE Healthcare Biosciences, Pittsburgh, PA). The area of the

colonies (pixels) in each dish was calculated by Image J software

(Adobe, San Jose, CA). The data are shown as the average and

standard deviation of two independent experiments.

Detection of apoptosis
Saos-2 cells were transfected and selected as above. Approxi-

mately 2 million puromycin selected LCLs, EBV positive LCLs

(LCL1 and LCL2) or EBV negative Burkitt’s lymphoma cell lines

DG75 and Ramos were exposed to serum starvation (RPMI with

0.1% FBS) and 5 mM etoposide treatment for 12 h. For E2F1

knockdown LCLs, cells were additionally treated with an

increasing concentration of etoposide (0, 5, 10 and 20 mM) for

12 h in absence of serum. Subsequently cells were collected, fixed

in cold 70% ethanol for 2 h at 220uC, washed with 16PBS and

stained with PI staining buffer (10 mM Tris, pH 7.5; 0.2 mg/ml

RNase A, and 50 mg/ml propidium iodide) for 2 h in the dark at

room temperature. The stained cells were analyzed using

FACScan (BD Biosciences, San Jose, CA) and FlowJo (Tree Star,

Inc. Ashland, OR) software.

Proliferation assay
Approximately 16105 Saos-2 cells selected for either flag-E2F1

or flag-E2F1 plus myc-tagged EBNA3C constructs (either wild-

type, residues 1–992 or truncated version, residues 366–620) were

plated into each well of the 6-well plates, exposed to serum

starvation (DMEM with 0.1% FBS) and 5 mM etoposide treatment

for 12 h, followed by culturing in regular medium for 6 days at

37uC. Viable cells from each well were counted by trypan blue

exclusion method daily using a Bio-Rad TC10 Automated cell

counter. In parallel assays cells were harvested, lysed in RIPA

buffer and subjected for western blot analyses using indicated

antibodies.

For B-cells, approximately 16105 cells (Ramos, DG75, LCL1

and LCL2) were plated into each well of the 6-well plates and

cultured at 37uC in either complete RPMI medium or RPMI

supplemented with 0.1% FBS plus 5 mM etoposide. Cells were

counted similarly for 6 days. Both experiments were performed in

duplicate and were repeated two times.

TUNEL assay
The TUNEL assay was performed by using an In Situ Cell

Death Fluorescein Detection kit (Roche, Indianapolis, IN) in

accordance with the manufacturer’s instructions. Saos-2 cells

transfected with the indicated expression plasmids for flag-E2F1

and myc-EBNA3C were selected for 2 weeks with G418. After

12 h treatment with 0.1% FBS containing DMEM plus 5 mM

etoposide for 12 h, terminal transferase reaction was performed on

1:1 methanol:acetone fixed cells in 6 well plates. Apoptosis was

measured by counting green cells using a Fluoview FV300

confocal microscope (Olympus Inc., Melville, NY).

Lentivirus production and transduction of LCLs
Lentivirus production and transduction of EBV-transformed B-

cells (LCLs) were essentially carried out as previously described

[43].

Infection of PBMCs with wild-type or DEBNA3C BAC GFP-
EBV

Generation of BAC GFP-EBV was previously described [22].

EBNA3C mutant (BAC GFP-EBVDE3C) was generated from

wild-type BAC GFP-EBV construct. For the generation of BAC

GFP-EBVD E3C we selected the region from 91822 to 102891 bp

from wild-type BAC GFP-EBV plasmid and deleted the

corresponding EBNA3C region from 98370–101424 bp. Southern

blot analysis and junction PCR was performed to confirm the

mutant generation.

For infection, peripheral blood mononuclear cells (PBMC) from

healthy donors were obtained from University of Pennsylvania

Immunology Core. As previously described [22,43], approximate-

ly 10 million PBMC were mixed with virus (either wild-type or

mutant) supernatant in 1 ml of RPMI 1640 with 10% FBS for 4 hr

at 37uC in 6-well plates. Cells were centrifuged for 5 min at 500 g,

discarded the supernatant, pelleted cells and resuspended in 2 ml

of complete RPMI 1640 medium in 6 well plates. EBV GFP

expression visualized by fluorescence microscopy was used to

quantify infection. The protein and mRNA level of the infected

cells was detected after indicated days of post-infection.

Real time quantitative PCR
Total RNA was isolated by using TRIzol reagent according to

the instructions of the manufacturer (Invitrogen, Inc., Carlsbad,

CA). cDNA was made by using a Superscript II reverse

transcriptase kit (Invitrogen, Inc., Carlsbad, CA) according to

the instructions of the manufacturer. The primers were for E2F1,

59- GGCCAGGTACTGATGGTCA-39, and 59-GACCCTGA-

CCTGCTGCTCT-39, for p73 59-CCCCATCAGGGGAGGTG-

39, and 59-AGGGGACGCAGCGAAAC-39, for Apaf-1 59- CC-

TCTCATTTGCTGATGTCG-39 and 59-TCACTGCAGATT-

TTCACCAGA-39, for cyclin E 59-GTTATAAGGGAGACGGG-

GAG-39 and 59-TGCTCTGCTTCTTACCGCTC-39, and for

GAPDH 59-TGCACCACCAACTGCTTAG-39 and 59-GATG-

CAGGGATGATGTTC-39. Quantitative real-time PCR analysis

was done using StepOnePlus Real-Time PCR System (Applied

Biosystems, Foster City, CA) in triplicate as previously described

[43].

Oligo-pulldown assay
100 mg of cell extracts from Saos-2 cells transfected with flag-

E2F1 with or without myc-EBNA3C expression vector were

incubated with 200 ng of the indicated biotinylated oligonucleotides

(wild-type or mutant) immobilized with streptavidin accordingly to

the manufacturer protocol, in the absence or presence of a 200

molar excess of the corresponding non biotinylated oligonucleotide.

Oligonucleotide-bound E2F1 protein was washed 3X with RIPA

buffer and detected by western blotting using anti-flag antibody.

The band intensities were scanned using KODAK 1D Image

Analysis software. The oligonucleotides [9] used in this assay are: for

p73 wild-type promoter 59-GCCGCCTTTTGGCGCGCGTCG-

CTCCTGCAGAG-39; for p73 mutant promoter 59-GCCGCC-

TTGTAGAGTGCGTCGCTCCTGCAGAG-39; for Apaf-1 wild-

type promoter 59-AGTCAAATCCCGCCGGATCCACCCAGC-

CCGGA-39; for Apaf-1 mutant promoter 59-AGTCAAATTCA-

GTCAGATCCACCCAGCCCGGA-39.

Stability assay
10 million Saos-2 (pRb2/2) cells were transiently transfected

using electroporation with flag-tagged E2F1 with or without myc-

tagged EBNA3C expression plasmids. Cells were additionally

trasfected with GFP-expressing plasmid for measuring the
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trasfection efficiency. After 36 hours transfection, cells were

treated with 40 mg/ml cyclohexamide (CalBiochem, Gibbstown,

NJ). For LCLs, 20 million cells were treated with 100 mg/ml

cyclohexamide (CalBiochem, Gibbstown, NJ) either in normal

serum medium or in 0.1% FBS containing DMEM plus 5 mM

etoposide. Subequently, lysates were prepared at indicated time

periods and subjected to immunoblot analyses with appropriate

antibodies. Band intensities were quantitated using Odyssey 3.0

software provided by Odyssey imager (LiCor Inc., Lincoln, NE).

In vivo ubiquitination assay
15 million HEK 293 cells were transfected by electroporation

with appropriate plasmids expressing HA-Ub, flag-E2F1 and myc-

EBNA3C. Cells were incubated for 36 h and pretreated for an

additional 12 h with 20 mM MG132 (Enzo Life Sciences, Inc.

Farmingdale, NY) before harvesting. Flag-E2F1 was immunopre-

cipitated with M2 antibody and resolved by SDS-PAGE. The

extent of ubiquitination of flag-tagged proteins was determined by

western blot analysis using the anti HA-antibody (12CA5). For

LCLs (Sh-Control and Sh-EBNA3C), cells were treated with

40 mM MG132 (Enzo Life Sciences, Inc. Farmingdale, NY) and

immunoprecipitated with anti-E2F1 polyclonal antibody and

subjected for western blot with indicated antibodies.

Results

EBNA3C interacts with E2F1 in a pRb independent
manner

Several lines of evidence suggest that EBNA3C manipulates G1

cell-cycle restriction point through disruption of Cyclin/CDK-

pRb-E2F pathway in EBV infected human cells [43,54,55,56,57].

For example, EBNA3C directly targets pRb, but not other pocket

family proteins including p107 and p130, for ubiquitin-proteasome

mediated degradation [54], relieving the negative regulatory

pressure on E2F transcriptional factors to facilitate the G1 to S

transition [43,57]. It is therefore tempting to investigate whether

or not EBNA3C has any influence in modulating functions of

E2F1, the major transcriptional factor in E2F family and whose

active participation in both cell-proliferation and apoptosis

regulation is unquestionable.

First, we determined whether EBNA3C can form a complex

with E2F1 in EBV infected human B-cells. Endogenously

expressed EBNA3C was immunoprecipitated from two EBV-

transformed lymphoblastoid cell lines (LCL1 and LCL2) or a

Burkitt lymphoma (BL) cell line -BJAB stably expressing EBNA3C

(E3C7 and E3C10) using an EBNA3C reactive rabbit polyclonal

antibody, and co-immunoprecipitation (co-IP) of E2F1 was

monitored by immunoblotting using an E2F1 specific antibody

(Figure 1A and 1B, respectively). EBV-negative BL lines DG75

and BJAB were used as controls (Figure 1A and 1B, respectively).

The results clearly demonstrated that EBNA3C formed a stable

complex with E2F1 in human cells (Figure 1A and 1B). Virtually

identical results were obtained when we used a different EBNA3C

reactive mouse monoclonal antibody (A10) for co-immunoprecip-

itation experiments using these cell lines (Figure S1A and S1B).

However, since all these B-cells have endogenous pRb expression,

we could not rule out the possibility that pRb could serve as a

bridging molecule between EBNA3C and E2F1 binding interface.

In order to validate whether this interaction between EBNA3C

and E2F1 is either pRb dependent or independent, we next

performed binding experiments using two different strategies. We

utilized a mutant E2F1 construct (expressing residues 1–400)

lacking the pRb interaction domain at the C-terminal region and a

pRb-deficient cell line, Saos-2 (pRb2/2). Both HEK 293 (pRb+/+)

and Saos-2 (pRb2/2) cells transiently expressing myc-EBNA3C in

the presence of either empty vector, or flag-tagged wild-type E2F1

(residues 1–437) or flag-tagged E2F1 mutant (residues 1–400)

constructs were harvested after 36 h of transfection and subse-

quently subjected for IP with anti-flag antibody (Figure 1C and

1D). HEK 293 (pRb+/+) cells stably express adenovirus E1A;

however, the endogenous pRb-E2F1 complex was shown to be

resistant to E1A-mediated disruption [58]. The results showed that

EBNA3C was clearly co-immunoprecipitated with both wild-type

and mutant E2F1 but not with the vector control in both pRb+/+

and pRb2/2 cell lines (Figure 1C and 1D, respectively).

Importantly, the mutant E2F1 (residues 1–400) bound to

EBNA3C with stronger association compared to wild-type protein

(Figure 1C and 1D, compare lanes 2 and 3). Perhaps, deletion of

the pRb binding region at the C-terminal domain of E2F1 leads to

a conformational change of overall E2F1 secondary and tertiary

structure, which further allows greater access to EBNA3C’s

binding site(s). Analysis of both endogenous as well as ectopic

expression data strongly demonstrated that EBNA3C forms a

pRb-independent complex with E2F1.

For additional support of the binding data and to visualize the

sub-cellular localization pattern of E2F1 in the presence of

EBNA3C, colocalization experiments were performed with an

EBV-transformed cell line, LCL2 (pRb+/+) (Figure 1E). Immuno-

fluorescence staining using antibodies specific to E2F1 and

EBNA3C proteins demonstrated that both proteins had distinctive

nuclear staining with a speckled pattern (Figure 1E). The results

showed that E2F1 partly colocalized with EBNA3C in human

cells, as visualized by yellow fluorescence when both signals were

merged (Figure 1E). The colocalization study was further extended

using ectopically expressed flag-tagged E2F1 with the GFP-tagged

EBNA3C in Saos-2 (pRb2/2) cells. The results showed that E2F1

noticeably colocalized with EBNA3C, as indicated by the merged

yellow fluorescence signals within the nucleus (Figure 1F). Further,

these colocalization data suggested that EBNA3C shares similar

nuclear compartments with E2F1 in a pRb independent manner.

E2F1 binds to two distinct regions located at the N- and
C-terminal domains of EBNA3C

We wanted to determine the functional residues of EBNA3C

that specifically interact with E2F1. Two successive binding

experiments were performed with different truncated polypeptides

of EBNA3C covering the entire length of the molecule (residues 1–

992, 1–365, 366–620 and 621–992). First, HEK 293 cells were

transfected with flag-tagged E2F1 (residues 1–400) in combination

with either the control vector or aforementioned myc-EBNA3C

expression constructs. The results showed that E2F1 (residues 1–

400) was co-immunoprecipitated with both EBNA3C N-terminal

(residues 1–365) and the C-terminal (residues 621–992) domains

along with the full-length protein (residues 1–992) (Figure 2A). No

co-immunoprecipitation was observed with either the vector

control or EBNA3C middle region (residues 366–620) indicating

a strong level of specificity of this experiment (Figure 2A).

Next, in order to support the abovementioned binding study, an

in vitro GST pulldown experiment was conducted using similar

EBNA3C fragments. Bacterially purified recombinant GST and

GST-E2F1 proteins were incubated with different in vitro-

translated, S352Met radiolabeled fragments of EBNA3C (residues

1–365, 366–620 and 621–992) using T7 TNT coupled transcrip-

tion-translation system [41,59]. Interestingly, in contrast to the

immunoprecipitation assay (Figure 2A) the in vitro binding assay

(Figure 2B) showed a different trend. The results showed that only

the N-terminal domain of EBNA3C (residues 1–365) along with

the full-length molecule strongly bound with GST-E2F1
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(Figure 2B). However, the remaining EBNA3C domains starting

from 366 to 992, including the GST control, showed little or no

binding (Figure 2B). A parallel Coomassie blue-stained gel showed

the amounts of recombinant GST proteins employed in this assay

(Figure 2B). The results implicated that the N-terminal residues of

EBNA3C is likely to interact directly with E2F1 while the C-

terminal region associates with a complex which includes E2F1 in

cells (Figure 2A and 2B). However, we could not entirely rule out

the possibility that the N-terminal domain of EBNA3C may also

form a complex with E2F1 utilizing a protein present in the rabbit

reticulocyte lysate as a potential bridging factor.

Earlier studies have shown that both the N- and C-terminal

domains of EBNA3C are important to interact with a number of

critical cell cycle-regulatory molecules [33,38,43,56,60,61]. To

narrow down the interacting domain within the N- as well as C-

terminal regions of EBNA3C, two successive binding assays were

performed using a series of truncated EBNA3C fragments. First,

an in vivo immunoprecipitation experiment was set up by co-

transfecting a flag-tagged E2F1 (residues 1–400) expressing

construct with either empty vector or plasmid DNA expressing

myc-tagged C-terminal truncated fragments of EBNA3C in HEK

293 cells. The results from immunoprecipitation using anti-flag

antibody showed that the C-terminal residues starting from 621 to

700 of EBNA3C is capable of associating with E2F1 (residues 1–

400). EBNA3C residues 621–992, 621–950, 621–850, 621–800

and 621–750 were co-immunoprecipitated with flag-E2F1 (resi-

dues 1–400), while no co-immunoprecipitation was observed with

either the vector control or EBNA3C residues 700–900

(Figure 2C).

Further, to map within the N-terminal domain of EBNA3C

(residues 1–365) an in vitro GST-pull down experiment was

conducted using a series of small truncations of N-terminal

EBNA3C (Figure 2D). In vitro precipitation experiments with

recombinant GST-E2F1 showed strong interaction with EBNA3C

residues 1–365, 1–300, 1–250, 1–159, 1–129, 50–300, 130–300

and 160–300 (Figure 2D) but not with EBNA3C residues 1–100

and 200–300 (Figure 2D). All fragments of EBNA3C failed to

interact with the GST control, strongly suggesting that the

observed binding was specific for E2F1 (Figure 2D). The results

demonstrated that E2F1 interacts with two distinct regions of

Figure 1. EBNA3C forms a pRb independent complex with E2F1. 50 million A) DG75 and two LCL clones (LCL1 and 2) and B) BJAB and two
BJAB stable clones expressing EBNA3C (E3C7 and E3C10) were subjected to immunoprecipitation (IP) with EBNA3C specific rabbit antibody. Samples
were resolved by SDS-PAGE and detected by western blot (WB) for the indicated proteins by stripping and reprobing the same membrane. 10 million
C) HEK293 (pRb+/+) or D) Saos-2 (pRb2/2) cells were co-transfected with plasmids expressing myc-EBNA3C either in the presence of vector control,
wild-type flag-E2F1 (residues 1–437) or pRb binding deficient flag-E2F1 (residues 1–400) as indicated. At 36 h post-transfection, cells were harvested,
lysed in RIPA buffer and IP with flag-antibody. Samples were western blotted (WB) with the indicated antibodies. The asterisks indicate the
immunoglobulin bands. E) EBV transformed cells LCL2 were plated and air-dried onto slides. F) Saos-2 (pRb2/2) cells plated on coverslips were co-
transfected with plasmids expressing GFP-EBNA3C with flag-E2F1 using Lipofectamine 2000 as per manufactures instructions. E) Endogenously and F)
ectopically expressed E2F1 were detected by either specific rabbit antibody (C-20) or mouse M2-antibody, respectively, followed by specific anti-
Alexa Fluor 594 20 antibody (red). A) Endogenous EBNA3C in EBV positive LCLs was detected using an EBNA3C-specific antibody (A10 ascites)
followed by 20 antibody anti-mouse Alexa Fluor 488 (green). Ectopically expressed GFP-EBNA3C in Saos-2 cells was detected by GFP fluorescence. The
nuclei were subsequently stained with DAPI and the images were captured using an Olympus confocal microscope. All panels are representative
pictures from approximately 100 cells of 10 different fields of three independent experiments.
doi:10.1371/journal.ppat.1002573.g001
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Figure 2. Both N- and C-terminal domains of EBNA3C bind to E2F1. A and C) 10 million HEK293 (pRb+/+) cells were co-transfected with
plasmids expressing pRb binding deficient flag-E2F1 (residues 1–400) in presence of different myc-EBNA3C constructs as indicated. Cells were
harvested, lysed and immunoprecipitated (IP) with anti-flag antibody (M2). Samples were resolved by a 9% SDS-PAGE and detected by western blot
(WB) for the indicated proteins by stripping and reprobing the same membrane. B and D) Wild-type or different truncated mutant expression
plasmids of EBNA3C were in vitro translated in presence of S35-Met as per manufacturer’s instructions. After preclearing of all S35-radiolabeled
translated proteins with GST-beads for 1 h at 4uC, samples were subjected to GST-pull-down by incubating with either recombinant GST alone or
wild-type GST-E2F1 protein as indicated. Reactions were resolved by a 9% SDS-PAGE, exposed to phosphoimager plate for overnight and scanned
using Typhoon 9410 imaging system. Coomassie staining of a parallel SDS-PAGE resolving purified GST-proteins is shown at the bottom panel of B. E)
The schematic illustrates different structural and interaction domains of EBNA3C and summarizes the binding studies between different domains of
EBNA3C with E2F1. +, binding; 2, no binding. ND, not determined. NLS, nuclear localization signal. The asterisks indicate the immunoglobulin bands.
doi:10.1371/journal.ppat.1002573.g002
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EBNA3C, one at N-terminal residues 100–200 and another at

residues 621–700 (Figure 2E).

The N-terminal DNA binding domain of E2F1 is
responsible for interaction with EBNA3C

E2F1 consists of many domains, including the N-terminal

Cyclin A binding domain, DNA binding domain (DBD),

dimerization domain, and a C-terminal transactivation domain

[2,62]. The pRb binding region is located at the transactivation

domain within residues 400–437 [2]. To identify the domains of

E2F1 that are required for binding to EBNA3C, an in vivo binding

assay was performed by immunoprecipitating flag-tagged E2F1

expression constructs encoding various domains of E2F1 with

myc-tagged EBNA3C protein. The co-immunoprecipitation of

EBNA3C was detected using anti-myc antibody. The data

presented in Figure 3A showed that the E2F1 residues 1–437,

1–400, 1–310 and 1–243 strongly bound to EBNA3C, whereas the

C-terminal region of E2F1 residues 243–437 did not bind to

EBNA3C. In order to corroborate this binding experiment a

subsequent GST-pull down experiment was carried out by

incubating in vitro translated radio-labeled EBNA3C with

different GST-fused E2F1 proteins, including residues 1–437, 1–

310, 1–243, 1–150 and 243–437 (Figure 3B). The results indicated

that the EBNA3C binding region within E2F1 lies predominantly

within the N-terminal amino acids 1–243 of E2F1 containing

Cyclin A and DNA binding domains (Figure 3C).

Figure 3. EBNA3C binding region is located at the N-terminal DNA binding domain of E2F1. A) 10 million HEK293 (pRb+/+) cells were co-
transfected with myc-EBNA3C expressing construct with plasmids expressing either vector control or different truncated versions of E2F1 as
indicated. After 36 h of transfection, cells were harvested, lysed and immunoprecipitated (IP) with anti-flag antibody (M2). Samples were resolved by
a 9% SDS-PAGE and detected by western blot (WB) for the indicated proteins by stripping and reprobing the same membrane. B–C) GST-fused wild-
type or different truncated recombinant proteins of E2F1 were incubated with either S35-labeled (top) or ectopically expressed myc-EBNA3C in
HEK293 lysate (bottom). After preclearing of all S35-radiolabeled translated proteins with GST-beads for 1 h at 4uC, samples were subjected to GST-
pull-down by incubating with either recombinant GST alone or wild-type GST-E2F1 protein as indicated. Samples were electrophoretically separated
on 8% SDS-PAGE and were subjected to either autoradiography or western blot using anti-myc antibody. A parallel coomassie stained 12% SDS-PAGE
resolving purified GST-proteins is shown at the bottom panel of B. C) The schematic illustrates different structural and interaction domains of E2F1
and summarizes the binding studies among EBNA3C and E2F1. +, binding; 2, no binding. NLS, nuclear localization signal; DBD, DNA binding domain;
LZ, leucine zipper motif; MB, Marked box. The asterisk indicates the immunoglobulin bands.
doi:10.1371/journal.ppat.1002573.g003
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EBNA3C inhibits E2F1 transcriptional activity
The binding studies led us to investigate whether EBNA3C was

capable of modulating E2F1 mediated transcriptional activity.

To specifically test the transcriptional activity of E2F1 we used

two different reporter plasmids containing three copies of either

wild-type (3X-WT-E2F1-luc) or mutant (3X-Mut-E2F1-luc) E2F1

responsive sequence element cloned upstream of the luciferase

gene (Figure 4A). HEK 293 (pRb+/+) cells were subsequently

transfected with these reporter plasmids in the presence of either

vector control or flag-tagged E2F1 with or without myc-tagged

EBNA3C (Figure 4B). Cells were additionally trasfected with both

GFP expression and b-galactosidase reporter constructs under

CMV promoter in order to check transfection efficiency. The

results clearly demonstrated that ectopic expression of E2F1 leads

to transcription activation from the wild-type promoter, while the

mutant promoter had no response (Figure 4B). Interestingly, when

co-expressed with EBNA3C, the transcriptional activity of E2F1

was significantly reduced to more than 70% (Figure 4B). EBNA3C

expression alone also showed a reduction in luciferace activity

perhaps preventing endogenous E2F1 activity from accessing the

wild-type promoter region, whereas it showed no activity on the

mutant promoter, indicating the specificity of EBNA3C mediated

E2F1 transcriptional repression (Figure 4B). b-Galactosidase

activity was measured to evaluate equal transfection efficiency

(Figure 4B). The expression levels of transiently expressed

EBNA3C and E2F1 along with GAPDH as an internal loading

control and GFP expression as a transfection efficiency control

were analyzed by western blots (Figure 4B, bottom panels). The

results showed that co-expression of EBNA3C led to a reproduc-

ible reduction in E2F1 expression level (Figure 4B), indicating that

EBNA3C mediated repression of E2F1 transcriptional activity

may also mediate through targeting E2F1 degradation.

Previous studies have indicated that pRb blocks E2F1

transcriptional activity by forming a stable complex with E2F1

[63]. In order to distinguish our results from the pRb effect, we

conducted a similar experiment in a pRb null background using

Saos-2 cells (pRb2/2) (Figure 4C). The reduction of E2F1

transactivation activity by EBNA3C was not pRb dependent, as

the normalized luciferase activity presented in Figure 4C showed

that in the presence of EBNA3C there was a reduction of E2F1

transcriptional activity by greater than 50% when compared to

that of E2F1 alone (Figure 4C). Interestingly, EBNA3C co-

operated with pRb to inhibit E2F1 transcriptional activity

(Figure 4C). Moreover, increasing amounts of EBNA3C resulted

in a dose-dependent inhibition of E2F1 transactivation in Saos-2

(pRb2/2) cell line (Figure 4D). Similarly, increasing amount of

EBNA3C expression caused a gradual decrease in E2F1

expression levels without affecting GFP expression levels

(Figure 4D, bottom panels). This further indicates that EBNA3C

may regulate E2F1 stability besides affecting its transactivition

process.

To further define the domain(s) of EBNA3C important for this

activity and also to determine if the binding domain(s) of EBNA3C

is essential for inhibition of E2F1-mediated transactivation, the

reporter assays were extended using different truncated domains of

EBNA3C (residues 1–365, 366–620 and 621–992). All truncated

EBNA3C mutants were able to localize in nucleus since the wild-

type EBNA3C contains three functional nuclear localization

signals (NLS) located at residues 72–80, 412–418 and 939–945,

respectively (Figure 2E) [64]. From the truncated EBNA3C

mutants that were tested, only the N-terminal binding region of

EBNA3C (residues 1–365) showed an almost similar ability to

repress E2F1-dependent transcriptional activity as of wild-type

EBNA3C (Figure 4E). The C-terminal binding domain (residues

621–992) showed an approximately 50% activity when compared

to either the full-length (residues 1–992) or the N-terminal binding

domain (residues 1–365) (Figure 4E). However, the non-binding

middle region (residues 366–620) of EBNA3C had no effect on

E2F1 transcriptional activity (Figure 4E). Results from corre-

sponding western blots indicated that co-expression of both full-

length (residues 1–992) and the C-terminal binding domain

(residues 621–992) led to a reduction in E2F1 expression levels but

not in the presence of either N-terminal binding domain (residues

1–365) or non-binding middle region (residues 366–620) of

EBNA3C (Figure 4E, bottom panels). Similarly, ectopic expression

of EBNA3C proteins showed no effect on GFP expression,

demonstrating that EBNA3C may regulate E2F1 transcriptional

activity by multiple mechanisms.

Overall, the data suggest that EBNA3C represses the E2F1

transactivation activity by forming a complex with E2F1 at its N-

terminal DNA binding domain, perhaps by interfering with its

ability to access the target promoters. To test this hypothesis we

performed a ChIP assay where we used a similar reporter plasmid

containing 3X E2F1 responsive element transfected with vectors

expressing flag-E2F1 with or without myc-EBNA3C in HEK 293

cells (Figure 4F). The ethidium bromide stained agarose gel of end

products as well as the Ct values from real time PCR results

showed that flag-E2F1 strongly bound to the E2F1 responsive

sites, but this interaction was drastically impaired in the presence

of EBNA3C expression (Figure 4F, top). The specificity of this

experiment was confirmed by amplifying a similar size PCR

product from the SV40 promoter region of the reporter plasmid,

which showed no binding with E2F1 (Figure 4F, bottom). These

findings demonstrate that EBNA3C efficiently blocks the recruit-

ment of E2F1 to its responsive sites by inhibiting its DNA binding

activity.

EBNA3C inhibits E2F1 mediated anti-proliferative
activities

It has been well established that in response to DNA damage

E2F1 induces apoptosis through both p53-dependent and

independent mechanisms [4]. The p53-dependent pathway is

mediated through the activation of p19ARF expression which

eventually blocks Mdm2 activity [4]. On the other hand, the p53-

independent pathway is mediated through the activation of pro-

apoptotic genes including p73 and Apaf-1 [4,9]. To specifically

determine the significance of EBNA3C in terms of its direct

regulation of E2F1 function, we wanted to verify whether or not

EBNA3C could affect E2F1 mediated apoptosis. To investigate

the regulation of E2F1 mediated apoptotic activity independent of

p53, we used a p53-deficient cell line (Saos-2), since it has been

shown earlier that the over-expression of E2F1 can lead to

apoptosis in Saos-2 cells in response to DNA damage [65].

First, to determine whether co-expression of EBNA3C can

control the growth suppressive effects of E2F1 in response to DNA

damage, we performed colony formation assays in Saos-2 cells

(Figure 5A). Saos-2 cells were transfected with the expression

plasmids for vector control, myc-tagged EBNA3C alone and flag-

tagged E2F1 with or without myc-tagged EBNA3C (Figure 5A).

Cells were additionally transfected with a GFP expression vector.

After 24 h of transfection, cells were exposed to serum starvation

plus etoposide (5 mM) treatment for 12 h, subsequently selected

with G418 cultured in regular medium, and the number of

colonies per plate was screened 14 days later. Figure 5A shows

representative plates and average colony counts (bar diagram)

from three independent experiments. The results showed that

when Saos-2 cells were transfected with E2F1 alone; an

approximately 2-fold reduction in efficiency of colony formation

EBNA3C Manipulates E2F1-Regulated Apoptosis

PLoS Pathogens | www.plospathogens.org 9 March 2012 | Volume 8 | Issue 3 | e1002573



Figure 4. Co-expression of EBNA3C blocks E2F1 mediated transcriptional activity. A) The schematic represents three wild-type (WT) and
three mutant (Mut) copies of the E2F1 responsive promoter element fused with the luciferase gene in pGL2Basic. B) HEK 293 (pRb+/+) cells were co-
transfected with either 10 mg of WT (blue) or Mut (red) E2F1 reporter plasmids in combinations of expression plasmids for myc-EBNA3C and flag-E2F1
as indicated. C–E) Saos-2 (pRb2/2) cells were transfected with WT E2F1 reporter plasmid in the presence of different expression constructs as
indicated. Cells were additionally transfected with 5 mg of pCMV-bgal and pEGFP-C1 expression vectors to normalize transfection efficiency. At 36 h
post-transfection, cells were harvested and lysed in reporter lysis buffer. Total amount of proteins were normalized by Bradford assay and both
luciferase and b-galactosidase activities were measured as described in ‘Materials and Methods’ section. Mean values and standard deviations of three
independent experiments are presented. Bottoms panels indicate a representative blot of 5% of the total cell lysates resolved by appropriate % SDS-
PAGE demonstrating the expression levels of ectopically expressed proteins. GAPDH blot was done as an internal loading control. E2F1 protein bands
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was observed compared to cells transfected with the empty vector

(Figure 5A). However, cells co-transfected with E2F1 plus

EBNA3C showed an approximately 7–8 fold increase in efficiency

of colony formation compared to E2F1 alone (Figure 5A),

indicating that EBNA3C expression neutralizes the growth

inhibitory effect of E2F1 in response to initial DNA damage

signals. Interestingly, EBNA3C alone exhibited a drastic effect in

colony-formation efficiency compared to cells either expressing

empty vector or E2F1 (Figure 5A).

In order to corroborate the previous experiment, we next

performed a cell proliferation assay, where Saos-2 cells were

transfected with plasmids expressing either flag-tagged E2F1 alone

or in the presence of either myc-EBNA3C (wild-type, residues 1–

992) or the non-binding EBNA3C domain (residues 366–620).

After selection of the transfected cells with G418 similarly as stated

above for 2 weeks, the proliferation rate of the selected cells was

measured by an automated cell counter for 6 days (Figure 5B).

Dead cells (approximately 5%) were excluded using Trypan Blue

staining. The results showed that the cell-proliferation rate of cells

stably expressing E2F1 plus EBNA3C was approximately 4-fold

higher compared to either E2F1 alone or when co-expressed with

EBNA3C residues 366–620 (Figure 5B). The results indicated that

the interaction between EBNA3C and E2F1 is necessary to block

E2F1-mediated anti-proliferative effects in response to DNA

damage.

Can EBNA3C expression affect the ability of E2F1 to induce

apoptosis? To answer this question, the levels of apoptotic cells in

the stably transfected Saos-2 cells (as mentioned above) were

examined in response to DNA damage signals by two successive

methods, flow cytometric analysis and TUNEL assay (Figure 5C

and 5D, respectively). Saos-2 cells stably expressing E2F1 resulted

in induction of a significant level of apoptosis compared to the

basal level of apoptosis in cells stably expressing either empty

vector or EBNA3C alone (Figure 5C–D). However, co-expression

of EBNA3C resulted in inhibition of E2F1 mediated apoptosis by

approximately 50% (Figure 5C). This effect was more dramatic in

TUNEL assays, with a decrease in approximately 75% (Figure 5D).

However, in the presence of the non-binding region of EBNA3C

(residues 366–620), there was no sign of reduction in E2F1-

mediated apoptosis (Figure 5C). Instead there was a slight increase

in the level of apoptosis (approximately 10%) (Figure 5C).

Interestingly, the basal level of apoptosis of cells expressing

EBNA3C residues 366–620 was relatively higher (approximately

5%) compared to both cells stably expressing vector control and

wild-type EBNA3C (Figure 5C). Nevertheless, these data clearly

indicated that EBNA3C can provide cells with a significant level of

protection from E2F1 mediated apoptosis. Altogether our results

suggest that EBNA3C plays a critical role in regulating the

apoptotic and anti-proliferative functions of E2F1 independent of

p53 in response to DNA damage.

A reduction in EBNA3C levels enhances apoptotic cell-
death in LCLs

It has been shown earlier that EBNA3C blocks p53 dependent

apoptosis [40,42]. In addition, the abovementioned data clearly

revealed that EBNA3C also negatively regulates E2F1 mediated

apoptosis in a p53 null cell background. To determine the

apoptotic cells in response to DNA damage signals, cells were

cultured in medium with reduced serum (0.1% FBS) conditions

and treated with 5 mM etoposide for 12 h prior to analyze by flow

cytometry for sub G1 content (Figure 6A and 6D). Analysis of both

serum starved and etoposide treated EBV negative Burkitt’s

lymphoma cells Ramos and DG75 showed an increased level of

apoptotic cells compared to two different clones of LCLs (LCL1

and LCL2), which is approximately 3–4 fold higher (Figure 6A).

To further test whether or not EBNA3C regulates the endogenous

E2F1 activity in EBV transformed cells, LCLs knockdown for

EBNA3C (Sh-E3C) were generated using lentiviruses that express

short hairpin RNA against EBNA3C gene. LCLs with sh-control

(Sh-Con) represent a non-complementary RNA element to the

human genome sequence. As expected, reduction of EBNA3C

expression in LCLs resulted in a significant increase in apoptosis

(,3-fold) compared to LCLs with sh-control in response to serum

starvation and etoposide treatment (Figure 6D). In agreement to

the flow cytometry results, western blot data also showed an

elevated level of PARP cleavage in both EBV negative cell lines

compared to EBV transformed LCLs (Figure 6B). As expected,

EBNA3C knockdown LCLs revealed more PARP cleavage

compared to LCLs with sh-control (Figure 6E). To further

validate these observations, cell-death assays were conducted

using these cell lines in the absence of growth stimuli for a period

of 6 days (Figure 6C and 6F). The results showed that DNA

damage caused by etoposide treatment and serum starvation

resulted in a drastic increase in cell death (approximately a 4-fold

difference) in EBNA3C knockdown cells (Sh-E3C) compared to

wild-type (LCL1 and LCL2), as well as control LCLs (Sh-Con)

(Figure 6C and 6F). These results further extends previously

published data [66,67,68], which indicated that EBNA3C is

absolutely necessary to block DNA damage response in LCLs.

EBNA3C downmodulates p73 and Apaf-1 expression by
inhibiting the DNA-binding ability of E2F1 to its targeted
promoters in EBV transformed cells

The abovementioned apoptotic phenomena due to downregu-

lation of EBNA3C expression in LCLs could be attributed as a

cumulative effect of both E2F1 and p53 mediated apoptosis. The

inhibitory effect of EBNA3C on E2F1 mediated transcriptional

activity led us to further investigate the basal expression levels of

E2F1 both in primary as well as in latent infection model systems.

For primary infection, approximately 10 million peripheral blood

mononuclear cells (PBMC) from healthy donors were infected with

either wild-type (WT) or EBNA3C knockout (DE3C) BAC-GFP

EBV as previously described [22,43]. In order to check EBV

infection, GFP fluorescence was assessed using fluorescence

microscopy (data not shown). Infected PBMCs with the wild-type

virus were initially assessed for mRNA expression levels of both

EBNA3C and E2F1 at different times of post-infection (0, 2, 4, 7

and 15 days) (Figure 7A). Real time PCR analysis demonstrated

that EBNA3C activation typically occurred at 2 days post-

infection and its expression was maintained at a constant level

throughout the experiment, which was up to 15 days post-infection

(Figure 1A). However, the E2F1 transcript levels was seen

particularly robust at 2 days post-infection and gradually declined

to a lower expression level similar to uninfected PBMC (Figure 1A).

were quantified using Odyssey imager software as indicated as arbitrary numerical values (relative intensity, RI) at the bottom of gel (B–E) based on
both GFP and GAPDH loading controls. F) HEK293 cells transfected with the WT E2F1 reporter plasmid in the presence of either flag-E2F1 alone or
flag-E2F1 plus myc-EBNA3C expressing plasmids were subjected to ChIP assay as described in ‘Materials and Methods’ section. The eluted DNA
samples were subjected to qPCR analysis using primers directed for either E2F1-responsive promoter fused with luciferase gene (top) or SV-40
promoter region (bottom). Panels show representative pictures from two independent experiments.
doi:10.1371/journal.ppat.1002573.g004
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Figure 5. EBNA3C inhibits E2F1 mediated anti-proliferative activities in Saos-2 (p532/2 pRb2/2) cells. A–D) Saos-2 (pRb2/2) cells were
electroporated with expression plasmids for either empty vector, flag-E2F1, myc-EBNA3C or myc-EBNA3C residues 366–620 as indicated. A–C) Cells
were additionally transfected with a GFP expression vector. At 24 h post-transfection cells were exposed to serum starvation and 5 mM etoposide
treatment for 12 h, followed by selection with G418 for 2 weeks. A) After a 2-week selection, cells were fixed on the plates with 4% formaldehyde and
scanned for GFP expressed colonies using Typhoon 9410 imaging system. The area of stained cells in each dish was calculated by Image J software. B)
Approximately 0.16106 of flag-E2F1 and flag-E2F1 plus either full-length myc-EBNA3C or myc-EBNA3C residues 366–620 expressing selected cells
from each set of samples were plated into each well of the 6-well plates and cultured for 6 days after 12 h treatment with serum starvation and 5 mM
etoposide. Viable cells from each well were counted by trypan blue exclusion method daily using an automated cell counter. C) Selected cells with
similar treatment as A) were subjected to flow cytometry analyses as described in ‘Materials and Methods’ section. Bar diagrams represent average

EBNA3C Manipulates E2F1-Regulated Apoptosis

PLoS Pathogens | www.plospathogens.org 12 March 2012 | Volume 8 | Issue 3 | e1002573



These data strongly corroborated the previous findings that the

EBV-induced DNA damage response caused by an early period of

hyperproliferation [67] is also linked to the cellular E2F1

expression level, which is further attenuated during LCL

outgrowth. In order to determine a definitive role for EBNA3C

in attenuating this E2F1 mediated DNA damage response, we

generated EBNA3C knockout BAC-GFP virus and infected

PBMCs for 2 days to analyze E2F1 transcript levels at

hyperproliferative state (Figure 7B). Interestingly, EBNA3C

knockout virus infected cells displayed a drastic increase (,6–7

fold) in E2F1 activation compared to wild-type infection

(Figure 7B). A similar trend, however to a lesser extent (,2–3

fold) was observed 15 days post-infection (Figure S1C). These data

clearly supported a concept that EBNA3C expression regulates

genotoxic stress at the early stages of infection.

To further determine whether these changes also correlated in

latent infection, we assessed both transcript and protein levels of

E2F1 and its related apoptotic markers in EBNA3C knockdown

LCLs. The results showed that knockdown of EBNA3C in LCLs

resulted in an increased level of E2F1 expression both at the

protein as well as transcript level, compared to control cells

(Figure 7C and 7E, respectively), indicating that EBNA3C

expression blocks E2F1 transcriptional activity in EBV trans-

formed cells. Elevated expression of E2F1 also caused an

enhanced level of E2F1 targeted gene expression, including p73

and Apaf-1 at the protein and mRNA levels (Figure 7C and 7E,

respectively). Similarly, we also observed increased expression of

Cyclin E, another bona-fide target of E2F1 during cell-cycle

regulation, both at protein as well as transcript level (data not

shown). This indicates the specificity of EBNA3C effect on E2F1

transcriptional activity, which is not only confined to E2F1

mediated apoptotic activities but also extended to E2F1 mediated

cell-proliferation, possibly maintaining a feedback regulation of

uncontrolled cell growth.

In order to corroborate this finding, the LCLs with EBNA3C

knockdown cells were transiently transfected with plasmids

expressing either vector control or myc-tagged EBNA3C. After

48 h of transfection, cells were harvested and subjected to western

blot analysis (Figure 7B). The results showed that rescue of

EBNA3C expression in EBNA3C knockdown LCLs had similar

results to the wild-type (compare Figure 7C and 7D) as expression

levels of E2F1, p73 and Apaf-1 were substantially reduced

compared to cells with vector control (Figure 7D). Overall, these

results clearly provide a possible explanation for the elevated level

of apoptosis in EBNA3C knockdown LCLs. Since downregulation

of EBNA3C in LCLs could affect the expression of other critical

EBV latent proteins [69], we investigated the effect of EBNA3C

inactivation on the expression of EBNA2 and LMP1 proteins

using specific monoclonal antibodies. The results showed that the

expression levels of both EBNA2 and LMP1 in EBNA3C

knockdown LCLs were not affected when compared to control

cells (Figure 7F).

To more rigorously evaluate the EBNA3C effect on E2F1

recruitment to its targeted promoters, we performed a ChIP assay

on both endogenous p73 and Apaf-1 promoter using E2F1

antibody in these cell lines (both Sh-C and Sh-E3C). Indeed, the

results showed that in response to DNA damage EBNA3C

knockdown resulted in increased recruitment of E2F1 (2–3 fold) on

these promoters compared to LCLs with Sh-control (Figure 7G).

We next determined if the repressive effects of EBNA3C on the

transcription level of both p73 and Apaf-1 seen in LCLs would

also be observed using an exogenous system (Figure 7H–I). The

results showed that in Saos-2 (pRb2/2) cells, co-transfection of

both wild-type p73 and Apaf-1 promoters with an E2F1

expression vector resulted in activation of transcription, which

was repressed by approximately 50% when co-expressed with

EBNA3C (Figure 7H and 7I, respectively). Interestingly, EBNA3C

expression alone also caused approximately 50% reduction of

basal promoter activity (Figure 7H–I), perhaps by inhibiting the

endogenous E2F1 activity in Saos-2 cells. It also suggested that

EBNA3C may act more broadly to repress these promoter

activities by blocking the recruitment of other transcription factors

onto these promoters, as for example p53 recruitment on Apaf-1

promoter [70].

To address this phenomenon more directly and to nullify the

effect from other transcriptional factors, we employed a direct

oligo-pulldown assay where cell extracts from Saos-2 cells

transfected with expression vectors for flag-tagged E2F1 with or

without myc-tagged EBNA3C were incubated with biotinylated

oligonucleotides containing only E2F1 responsive elements specific

to either p73 or Apaf-1 promoters as described schematically in

Figure 7J. Oligonucleotide-bound E2F1 protein was detected by

immunoblotting using anti-flag antibody (Figure 7K). In agree-

ment with the ChIP and reporter assays, these results also showed

that the E2F1 DNA-binding activity to both oligonucleotides was

hindered in the presence of EBNA3C (Figure 7K, compare the top

and middle panels), providing a possible explanation for EBNA3C

regulation of E2F1-mediated apoptosis. The specificity of this

experiment was verified by using either mutant oligonucleotides or

performing a competitive binding assay with 200 molar excess of

the corresponding non-biotinylated oligonucleotide (Figure 7K).

Taken altogether, these results showed that EBNA3C can block

E2F1 mediated apoptosis by downregulating both p73 and Apaf-1

expression through inhibiting DNA-binding ability in EBV

transformed cells.

LCLs knockdown for E2F1 are less responsive to
induction of apoptosis

To further assess E2F1 mediated apoptotic activities in EBV

transformed cells, we generated LCLs stably knockdown for E2F1

(Sh-E2F1) using similar lentivirus technique as mentioned before.

In order to minimize the off-target effects we chose two different

Sh-RNA sequences which are previously reported [47]. First,

LCLs were transiently transfected with these Sh-RNA containing

plasmids and validated by western blot 48 h post-transfection

(Figure S1D). The results showed that both these Sh-RNAs

efficiently silenced E2F1 expression in transfected LCLs (Figure

S1D). Subsequently, corresponding lentiviruses were made from

Sh-E2F1 #1 expressing vector and stably trasfected LCLs were

generated. As expected, western blot analysis of these cells showed

that reduction of E2F1 level also resulted in a significant decrease

in expression levels of E2F1 regulated apoptotic markers including

both p73 and Apaf-1 as well as cell-cycle regulatory protein Cyclin

E (Figure 8A). This indicates that downregulation of E2F1 may

have an effect on both cell-proliferation and apoptosis in EBV

transformed cells.

sub G1 values of two independent experiments. D) Saos-2 cells transfected with different combinations of expression plasmids as described in panel
A) and selected similarly as stated above with G418. After genotoxic stress with serum starvation and 5 mM etoposide treatment for 12 h cells were
fixed and subjected for TUNEL assay as per manufactures protocol. A–D) All panels are representative of two independent experiments and bar
diagrams represent the average data of two independent experiments with standard deviation.
doi:10.1371/journal.ppat.1002573.g005
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To further explore E2F1 function in regulating LCLs growth,

proliferation assays were conducted both in the absence and

presence of DNA damage response (Figure 8B and 8C,

respectively). Interestingly, the results showed that upon E2F1

knockdown, LCLs response to varying stimuli was distinctly

different (Figure 8B–C). As expected from the western blot results

(Figure 8A), the growth rate of LCLs knockdown for E2F1 (Sh-

E2F1 #1) showed a significant reduction (approximately 2-fold)

compared to control cells (Sh-Con) in the presence of mitogenic

stimuli (normal cultured medium with growth factors) (Figure 8B).

Figure 6. EBNA3C knockdown in LCLs leads to an increase in apoptotic cell death. A–C) Two EBV negative Burkitt’s lymphoma lines -
Ramos and DG75 and two EBV transformed cell lines - LCL1 and LCL2; D–F) Short hairpin (Sh) RNA mediated knockdown EBV transformed LCLs (Sh-
Con or Sh-E3C) were subjected for genotoxic stress with serum starvation and 5 mM etoposide treatment for 12 h. A and D) Propidium iodide stained
cells were analyzed by flow cytometry for a quantitative measurement of apoptosis (subG1 value). A and D) Bar diagrams below histograms represent
the mean value of two independent experiments with standard deviation. B and E) Panels indicate representative western blots (WB) of 10% of the
total cell lysates with indicated antibodies. C and F) Approximately 0.1 million of indicated cells were grown in 6 well plate for 6 days in RPMI medium
containing 0.1% FBS plus 5 mM etoposide (2serum/+Etop) at 37uC. Viable cells from each well were counted by trypan blue exclusion method every
2nd day using an automated cell counter.
doi:10.1371/journal.ppat.1002573.g006
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Figure 7. EBNA3C blocks p73 and Apaf-1 expressions by inhibiting the DNA-binding ability of E2F1 to its targeted promoters in
LCLs. A–B) Approximately10 million human peripheral blood mononuclear cells (PBMC) were infected by either A) wild-type (WT) BAC GFP-EBV or
EBNA3C knockout BAC GFP-EBV (DE3C) for 4 h. At indicates times post-infection cells were harvested, total RNA was isolated and subjected to cDNA
preparation as per manufacturer’s instruction followed by quantitative real-time PCR analysis for detecting E2F1 and EBNA3C transcript levels. Each
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Importantly, the cell cultures used in these assays had greater than

98% viability, as determined by trypan blue exclusion method

(data not shown). However, in the absence of growth stimuli,

etoposide (5 mM) treatment induced marked cell death in control

cells (Sh-Con) than that of E2F1 knockdown LCLs (Sh-E2F1 #1)

over a period of 6 days, probably by inducing a greater level of

apoptosis (Figure 8C). To further support this notion, we

performed an apoptosis assay to quantitatively determine the

apoptotic response in these cell lines with an increasing

concentration of etoposide (Figure 8D–F). The representative

histogram shows the analysis of multiple experiments which clearly

demonstrated that LCLs knockdown for E2F1 (Sh-E2F1 #1) were

less responsive (approximately 2-fold) to apoptotic stimuli

compared to control cells (Sh-Con) as seen with an increasing

dose of etoposide treatment (Figure 8D–E). Western blot of PARP

cleavage in these cells additionally confirmed the flow-cytometric

analysis, which showed more cleavage in control cells (Sh-Con)

compared to E2F1 knockdown LCLs (Sh-E2F1 #1) in a dose

dependent manner (Figure 8F). These observations clearly suggest

that E2F1 plays a dual role in EBV positive cells and the active

engagement of EBNA3C and E2F1 is necessary to block E2F1

induced apoptosis in response to DNA damage signals in LCLs.

EBNA3C destabilizes E2F1 through an ubiquitin-
proteasome dependent pathway

E2F1 expression is strictly cell-cycle dependent and its protein

level is unstable due to active degradation through the ubiquitin–

proteasome pathway [71]. So far, our results showed that

EBNA3C expression led to a decrease in steady state level of

E2F1 expression. One mechanism, which we clearly demonstrated

was that EBNA3C can efficiently block E2F1 mediated transcrip-

tion. Since, EBNA3C was earlier shown to play a critical role in

modulating the ubiquitin-proteasome machinery to regulate many

important cell-cycle components [41,43,54,60], we wanted to

further determine whether or not EBNA3C can also regulate

E2F1 degradation. To examine our hypothesis, transiently

transfected HEK 293 cells with flag-tagged E2F1 with or without

EBNA3C were treated with the proteasome inhibitor, MG132

(Figure 9A). Cells were additionally transfected with GFP

expression plasmid to check the transfection efficiency. The results

showed that co-expression of EBNA3C led to a considerable

decrease in E2F1 ectopic expression levels (,1.5 fold), whereas no

change was observed in GFP expression levels (Figure 9A).

However, after treatment with MG132 for a period of 12 h, the

loss of E2F1 expression level was rescued compared to mock

treatment. This strongly indicates that the decreased level of E2F1

observed in the presence of EBNA3C was a result of destabiliza-

tion of E2F1 through the ubiquitin-proteasome degradation

pathway.

To directly assess EBNA3C mediated destabilization of E2F1,

HEK 293 cells were transfected with flag-E2F1, myc-EBNA3C

and GFP expression vectors. At 36 h post-transfection, cells were

treated with protein synthesis inhibitor cycloheximide (CHX), and

samples were collected at different intervals - 0, 2, 4, and 6 hours.

Western blots probed with flag antibody showed that the stability

of the E2F1 protein was significantly reduced by EBNA3C co-

expression, whereas GFP expression was unaltered (Figure 9B).

The decreased stability of E2F1 in the presence of EBNA3C,

prompted us to investigate whether EBNA3C facilitates poly-

ubiquitination of E2F1 and thus enhances its degradation. To

explore this possibility, a ubiquitination experiment was set up,

where HEK 293 cells were transiently co-transfected with

expression constructs for HA-ubiquitin, flag-E2F1 and myc-

EBNA3C and the ubiquitination of E2F1 was measured by

immunoprecipitation followed by Western blotting with anti-HA

antibody (Figure 9C). The results clearly demonstrated a

significant elevation in E2F1 poly-ubiquitination level in the

presence of both EBNA3C and ubiquitin (Figure 9C). Overall, the

results of these experiments suggest that EBNA3C can destabilize

E2F1 by regulating its targeted degradation likely through

recruitment of the ubiquitin-proteasome degradation system.

To more rigorously assess this in an endogenous background,

we analyzed E2F1 stability as well as its ubiquitination levels using

EBNA3C knockdown LCLs (Figure 9D and 9E). The results

showed that in wild-type LCLs (Sh-Con), E2F1 was degraded to

near completion by 4 h, whereas in EBNA3C knockdown LCLs,

E2F1 stability was significantly extended after addition of CHX

(Figure 9D). E2F1 half-life was determined to be ,2 h in

EBNA3C expressing wild-type LCLs; however, it was noticeably

extended to more than 6 h when EBNA3C expression was

compromised (Figure 9C). The results also indicated that in the

presence of DNA damage signals (reduced serum and etoposide

treatment) caused a significant increase in E2F1 expression as well

as its stability in both control as well as EBNA3C knockdown

LCLs (Figure 9D). Interestingly, EBNA3C stability also seem to be

affected in response to DNA damage signals compared to

mitogenic stimuli, where no sign of EBNA3C degradation was

observed (Figure 9D, compare panels 1 and 3). The consequences

of the transient decrease in EBNA3C level in response to DNA

damage was thus manifested in an increase of E2F1 stability,

sample was tested in triplicate and data obtained from two independent experiments with two different donors and expressed as the difference of
the quantity of specific transcripts to the quantity of GAPDH transcript as control. The fold change in expression of each mRNA relative to GAPDH
transcript was calculated based on the threshold cycle (Ct) as 22 D(DCt), where DCt = Cttarget2CtGAPDH and D(DCt) =DCttest sample2DCtcontrol sample. C)
Approximately 10 million of EBNA3C and control knockdown LCLs were harvested and total cell proteins were subjected to western blot (WB) analysis
using indicated antibodies. D) Approximately 20 million of EBNA3C knockdown LCLs were transfected with 50 ı̀g of plasmids expressing either vector
control or myc-tagged EBNA3C via electroporation. Transfected LCLs were cultured in RPMI medium with 10% FBS for 48 h and subjected for western
blot analysis using indicated antibodies. E) Total RNA was isolated from indicated LCLs, subjected to cDNA preparation as per manufacturer’s
instruction followed by quantitative real-time PCR analysis for detecting E2F1, p73 and Apaf-1 transcript levels as similar to A–B). F) Approximately 10
million of EBNA3C and control knockdown LCLs were harvested and total cell proteins (50 mg) were subjected to western blot analysis using
indicated antibodies. G) A ChIP assay was performed using either control or EBNA3C knockdown LCLs. Material immunoprecipitated with anti-E2F1 or
control antibody (rabbit IgG) was amplified by using primers specific for p73 (top) or Apaf1 (bottom) promoters. The end products of qPCR bands ran
into a 2.5% agarose gel. Bar diagrams represent the change in Ct value (DCt) over IgG. H–I) Saos-2 (p532/2 pRb2/2) cells were transfected with either
5 mg of the wild-type H) p73-luciferase or I) Apaf-1-luciferase reporter plasmids with flag-E2F1 and myc-EBNA3C expression vectors as indicated.
Luciferase activity was assessed at 36 h of post-transfection. J) Schematic representation of streptavidin pulldown assay as described in ‘Materials and
Methods’ section. K) 100 mg of cell extracts from Saos-2 cells transfected with flag-E2F1 with or without myc-EBNA3C expression vector were
incubated with 200 ng of the indicated biotinylated oligonucleotides (WT or Mut) immobilized with streptavidin accordingly to the manufacturer
protocol, in the absence or presence of a 200 molar excess of the corresponding non biotinylated oligonucleotide (competition: comp).
Oligonucleotide-bound E2F1 protein was detected by western blotting using anti-flag antibody (M2). The binding capacity of each oligonucleotide is
given as percentage at bottom. All panels are representative of two independent experiments.
doi:10.1371/journal.ppat.1002573.g007
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which may explain the E2F1 dependent apoptotic phenomenon in

EBV transformed LCLs. As expected, western blot analysis with

anti-ubiquitin antibody of immunoprecipitated E2F1 revealed a

significant decrease in ladder of higher molecular weight E2F1

species in EBNA3C knockdown LCLs compared to control cells

(Figure 9E). This ladder is even more evident with MG132

treatment (data not shown).

The dynamic changes in E2F1 expression level in the presence

of EBNA3C and MG132 treatment support our reporter assays

above indicating that ubiquitin-proteasome dependent degrada-

tion is also associated with EBNA3C mediated E2F1 transcrip-

tional suppression that is attenuated in response to DNA damage

signals. To determine whether these changes correlated with E2F1

transcriptional activity, we performed similar promoter assays as

described before using wild-type (3X-WT-E2F1-luc) E2F1 respon-

sive reporter construct in the absence and presence of MG132

(Figure 9F). The results showed that addition of MG132 caused an

inhibition of EBNA3C mediated blocking of E2F1 transcriptional

activity (Figure 9F), which was also evident from E2F1 western

blots (Figure 9F, bottom panels). However, MG132 addition could

not completely reverse EBNA3C mediated E2F1 transcriptional

inhibition, suggesting that even if the total E2F1 protein was

Figure 8. LCLs with E2F1 knockdown are less responsive to apoptosis. A) Approximately 10 million of Sh-RNA directed control or E2F1
knock-down LCLs (Sh-Con and Sh-E2F1 #1, respectively) were harvested and total proteins were subjected to western blot (WB) analysis using
indicated antibodies. B–C) Approximately 0.1 million of indicated cells were grown in 6 well plate for 6 days in RPMI medium containing either B) 10%
FBS (+serum/DMSO) or C) 0.1% FBS plus 5 mM etoposide (2serum/+Etop) at 37uC. Viable cells from each well were counted by trypan blue exclusion
method every 2nd day using an automated cell counter. D) Cells were treated with serum starvation and an increasing dose of etoposide (0, 5, 10 and
20 mM) for 12 h, harvested, stained with propidium iodide and analyzed by flow cytometry. E) The bar diagram represents the change in G0 phase
due to serum starvation and etoposide treatment in D). F) In a parallel experiment similar as D) approximately 2 million of indicated cells were
subjected for western blot to detect the endogenous expression levels of EBNA3C, E2F1, PARP and GAPDH.
doi:10.1371/journal.ppat.1002573.g008
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Figure 9. EBNA3C expression leads to E2F1 destabilization via an ubiquitin-proteasome dependent pathway. A) HEK 293 cells were
co-transfected with flag-E2F1 and either vector control (lanes 1 and 3) or myc-EBNA3C (lanes 2 and 4) with GFP expressing vector. At 36 h
posttransfection, samples were treated with either 20 mM MG132 (+lanes) or DMSO (2lanes) for 6 h and resolved by 10% SDS-PAGE and probed with
the indicated antibodies. B) HEK 293 cells were similarly transfected with expression plasmids for flag-E2F1, myc-tagged EBNA3C and GFP plasmids as
indicated. At 36 h post-transfection, cells were treated with 40 mg/ml cyclohexamide (CHX) for indicated lengths of time. 5% of the lysate from each
sample were resolved by 9% SDS-PAGE and western blotted with indicated antibodies. C) 15 million HEK 293 cells transfected with different
combinations of expression plasmids as indicated. Cells were harvested at 36 h, and total protein was immunoprecipitated (IP) with flag antibody and
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enhanced via deregulation of the ubiquitin-proteasome machinery,

free E2F1 species was still scarce due to the active EBNA3C-E2F1

complex. We next assessed whether MG132-mediated activation

of E2F1 transcriptional activity affects apoptotic regulation in

LCLs (Figure 9G–H). The presence of MG132 led to an increase

in E2F1 total protein levels in both control as well as EBNA3C

knockdown LCLs causing a considerable elevation in apoptosis as

evident from PRAP cleavage (Figure 9G). However, the extent of

apoptosis was much lower in control cells compared to EBNA3C

knockdown LCLs (Figure 9G). Importantly, MG132 treatment did

not show any significant effect in LCLs silenced for E2F1

(Figure 9H), suggesting that MG132 specifically acts to alleviate

E2F1 protein stability through blocking of the ubiquitin-protea-

some degradation pathway rather than via a different mechanisms.

Overall the data suggest that besides blocking E2F1 transcriptional

activity, EBNA3C actively participates to regulate E2F1 degrada-

tion in a ubiquitin-proteasome dependent manner (Figure 9I).

Discussion

Cancer development critically depends on the subtle balance

between cell proliferation and apoptosis mediated cell death.

p16INK4a-Cyclin D/CDK-Rb-E2F cascade is thought to be a

major determinant in regulating cell fate. Deregulation of E2F

family member activities occurs due to the functional deviation of

the upstream molecules in this pathway, which includes inactiva-

tion of Rb pocket proteins (pRb, p107, p130), p16INK4a tumor

suppressive functions, genetic manipulation of cyclin D (D1, D2 and

D3) oncogenes and its kinase partners CDK4/6, which confers a

growth advantage and thus has become a hallmark of human

cancer [72,73]. In addition to regulation of cell proliferation,

compelling evidence now indicates that E2F1 can also induce

apoptosis under various cellular events regardless of p53 status

[9,47,53]. Given the frequent inactivation of the tumor suppressor

proteins pRb and p53 in human cancers [74,75], E2F1 mediated

apoptosis may provide an additional tumor surveillance mecha-

nism. The E2F1 mediated apoptosis pathway is therefore

emerging as a promising therapeutic target in controlling cancer

development [2,76].

Previous reports have suggested that the EBV essential latent

antigen EBNA3C critically manipulates upstream components of

E2F1 in this pathway. For example, EBNA3C mediated repression

of p16INK4a expression was shown to be essential for LCLs growth

[23,77]. Recently, we have shown that EBNA3C facilitates S

phase entry through stabilizing and enhancing Cyclin D1/CDK6

activity [43]. Moreover, EBNA3C recruits SCFSkp2 E3 ligase

activity for ubiquitin-mediated degradation of pRb [54]. EBNA3C

was also shown to interact with pRb in the presence of proteasome

inhibitor [54]. It is therefore compelling to investigate whether

EBNA3C can further regulate the function of E2F1; the

downstream effector of this pathway in order to control

proliferation of EBV associated cancer cells. We initiated our

study with binding experiments and we conclusively show that

EBNA3C and E2F1 can form a pRb independent complex. Using

a series of truncated EBNA3C and E2F1 proteins, we show that

the N-terminal DNA binding domain of E2F1 (residues 1–243) is

sufficient to interact with two distinct sites of EBNA3C, one lies at

N-terminal residues 100–200 and another at C-terminal region

comprising residues 621–700. Earlier studies have shown that this

N-terminal region of E2F1 is responsible for apoptotic induction

but also contains a Cyclin A interaction motif [65,78]. Interest-

ingly, the N-terminal domain of EBNA3C binds to E2F1 directly,

while the C-terminal domain associates in a complex with E2F1 in

cells. This N-terminal binding region of EBNA3C was shown to be

particularly important as it binds to many critical cell-cycle

regulators, including Cyclin A, Cyclin D1 and pRb and SCFSkp2

[43,54,56,60]. Furthermore, genetic study using recombinant EBV

expressing conditionally active EBNA3C demonstrated the

importance of this particular N-terminal domain of EBNA3C as

upon deletion of this N-terminal region there was a significant

reduction in LCLs growth [31], whereas the C-terminal domain

(residues 621–700) was dispensable [31].

E2F1 is an essential transcriptional activator of many cellular

genes required for the G1 to S phase transition [3,7,79]. The

active participation of EBNA3C in controlling G1-S phase

[43,57], combined with our binding data, prompted us to

investigate the feasibility of EBNA3C mediated regulation of

E2F1 transcriptional activity. A recent study using a genetically

engineered EBV Bacmid has also shown that EBNA3C strongly

attenuates DNA damage response induced during EBV-mediated

B-cell transformation [67]. In agreement with this data our results

show that EBNA3C knockout virus is incapable of suppressing

E2F1 mediated DNA damage response during the early stages of

infection. Our results also show that EBNA3C represses E2F1

mediated transcriptional activity by blocking the E2F1-DNA

binding ability in latent infection using EBNA3C knockdown

LCLs as confirmed by endogenous ChIP experiments. Interest-

ingly, in support of our finding a recent publication by White et al.

also showed in a microarray analysis that E2F1 transcript is

samples were resolved by 9% SDS-PAGE. D) Approximately 10 million of stably generated LCLs with either Sh-control (Sh-Con) or Sh-EBNA3C (Sh-E3C)
were incubated with 100 mg/ml CHX for indicated lengths of time in RPMI medium containing either 10% FBS (+serum/DMSO) or 0.1% FBS plus 5 mM
etoposide (2serum/+Etop) at 37uC. 10% of the lysate from each sample were resolved by 9% SDS-PAGE and western blotted with indicated
antibodies. E) Approximately 50 million LCLs with either control Sh-RNA (Sh-Con) or EBNA3C directed Sh-RNA (Sh-E3C) were harvested after 10 h
incubation with proteasome inhibitor MG132 (40 mM). Cells were lysed and E2F1 was immunoprecipitated (IP). Samples were resolved by 9% SDS-
PAGE and western blotting (WB) was done by stripping and reprobing the same membrane. F) Saos-2 cells transfected with the WT E2F1 reporter
plasmid in the presence of either flag-E2F1 alone or flag-E2F1 plus myc-EBNA3C expressing plasmids followed by incubated with either DMSO or
MG132 (20 mM) were subjected for reporter assay as essentially described in ‘Materails and Methods’. Mean values and standard deviations of three
independent experiments are presented. Bottoms panels indicate a representative blot of 5% of the total cell lysates resolved by appropriate % SDS-
PAGE demonstrating the expression levels of ectopically expressed proteins. E2F1 protein bands were quantified using Odyssey imager software as
indicated as either bar diagrams (A, B and D) or arbitrary numerical values (relative intensity, RI) at the bottom of gel (B–E) based on GFP or GAPDH
loading controls, where applicable. G–H) Approximately 10 million of indicated cells incubated with either DMSO or MG132 (40 mM) for 10 h,
harvested and 10% of total lysates were subjected for western blots with indicated antibodies. For all western blots, where appropriate, GAPDH
serves as an internal loading control and GFP as a transfection efficiency control. Western blotting was done by stripping and reprobing the same
membrane. Protein bands were quantified using Odyssey imager software as indicated either as arbitrary numerical values at the bottom of gel or as
bar diagrams based on either GAPDH or GFP loading control. I) In response to DNA damage signals E2F1 gets stabilized and transcriptionally activates
pro-apoptotic genes p73 and Apaf-1, which eventually induces apoptosis. In EBV transformed cells, by forming a stable complex with E2F1, EBNA3C
inhibits its DNA binding activity and inhibits the transcriptional activation of p73 and Apaf-1. Moreover, EBNA3C specifically targets E2F1 for an
ubiquitin-proteasome mediated degradation, which altogether blocks apoptotic induction. Moreover, sh-RNA designed against E2F1 showed reverse
consequences and augments the apoptotic resistance of the cells.
doi:10.1371/journal.ppat.1002573.g009
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specifically elevated by EBNA3C knockout virus infection

compared to wild-type EBV [80]. However, in this paper this

observation is entirely ignored and unaccredited. In certain human

tumors genetic amplification and over-expression of E2F3 has

been documented, but there were no clear indication of an

oncogenic role for the other ‘activators’ of the E2F family

members (E2F1 and E2F2) [81]. In addition to its well-established

function in controlling cell proliferation, E2F1 is also capable of

DNA damage-induced apoptosis by targeting several related genes

including p73, Apaf-1, and caspases [9,12,13,14]. The data

presented here allow us to propose a model in which association

of EBNA3C with E2F1 inhibits its DNA-binding ability as well as

transcriptional activity that eventually blocks E2F1 mediated

apoptosis in response to DNA damage by downregulating the

target genes p73 and Apaf-1.

A number of DNA damage signaling events are clearly involved

in the induction of E2F1 and its stabilization. However, the

mechanism by which these modifications can lead to E2F1

stabilization remains unclear. E2F1 protein is known to be

regulated through an ubiquitin-proteasome pathway in a cell-cycle

dependent manner [82,83,84], which relies upon its dissociation

from pRb and its binding to specific E3-ubiquitin ligases. One of

the E3-ubiquitin ligases involved in E2F1 ubiquitination and

degradation is SCFSkp2 [85,86]. As previously described EBNA3C

was also shown to interact and recruit this E3 ligase activity for

pRb degradation [54]. Thus, one can expect that EBNA3C may

also be involved in regulating E2F1 protein stability through

modulation of its ubiquitination status. Indeed, our results showed

that EBNA3C facilitates E2F1 degradation in an ubiquitin-

proteasome dependent manner. However, we are not certain

whether EBNA3C recruits solely SCFSkp2 activity for E2F1

degradation, as there are a number of molecules which actively

targets E2F1 for degradation [87]. Further a comprehensive study

is required to evaluate the E2F1 degradation pathway in an EBV

background. Our results support and extend our model in which

two distinct events, the control of DNA binding and protein

stability contribute to the downregulation of the transcriptional

activation function of E2F1 in EBV transformed LCLs.

We could not rule out the contribution of other ‘unknown’ events

that may control EBNA3C mediated inhibition of E2F1 induced

apoptosis. For example, identification of ATM-Chk2 signaling

pathway as a mediator that specifically stabilizes E2F1 through

phosphorylation in response to DNA damage provides us a

conceptual framework to understand the critical interplay between

cell proliferation and apoptosis regulated by E2F1 [16,17].

Specifically, Chk1 and Chk2 were shown to promote E2F1

stabilization and activity after genotoxic stress and thereby

contribute to E2F1-induced upregulation of p73 and consequently

apoptosis [52]. In addition, 14-3-3t, a phosphoserine-binding

protein, stabilizes E2F1 via inhibition of ubiquitination [15].

Interestingly, we have previously shown that EBNA3C targets

Chk2 to bypass G2/M transition under genotoxic stress [68]. A

recent study also showed that EBNA3C attenuated ATM-Chk2

DNA damage responsive signaling pathway to establish B-cell

immortalization [67]. It would therefore be important to under-

stand the precise molecular regulation of E2F1 induced apoptosis

during initial as well as persistent EBV infection in primary B-

lymphocytes. This is currently under investigation in our lab.

Beside protein phosphorylation, acetylation is also known to be

a conserved mechanism modulating the activity of several pro-

apoptotic proteins in response to DNA damage, so as to selectively

induce apoptosis [9,88]. It has been shown earlier that E2F1 post-

translational modification that occurs after DNA damage is

important in directing E2F1 on the promoter of the proapoptotic

gene p73 [9,88]. It is as yet unknown from our study whether

EBNA3C can also affect E2F1 acetylation specifically in the

presence of DNA damage signals to regulate apoptosis. Additional

studies are required to fully elucidate the combinatorial effects of

these different mechanisms and the intricate network by which

EBNA3C affects both the levels and activity of E2F1 to regulate

apoptosis.

It is well established that the ability of E2F1 to drive apoptosis is

distinct from its ability to drive cell division [79]. Our data show a

fascinating observation that E2F1 plays a dual role in EBV positive

LCLs. As expected, LCLs knockdown for E2F1 exhibited a

reduced growth rate, whereas, in response to DNA damage E2F1

knockdown LCLs were more resistant to apoptosis, indicating that

E2F1 acts as both an oncogene and a tumor suppressor in

response to different stimuli. It is possible that different E2F1

target genes were selectively modulated by the EBNA3C-E2F1

complex, during the cell-cycle and in response to DNA damage.

However, this issue could not be directly addressed until the E2F1

target genes essential for both routes are clearly identified. The

factors that determine the decisions of inducing either cell division

or cell death need to be further investigated in EBV positive cells.

Overall, our findings suggest that, in addition to its seemingly

contradictory roles as oncogene and tumor suppressor in

tumorigenesis, E2F1 actively promotes DNA-damage induced

apoptosis in LCLs and thus it could serve as an important

determinant for chemosensitivity in EBV associated human cancer

therapy, irrespective of p53 status.

Supporting Information

Figure S1 EBNA3C deregulates E2F1 activity. 50 million

A) DG75 and two LCL clones (LCL1 and LCL2) and B) BJAB and

two BJAB stable clones expressing EBNA3C (E3C7 and E3C10)

were subjected to immunoprecipitation (IP) with EBNA3C specific

mouse monoclonal antibody (A10). Samples were resolved by 9%

SDS-PAGE and detected by western blot (WB) for the indicated

proteins by stripping and reprobing the same membrane. C)

Approximately 30 million human peripheral blood mononuclear

cells (PBMC) were infected by either wild-type (WT) BAC GFP-

EBV or EBNA3C knockout BAC GFP-EBV (DE3C) for 4 h. At 15

days post-infection cells total RNA was isolated from harvested

cells, cDNA was prepared and subjected for quantitative real-time

PCR analysis for detecting E2F1 transcript level as described in

Figure 7. D) Approximately 30 million of LCLs were transiently

transfected with 50 mg of Sh-RNA expressing vectors as indicated

by electroporation. Cells were harvested at 48 h post-transfection

and subjected for western blot using indicated antibodies.

(TIF)
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