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Background: The association of influenza with meteorological variables in tropical 
climates remains controversial. Here, we investigate the impact of weather condi-
tions on influenza in the tropics and factors that may contribute to this uncertainty.
Methods: We computed the monthly viral positive rate for each of the 3 circulating 
influenza (sub)types (ie, A/H1N1, A/H3N2, and B) among patients presenting with 
influenza- like illness (ILI) or severe acute respiratory infections (SARI) in 2 Ugandan 
cities (Entebbe and Kampala). Using this measure as a proxy for influenza activity, we 
applied regression models to examine the impact of temperature, relative humidity, 
absolute humidity, and precipitation, as well as interactions among the 3 influenza 
viruses on the epidemic dynamics of each influenza (sub)type. A full analysis includ-
ing all 4 weather variables was done for Entebbe during 2007- 2015, and a partial 
analysis including only temperature and precipitation was done for both cities during 
2008- 2014.
Results: For Entebbe, the associations with weather variables differed by influenza 
(sub)type; with adjustment for viral interactions, the models showed that precipita-
tion and temperature were negatively correlated with A/H1N1 activity, but not for 
A/H3N2 or B. A mutually negative association between A/H3N2 and B activity was 
identified in both Entebbe and Kampala.
Conclusion: Our findings suggest that key interactions exist among influenza (sub)
types at the population level in the tropics and that such interactions can modify the 
association of influenza activity with weather variables. Studies of the relationship 
between influenza and weather conditions should therefore determine and account 
for co- circulating influenza (sub)types.
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1  | BACKGROUND

Influenza epidemics cause substantial morbidity and mortality 
worldwide. Weather conditions, such as humidity and tempera-
ture, have been identified as key factors shaping the dynamics of 
influenza transmission. In temperate regions, lower humidity and 
lower temperature have repeatedly been shown to be associated 
with the wintertime epidemics.1-5 In tropical regions, however, few 
studies have been conducted and, from the limited number of stud-
ies, findings on the impact of weather conditions are inconsistent. 
While some studies reported increased influenza circulation during 
the rainy seasons5-12 and association with higher humidity and/or 
precipitation in the tropics,5,7,13 others reported no or contradicting 
effects of these climate variables.14-17 Here, we investigate the rela-
tionship between weather conditions and influenza transmission in 
Uganda, a tropical country, as well as factors that may contribute to 
the aforementioned inconclusiveness.

Uganda is located between latitudes 4°N and 2°S on the East 
African Plateau, with a tropical climate. To enhance influenza 
surveillance in the country, the Uganda Virus Research Institute 
(UVRI) initiated a sentinel surveillance network in 2007 to monitor 
influenza- like illness (ILI) and severe acute respiratory infections 
(SARI) nationwide. At the sentinel sites, respiratory specimens 
were collected from all ILI/SARI cases and tested for influenza 
viruses by (sub)type- specific RT- PCR. In this study, we utilized 
these surveillance data to study the transmission dynamics of in-
fluenza in 2 major Ugandan cities, Kampala and Entebbe, during 
2007- 2015.

We used regression models to test the impact of temperature, 
humidity, and precipitation on influenza transmission. The two 
studied cities are in close vicinity with similar weather conditions. 
Comparing findings for these 2 cities thus allowed identification 
of inconsistencies and spurious associations. In addition, as the 
influenza samples were fully subtyped, we were able to address 
3 questions that have been rarely, if ever, investigated: (i) How 
do effects of weather conditions vary by influenza (sub)type? (ii) 
How do interactions among influenza (sub)types manifest at the 
population level? And (iii) how do these viral interactions along 
with weather conditions shape the epidemic dynamics of each in-
fluenza virus?

2  | METHODS

2.1 | Ethics statement

In the context of routine public health surveillance, verbal consent 
was obtained from suspected cases ≥18 years of age and from par-
ents or legal guardians for cases <18 years of age. The study was 
approved by the Research Ethics Committee at UVRI, the Uganda 
National Council for Science and Technology, and the Institutional 
Review Board at Columbia University Medical Center. The study’s 
funders had no role in study design, data analysis and interpretation, 
manuscript preparation, or decision to publish.

2.2 | Data

At each sentinel site, clinicians identified patients with influenza- 
like illness (ILI) and severe acute respiratory infection (SARI) 
using an established protocol.9,10 Per standard World Health 
Organization guidelines, patients met the case definition for ILI 
if they were ≥2 months of age, presenting with a fever (>38°C) 
and either cough or sore throat. SARI was defined as: (i) a child 
aged 2 months to <5 years requiring hospitalization, with recent 
onset of cough or difficulty breathing within 10 days of symptom 
onset and an additional indicator of respiratory distress; or (ii) a 
patient aged ≥5 years requiring hospitalization, with a history of 
fever presenting with cough, shortness of breath, or difficulty 
breathing within 10 days of symptom onset.9,10 Naso-  and/or oro-
pharyngeal swab samples were collected at enrollment from ILI/
SARI patients, and all samples were tested for influenza viruses 
by (sub)type- specific RT- PCR using primers provided by the U.S. 
Centers for Disease Control and Prevention.10 If specimens were 
positive for influenza A, further subtyping was done for seasonal 
A/H1N1, A/H3N2, A/H5, and the 2009 pandemic influenza A/
H1N1 (A/pdmH1).

Data for Kampala were compiled from 6 sentinel sites located 
in the city (ie, IHK/Surgery, Kibuli, Kisenyi, Kiswa, Kitebi, and 
Nsambya), and those for Entebbe were compiled from 1 sentinel site. 
The sentinel site in Entebbe reported regularly from 2007 to 2015. 
For Kampala, while at least 1 site was reporting at any time during 
2008- 2015, the number of reporting sites fluctuated over time. To 
control for this fluctuation in reporting rate, we used the proportions 
of specimens testing positive for A/H1N1, A/H3N2, or B, respec-
tively, among all ILI/SARI specimens as proxies for activity of the 3 
influenza viruses. Due to the low numbers recorded, we aggregated 
the data to monthly intervals.

For Entebbe, monthly precipitation, mean temperature, and 
relative humidity data from January 2007 to December 2015 were 
compiled from 2 sources. Specifically, monthly precipitation values 
were compiled from Uganda Bureau of Statistics (UBoS)’s annual 
statistical abstract.18 Daily mean temperature and relative humid-
ity (RH) recorded at Entebbe International Airport were obtained 
from Weather Underground.19 Specific humidity, a form of absolute 
humidity (AH), was calculated from RH and temperature using the 
Clausius- Clapeyron equation.20 Monthly averages of temperature, 
RH, and AH were then computed from these daily records. We 
used this combined dataset for Entebbe for the full statistical anal-
ysis (2.3). For Kampala, however, similar ground station data were 
only partially available for precipitation (2008- 2015), maximum and 
minimum temperature (2008- 2014), and RH (2008 and 2009), all at 
monthly intervals, from UBoS annual statistical abstracts.18 These 
weather variables were also available for Entebbe, from the same 
UBoS reports. We therefore used the average of the maximum and 
minimum temperature for each month to represent the monthly 
mean temperature and used these values along with monthly pre-
cipitation in the partial statistical analysis for a comparison of the 2 
cities (2.4).
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2.3 | Full statistical analysis

As complete data for temperature, precipitation, relative and abso-
lute humidity are available for Entebbe, we performed a statistical 
analysis of the relationship between influenza activity and these 4 
weather variables for the city during January 2007- December 2015. 
We refer to this analysis as the full statistical analysis hereafter. We 
first examined the relationship for each influenza (sub)type and all 
strains combined without adjustment for co- circulating influenza 
(sub)types (2.3.1), as has been done in previous studies. In the sec-
ond part of this analysis, we reexamined the relationship with adjust-
ment for co- circulating influenza (sub)types (2.3.2). For simplicity, we 
combined all A/H1N1 cases, including those caused by the pre- 2009 
seasonal strain and those by the 2009 pandemic strain. To control 
for factors related to the 2009 pandemic (eg, higher population sus-
ceptibility), we excluded the period of July- December 2009 in all 
analyses [ie, for A/H1N1 as well as other (sub)types and all strains 
combined]. In addition, to reduce biases due to small sample size, 
months with <5 ILI/SARI specimens (15 out of 102 months) were 
excluded in the models. For all models, all predictor variables were 
normalized to have zero mean and unit variance.

2.3.1 | Influenza activity and weather conditions

We used logistic regression models21 with 1 autoregressive term to 
examine the impact of weather variables on monthly influenza activ-
ity. The basic model for this analysis took the following form: 

where Logit (p) is the logit function, that is, ln[p/(1- p)]; Flu rep-
resents the monthly viral positive rate for either A/H1N1, A/
H3N2, B, or all influenza viruses combined (All); Flu at lag-1 is the 
lag- 1 autoregressive term. Seasonality (t) is a function to account 
for seasonality in the data; here, we used harmonics of the form 
6
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 for k = 6 is always 0, there are 11 coefficients, ie, β2-12, in 
this formula.) Temp represents temperature. HUM represents 1 of the 3 
humidity- related variables (ie, precipitation, RH, and AH). That is, only 
1 humidity- related variable was included in the model in order to avoid 
over fitting (same for all other models in this study). For models that 
include both temperature and a humidity- related variable, we did not 
adjust for collinearity between the 2 terms, since this effect was not 
severe (the variance inflation factors23 were <5 for all variable pairs).

2.3.2 | Influenza activity, weather conditions, and 
co- circulating (sub)types

To examine the potential confounding and modification effect of co- 
circulating (sub)types on the relationship between influenza activity 
and weather conditions, we also developed models that adjusted for 
activity of co- circulating (sub)types. The basic model for this analysis 
assumed the following structure: 

where co-Flu1 and co-Flu2 represent concurrent viral positive rates 
for the other 2 co- circulating (sub)types. For instance, for A/H1N1 

(1)Logit (Flu)∼β0+β1(Flu at lag-1)

+β2−12 Seasonality(t)+β13(Temp)+β14(HUM)

(2)

Logit (Flu)∼β0+β1(Flu at lag-1)+β2−12 Seasonality(t)

+β13(Temp)+β14(HUM)+β15 (co-Flu1)+β16(co-Flu2)

F IGURE  1 Monthly viral positive rates for different influenza viruses (y- axis on the left) and weather variables (y- axis on the right) in 
Entebbe and Kampala. Weather variables are standardized to have zero mean and unit variance. Humidity data (RH and AH) are not available 
for Kampala
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(ie, Flu=A/H1N1), co-Flu1 and co-Flu2 are A/H3N2 and B, respec-
tively. Note that, the 3 Flu time series (ie, proportions of specimens 
testing positive for A/H1N1, A/H3N2, or B, respectively, among all 
ILI/SARI visits) are not dependent on one another due to sharing the 
same denominator, as the denominator is not the number of influ-
enza positive visits and the 3 proportions at each time step do not 
sum to 100% (Figure 1). Other variable settings were the same as in 
Equation 1.

2.3.3 | Best- fit models

To thoroughly search for the best- fit model for each influenza time 
series, we tested all possible combinations of co-Flu1, co-Flu2, tem-
perature, and a humidity- related variable. Note this test also in-
cluded models without any co- Flu variable or weather variable. 
We then pooled all models and selected the one with the lowest 
Bayesian information criterion (BIC)24 as the best- fit model for each 
influenza time series.

2.3.4 | Leave- one- out cross- validation

We performed cross- validation of the 2 basic models (Equations 1 
and 2), by running the models excluding data from one of the 
study years (ie, 2007- 2015). For instance, in a leave- one- out cross- 
validation for Year 2008, data for 2008 were excluded and the re-
mainder used to fit the models. Model estimates for each covariate 
across years were then compared.

2.4 | Partial statistical analysis

Statistical correlations consistently identified in multiple locations 
would strengthen these inferred associations. Due to a lack of hu-
midity data for Kampala, we were unable to perform a full analysis 
as performed for Entebbe (2.3) and compare results between the 2 
locations. Nevertheless, as a partial validation, we fitted the 2.3.1 
and 2.3.2 models for both Kampala and Entebbe using a subset of 
weather variables (ie, temperature and precipitation), for which data 
were available for both cities for at least 3 years. That is, only pre-
cipitation was used as an HUM variable in Equations 1 and 2. For this 
comparison, we restricted the study period to July 2008- December 
2014 when data for influenza activity, temperature, and precipita-
tion were available for both cities. In addition, to control for effects 
due to the 2009 pandemic, we excluded the 2009 pandemic (July- 
December 2009) as in the full analysis. As in 2.3, we pooled all mod-
els [ie, with or without adjustment for co- circulating influenza (sub)
types] and selected the one with the lowest BIC as the best- fit model 
for each influenza time series. In addition, cross- validation was per-
formed for both cities as described in 2.3.4.

2.5 | Software

All statistical analyses were performed in R language (R Foundation 
for Statistical Computing, Vienna, Austria). All logistic models were 

fitted using the “bayesglm” function in the “arm” package in R.25 
The “bayesglm” method, developed by Gelman et al,26 takes a 
Bayesian approach to obtain stable logistic regression coefficients 
using weakly informative priors (the default prior is a Cauchy 
distribution).

3  | RESULTS

3.1 | Summary statistics

The surveillance network detected 514 influenza cases among 4477 
ILI/SARI visits (11.48%) in Entebbe during January 2007- December 
2015 and 390 influenza cases among 2566 ILI/SARI visits (15.20%) 
in Kampala during July 2008- December 2014 (Table 1). Among the 
confirmed influenza cases, the majority were infected by A/H3N2 
(47.67% in Entebbe and 43.33% in Kampala). The 2009 A/H1N1 
pandemic strain (A/pdmH1) was first detected in late June or early 
July 2009 in the 2 cities and quickly replaced the seasonal A/H1N1 
strain. As such, A/pdmH1 accounted for the majority of A/H1N1 
cases during the study period in both cities (Table 1). While the viral 
positive rate varied substantially by month, influenza epidemics re-
curred in all study years (Figure 1).

Kampala and Entebbe are only 37 km apart, and hence, weather 
conditions are similar in the 2 cities (Figure S1). In both cities, tem-
perature is high year- round; mean temperature during the study 
period was above 20°C in both cities (Table 1 and Figure S1). 
Typically, each year has 2 rainy seasons (March- May and September- 
November; Figure 1 and Figure S1), with much higher levels of pre-
cipitation during rainy seasons (Table 1). In Entebbe, where humidity 
data were available, ambient humidity is high year- round; monthly 
averages were always above 60% for RH and above 11 g/kg for AH 
during the study period and were slightly higher during rainy seasons 
(Table 1 and Figure S1).

3.2 | Full statistical analysis for Entebbe

3.2.1 | Influenza activity and weather conditions, 
without adjusting for co- circulating (sub)types

We first modeled the relationship between influenza activity and 
all 4 weather variables (ie, temperature, precipitation, relative, and 
absolute humidity) without adjusting for co- circulating (sub)types, 
as commonly done in the previous studies. Over the entire study 
period (ie, 2007- 2015 excluding July- December 2009 due to the 
pandemic), A/H1N1 activity correlated negatively with both pre-
cipitation and temperature (Figure 2A, D). Lower precipitation was 
significantly associated with higher A/H1N1 activity, with an odds 
ratio (OR) of 0.74 [0.55, 0.99] (mean and 95% confidence interval; 
P = .039); in the same model, lower temperature was also marginally 
significantly associated with higher A/H1N1 activity (OR: 0.71 [0.51, 
1.00]; P = .053). In addition, estimated effects for these 2 weather 
variables during cross- validation, where each test excluded 1 year 
of data, were in general in agreement (Figure 2A, D). Neither relative 
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nor absolute humidity was identified as a significant correlate for A/
H1N1 activity (Figure 2B for RH and 2C for AH).

Unlike A/H1N1, A/H3N2 and B activities were not significantly 
associated with any of the 4 weather variables during 2007- 2015. 
For A/H3N2, several exceptions were seen in the cross- validation 
fits, including a positive correlation with precipitation when data for 
Year 2008 were excluded (Figure 2E), a negative correlation with 
RH and AH when data for Year 2013 were excluded (Figure 2F, G), 
and a number of negative correlations with temperature (Figure 2H). 
Overall, although not statistically significant, A/H3N2 activity 

appeared to be negatively correlated with temperature, with a mean 
OR, averaged over 30 models, of 0.82 (Figure 2H). Conversely, a pos-
itive correlation with temperature, although not statistically signifi-
cant, was consistently estimated for influenza B; the mean OR was 
1.19 across 30 models (Figure 2L).

For all influenza viruses combined, the models did not identify 
any significant correlates (Figure 2M- P). The estimated OR was 0.90 
[0.76, 1.07] (P = .24) for precipitation, 0.89 [0.73, 1.08] (P = .26) for 
RH, 0.90 [0.75, 1.07] (P = .23) for AH, and 0.85 [0.70, 1.04] (P > .05 
for all 3 models) for temperature.

Entebbe Kampala

Total No. (%)a Mean (SD)b Total No. (%) Mean (SD)

A/H1N1 26 (5.06%) 3.09% (6.91%) 20 (5.13%) 6.52% (15.43%)

A/pdmH1 126 (24.51%) 2.62% (6.69%) 95 (24.36%) 5.24% (13.71%)

A/H3N2 245 (47.67%) 4.07% (9.03%) 169 (43.33%) 6.59% (11.98%)

B 115 (22.37%) 2.36% (4.09%) 105 (26.92%) 4.79% (7.88%)

Coinfection (A/H3, 
pdmH1)

1 (0.19%) - - 

A/unsubtypeable 1 (0.19%) - 1 (0.26%) - 

All flu 514 9.53% (12.14%) 390 17.95% (20.42%)

ILI/SARI visits 4477 41 (30) 2566 33 (25)

Temperature (°C)c: 
all months

- 22.34 (0.54) - 22.81 (1.18)

Temperature (°C): 
dry seasonsd

- 22.31 (0.59) - 22.7 (1.13)

Temperature (°C): 
rainy seasonse

- 22.37 (0.49) - 22.92 (1.23)

Precipitation (mm/
mo): all months

- 126.5 (84.29) - 99.65 (67.88)

Precipitation (mm/
mo): dry seasons

- 80.63 (56.03) - 70.06 (55.4)

Precipitation (mm/
mo): rainy 
seasons

- 172.38 (83.17) - 129.24 (66.86)

RH (%): all months - 79.6 (2.97) - - 

RH (%): dry 
seasons

- 78.62 (3.52) - - 

RH (%): rainy 
seasons

- 80.59 (1.86) - - 

AH (g/kg): all 
months

- 13.47 (0.47) - - 

AH (g/kg): dry 
seasons

- 13.27 (0.51) - - 

AH (g/kg): rainy 
seasons

- 13.67 (0.32) - - 

aThe denominator for the percentages is the total number of positive influenza samples;
bFor the rows related to influenza viruses, the mean is the mean monthly percentage of specimens 
testing positive for a given influenza virus among all ILI/SARI visits in the same month;
cTemperature is the monthly mean for Entebbe and the average of the monthly maximum and mini-
mum for Kampala (see main text for detail);
dDry seasons are December- February and June- August;
eRainy seasons are March- May and September- November.

TABLE  1 Monthly influenza cases and 
weather conditions in Entebbe (January 
2007- December 2015) and Kampala (July 
2008- December 2014)
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3.2.2 | Influenza activity, weather conditions, and 
co- circulating (sub)types

In our second analysis, we further examined potential interac-
tions among co- circulating influenza (sub)types and the result-
ing impact on the relationship of epidemic activity with weather 
variables. Consistent with our first analysis, in models including 

2 co- circulating (sub)types along with both weather predictors 
(Equation 2), A/H1N1 activity correlated negatively with both 
precipitation and temperature with nearly identical estimated 
effects (Figure 3A, D, and Figure S2). In addition, the estimated 
effects for all 4 weather variables, by both the models over the en-
tire study period and leave- one- out cross- validation, were nearly 
the same as estimated by the corresponding models without 

F IGURE  2 Estimated association of influenza epidemics with weather variables in Entebbe during 2007- 2015, without adjusting for 
co- circulating (sub)types. Model coefficients estimated in the leave- one- out cross- validation and over the entire study period are shown 
for A/H1N1 (1st row: A- D), A/H3N2 (2nd row: E- H), B (3rd row: I- L), and all influenza viruses combined (4th row: M- P). The year left out in 
the cross- validation is shown on the y- axis (eg, “- 2007” indicates data for Year 2007 were excluded, and “- none” indicates data for the entire 
study period were included). The associations with precipitation (Precip), relative humidity (RH), absolution humidity (AH), and temperature 
(Temp) are shown in columns 1- 4; the vertical segments show the 95% confidence intervals for each variable; “x”s denote the mean and “*”s 
indicate variables significant at the 5% level. For temperature (last column), 3 estimates are shown for each dataset, corresponding to the 3 
models using 1 of the 3 humidity variables (ie, precipitation, RH, and AH)
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adjusting for co- circulating (sub)types (Figure S2 A-F). The corre-
lation between A/H1N1 activity and concurrent A/H3N2 activity 
varied slightly by included data (as seen in the cross- validation), 
but overall, was neutral and not significant. Similarly, the models 
showed that A/H1N1 activity was not correlated with concurrent 
B activity.

The estimated effects of weather variables for A/H3N2 and 
influenza B, however, shifted toward the null, when adjusting for 
co- circulating (sub)types (Figure S2 G-L for A/H3N2 and M- R for 
influenza B). In particular, for both viruses, the association with tem-
perature, originally marginally negative for A/H3N2 and positive for 
B, was much closer to the null. The mean OR, averaged over 30 mod-
els, was 0.95 (vs 0.82 without the adjustment) for A/H3N2 and 1.08 
(vs 1.19 without the adjustment) for influenza B.

Interestingly, the models consistently identified a strong neg-
ative association between A/H3N2 and concurrent B activity 
(Figure 3L, R). Each standard deviation (SD) increase in concurrent 
B activity was associated with a decreased OR of 0.44 [0.32, 0.60] 
(P < 1e- 6 for all 3 models) for A/H3N2 activity during 2007- 2015; 
conversely, each SD increase in concurrent A/H3N2 activity was as-
sociated with a decreased OR of 0.75 [0.58, 0.97] (P < .05 for all 3 
models) for B activity during the same study period. In addition, this 
mutually negative association between A/H3N2 and B was evident 
in all cross- validation tests (Figure 3L, R).

We then tested all possible combinations of weather variables 
and co- circulating (sub)types as model predictors and pooled all 
models to identify the best- fit model for each (sub)type during 2007- 
2015, based on Bayesian information criterion (BIC). Model fits are 

F IGURE  3 Estimated inter- (sub)type interactions and association of influenza epidemics with weather variables adjusted for co- 
circulating (sub)types in Entebbe during 2007- 2015. Model coefficients estimated in the leave- one- out cross- validation and over the entire 
study period are shown for A/H1N1 (1st row: A- F), A/H3N2 (2nd row: G- L), and B (3rd row: M- R). The year left out in the cross- validation 
is shown on the y- axis (eg, “- 2007” indicates data for Year 2007 were excluded, and “- none” indicates data for the entire study period were 
included). The associations with precipitation (Precip), relative humidity (RH), absolution humidity (AH), and temperature (Temp) are shown in 
columns 1 to 4, and (sub)type interactions are shown in columns 5 and 6; the vertical segments show the 95% confidence intervals for each 
variable; “x”s denote the mean, and “*”s indicate variables significant at the 5% level. For temperature (4th column), 3 estimates are shown 
for each dataset, corresponding to the 3 models using 1 of the 3 humidity variables (ie, precipitation, RH, and AH)
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shown in Figure S3. As shown in Figure 4, none of the 4 weather 
variables were included in the best- fit models. However, a negative 
association between influenza A/H3N2 and B activity was identified 
in the best- fit models for both viruses (Figure 4B, C). The estimated 
associations between the 2 viruses in the best- fit models, where 

the opponent virus was the only additional predictor along with the 
lag- 1 and seasonality terms, were similar to the models with both co- 
circulating (sub)types and weather variables (OR = 0.44 [0.32, 0.59], 
P = 1.4e- 7 for A/H3N2 v. B; and OR = 0.75 [0.58, 0.96], P = .022 for 
B v. A/H3N2).

F IGURE  4 Best- fit models for influenza epidemics in Entebbe during 2007- 2015. The variables tested are shown on the y- axis. 
Coefficient estimates are shown for variables included in the best- fit models (ie, the ones with the lowest BIC); the vertical segments show 
the 95% confidence intervals; “x”s denote the mean and “*”s indicate predictors significant at the 5% level. For instance, for A/H1N1 (1st 
column), no vertical segments appear, indicating the best- fit model for A/H1N1 includes none of the tested variables; for A/H3N2 (2nd 
column), only 1 vertical segment, corresponding to concurrent B activity (labeled on the y- axis), appears, indicating among the tested 
variables concurrent B activity is the only variable included in the best- fit model

F IGURE  5 Comparison of estimated 
associations with weather variables and 
inter- (sub)type interactions in Entebbe 
and Kampala. The upper panel (A- C) 
shows estimates by the basic models 
specified in Equation 2, and the lower 
panel (D- F) shows estimates by the 
best- fit models (ie, the ones with the 
lowest BIC) among all tested models. The 
predictors are labeled along the y- axis; 
the vertical segments show the 95% 
confidence intervals for each predictor for 
Entebbe (in blue) and Kampala (in orange); 
“x”s denote the mean and “*”s indicate 
predictors significant at the 5% level
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3.3 | Partial statistical analysis for 
Entebbe and Kampala

To verify the relationships between influenza activity with weather 
conditions and co- circulating (sub)types identified for Entebbe, we 
performed a similar statistical analysis for Kampala. However, due 
to a lack of data for humidity in Kampala, in this comparison, for 
both cities the models only included temperature and precipitation. 
Model fits for both cities are shown in Figure S4. Figure 5 shows the 
model coefficients estimated by the basic models with all variables 
included (A- C) and the best- fit models (D- F). With a shorter model 
period (July 2008- December 2014 excluding the 2009 pandemic) 
and only a subset of weather variables, the negative correlation 
between A/H3N2 and B activity, identified in the above full analy-
sis (3.2.2), remained the most significant relationship in the models 
for both cities. This negative association was identified in both the 
basic models (Figure 5B, C) and the best- fit models (Figure 5E, F). 
In addition, a mutually positive correlation between A/H1N1 and B 
activity was identified; however, this relationship was only signifi-
cant for Kampala (Figure 5A, C, D, and F). For A/H3N2, concurrent 
A/H1N1 activity was identified as a positive correlate (P = .00012 
for Entebbe and 0.085 for Kampala; Figure 5B); however, this posi-
tive correlation was not mutually identified in the A/H1N1 models 
(P = .15 for Entebbe and 0.29 for Kampala; Figure 5A). For the 2 
weather variables examined, lower temperature was associated with 
higher A/H3N2 for both cities (P = .054 for Entebbe and P = .00042 
for Kampala; Figure 5B). These estimated associations were in gen-
eral in agreement across years as shown in the leave- one- out cross- 
validation (Figure S5).

4  | DISCUSSION

Using laboratory- confirmed influenza surveillance data for 2 major 
Ugandan cities, we have examined the key weather variables and viral 
interactions shaping the epidemic dynamics of influenza in these trop-
ical populations. For Entebbe over 2007- 2015, among all variables, 
intertype viral interactions were the most consistent and strongest 
predictors for influenza A/H3N2 and B epidemics: A/H3N2 activity 
was negatively associated with concurrent B activity and vice versa. 
After adjusting for co- circulating influenza viruses, our models showed 
that epidemics of influenza A/H1N1 were significantly associated with 
lower precipitation and marginally associated with lower temperature, 
whereas A/H3N2 and B epidemics were not associated with either 
temperature or any of the 3 humidity variables (ie, precipitation, RH, 
or AH). The mutually negative association between A/H3N2 and B 
was also consistently identified for both Kampala and Entebbe over a 
shorter study period (July 2008- December 2014).

Previous studies have reported inconsistent findings regarding 
meteorological effects on influenza transmission in the tropics, in 
particular, for humidity.5,7,13-17 These studies typically made infer-
ence based on epidemic time series for all influenza viruses com-
bined, without distinguishing influenza (sub)type. Here, we found 

that the impact of weather conditions could vary by influenza (sub)
type. While precipitation was identified as a significant correlate of 
A/H1N1 epidemics in Entebbe during 2007- 2015, the associations 
with activity of A/H3N2, B, or all influenza viruses combined were 
neutral. In addition, we showed in the leave- one- out cross- validation 
that the correlations of influenza activity and weather variables also 
varied by study period. Given that circulating influenza viruses vary 
by location and year, the differing effects of weather conditions by 
influenza (sub)type and inter- (sub)type interactions may in part ex-
plain the inconsistencies in the literature. Indeed, we showed that, 
with the adjustment for inter- (sub)type interactions in the models, 
weak associations with weather variables (eg, temperature and A/
H3N2 or, temperature and B in Entebbe) were modified toward 
the null while robust associations (eg, temperature and A/H1N1 in 
Entebbe) stayed unchanged. Future studies therefore should ac-
count for such interactions when assessing the impact of weather 
variables, in particular, for regions with concurrent circulation of 
multiple influenza (sub)types.

Influenza viruses mutate continuously to escape prior immu-
nity and thus are able to cause recurrent epidemics. Nevertheless, 
prior infection may confer partial, or cross, immunity to future in-
fection and lead to competing interactions among influenza viruses. 
Animal experiments and serological surveys have shown that cross- 
immunity exists, not only in influenza strains of the same subtype 
but also across subtypes27-35 and types.36-38 Here, we showed that 
interactions among the 3 influenza (sub)types are a key determinant 
of the epidemic dynamics of individual (sub)types. In particular, a 
strong mutual negative association between A/H3N2 and B activity 
was consistently identified across years and the 2 Ugandan cities. 
This finding provides support for the impact of cross- immunity at 
the population level. Further, as influenza vaccination coverage in 
the 2 studied Ugandan cities was near zero,9 the inter- (sub)type in-
teractions reported here likely reflect the impact of cross- immunity 
conferred via natural infections, as opposed to vaccination.

Due to sparse observations of influenza infection and a lack of 
long- term disease surveillance, we used monthly data for the anal-
yses. This coarse time resolution likely limited our ability to identify 
the impact of weather variables, which tend to act acutely (eg, lower 
AH ~2 weeks prior to the epidemic onset4), and in part explains 
the null findings for relative and absolute humidity. This limitation 
stresses the need for enhanced surveillance and research on influ-
enza in tropical regions,39 in particular, in Africa. In addition, due to 
a lack of publically available weather data, we were only able to con-
duct a partial comparison between the 2 Ugandan cities. Findings 
from this partial comparison were not entirely consistent between 
the 2 cities (except for the negative association between A/H3N2 
and B). This inconsistency could stem from a lack of statistical power 
due to low signal/noise ratios, or location- specific factors (eg, popu-
lation immunity) that were not accounted for in the models. Further 
investigations into these issues are warranted.

Despite the limited disease data, we have shown differing cor-
relations with weather variables for different influenza (sub)types as 
well as key viral interactions among co- circulating (sub)types at the 
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population level in 2 tropical cities. Future work using data with better 
temporal resolutions and from more tropical locations hopefully will 
reveal a more comprehensive picture of the dynamics of influenza ep-
idemics in tropical climates.
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