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Purpose: Androgens exert a significant influence on the structure, function and/or pathophysiology of the meibomian
gland and conjunctiva. We sought to determine whether this hormone action involves the regulation of epithelial cell gene
expression in these tissues.
Methods: Immortalized human meibomian gland and conjunctival epithelial cells were treated with placebo or
dihydrotestosterone (DHT) and processed for molecular biologic procedures. Gene expression was evaluated with
BeadChips and data were analyzed with bioinformatic and statistical software.
Results: Androgen treatment significantly influenced the expression of approximately 3,000 genes in immortalized human
meibomian gland and conjunctival epithelial cells. The nature of DHT action on gene activity was predominantly cell-
specific. Similarly, DHT exerted a significant, but primarily cell-specific, influence on many gene ontologies and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways. These included groups of genes related, for example, to lipid
dynamics, innate immunity, cell cycle, Janus kinase (JAK)-signal transducer and activator of transcription (stat) cascades,
oxidative phosphorylation, the proteasome, and mammalian target of rapamycin (mTOR), Wnt, and peroxisome
proliferator-activated receptor (PPAR) signaling.
Conclusions: Our findings support our hypothesis that androgens regulate gene expression in human meibomian gland
and conjunctival epithelial cells. Our ongoing studies are designed to determine whether many of these genes are translated
and play a role in the health and well being of the eye.

Androgens exert a significant influence on the structure,
function and/or pathophysiology of many ocular tissues,
including the meibomian gland, lacrimal gland, conjunctiva,
and cornea [1-12]. These hormones regulate such ocular
parameters as glandular architecture, protein synthesis and
secretion, meibum production, mucus expression, aqueous
tear output, tear film stability, immune activity, and epithelial
cell dynamics [1-12]. Androgens have also been reported to
correct defects, facilitate wound healing [6,7,13], suppress
angiogenesis [14], and stimulate mitosis [9] in the corneal
epithelium, to alter the development of allergic conjunctivitis
[5], and to attenuate inflammation in autoimmune lacrimal
tissue [8,11]. In addition, androgens have been proposed as a
topical therapy for the treatment of aqueous-deficient and
evaporative dry eye diseases [8,11]. However, despite these
observations, the precise mechanisms underlying androgen-
eye interactions in humans remain to be clarified.

We hypothesize that androgen action on the eye involves
the local, intracrine synthesis of this sex steroid from adrenal
precursors (e.g., dehydroepiandrosterone), binding to
saturable, high-affinity and androgen-specific receptors,
control of gene transcription, and ultimately modulation of
translation. In support of this hypothesis, we have discovered
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that the human meibomian and lacrimal glands, and
immortalized corneal and conjunctival epithelial cells,
contain all the steroidogenic enzyme mRNAs necessary for
the intracrine synthesis and metabolism of androgens [15].
Moreover, we have shown that androgen receptor mRNA and
protein are present in epithelial cell nuclei of the human
meibomian and lacrimal glands, cornea and conjunctiva [16,
17].

To continue to test our hypothesis, we examined the
influence of androgens in gene expression in immortalized
human meibomian gland and conjunctival epithelial cells.

METHODS
Cell culture and hormone treatment: Immortalized human
meibomian gland epithelial cells, which were recently
generated in our laboratory [2], were cultured in Keratinocyte
Serum-Free Medium [KSFM] supplemented with 50 μg/ml
bovine pituitary extract (BPE), 5 ng/ml epidermal growth
factor (EGF), and 100 U penicillin-streptomycin (Invitrogen,
Carlsbad, CA). Cells were incubated in a humidified, 37 °C
chamber under 5% CO2/95% air. Immortalized human
conjunctival epithelial cells, which were gifted by Dr. Ilene
Gipson (Boston, MA), were cultured in serum-free conditions
as previously described [18].

When approximately 80% confluent, cells were exposed
to 10 nM dihydrotestosterone (DHT; Steraloids, Wilton, NH)
or placebo for 3 (meibomian) or 4 (conjunctiva) days. These
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time periods were previously shown to be optimal for the
generation of DHT-induced alterations in androgen receptor
mRNA levels in the different cell types [19]. For these studies
the DHT was dissolved in ethanol and aliquots were
evaporated in sterilized vials before the addition of medium.
The placebo was prepared by transferring media to vials
containing the residue of evaporated ethanol. After hormone
treatment, cells were harvested and processed for RNA
isolation.
Molecular biologic procedures: Total RNA was extracted
with RNAqueous Kits (Ambion, Austin, TX) and evaluated
on a RNA Nano 6000 Series II Chip with a 2100 Bioanalyzer
(Agilent Technologies, Palo Alto, CA) to confirm RNA
integrity. The RNA concentrations and associated 260/280 nm
ratios were determined using a NanoDrop 1000
Spectrophotometer (Thermo Scientific, Waltham MA).

The RNA (100 ng) samples were processed by Asuragen
(Austin, TX) for the determination of mRNA levels by using
Illumina HumanHT-12 v3 Expression BeadChips (San Diego,
CA).These BeadChips target more than 25,000 annotated
genes with over 48,000 probes derived from NCBI reference
sequences and the UniGene databases. In brief, biotin-labeled
cRNA samples were generated by using a MessageAmp™ II-
based protocol (Ambion Inc., Austin, TX), quantitated by UV
spectrophotometry and analyzed with an Agilent 2100
Bioanalyzer capillary electrophoresis system. The labeled
cRNAs were used to probe the BeadChips. Hybridization,
washing, and scanning of the Illumina arrays were conducted
according to the manufacturer’s instructions. Data were
processed with Illumina BeadStudio software v3 by using
both background subtraction and cubic spline normalization.
Standardized hybridization intensity values were adjusted by
adding a constant, so that the lowest intensity value for any
sample equaled 16 [20].

Normalized data were analyzed with GeneSifter.Net
software (Geospiza, Seattle, WA), a comprehensive program
that also produced gene ontology and z-score reports.
Ontologies included biologic processes, molecular functions
and cellular components and were organized according to the
guidelines of the Gene Ontology Consortium (GO) [21]. Gene
expression data were analyzed with and without log
transformation and statistical analyses of these data were
performed with Student’s t-test (two-tailed, unpaired). Genes
that were up- or down-regulated in the same direction in

different experiments were identified by using the
GeneSifter.Net intersector program (Geospiza). All data from
the Illumina BeadChips are accessible for download through
the National Center for Biotechnology Information’s Gene
Expression Omnibus (GEO) via series accession numbers
(GSE18091 and GSE18094).
Real time PCR procedures: The differential expression of
selected genes was verified by using quantitative real-time
PCR (qPCR) procedures. The cDNAs were transcribed by
employing SuperScript III Reverse Transcriptase (Invitrogen,
Grand Island, NY) and random hexamer primers (Invitrogen).
The qPCR reactions were performed in triplicate by using
TaqMan Gene Assays (Applied Biosystems, Inc., Foster City,
CA) and TaqMan-specific primers and probes for aldo-keto
reductase family 1, member c2 (Hs00413886_m1*), cdc28
protein kinase regulatory subunit 2 (Hs01048812_g1*), EGF-
containing fibulin-like extracellular matrix protein 1
(Hs002444575_m1*), interferon α-inducible proteins 6
(Hs00242571_m1*), kallikrein related peptidase 11
(Hs01100849_m1*), keratin 16 (Hs00373910_g1*),

laminin, α3 (Hs00165042_m1*), leupaxin
(Hs00183105_m1*), minichromosome maintenance
component 3 (Hs00172459_m1*), myosin light chain 6
(Hs00819642_m1; conjunctival epithelial cell endogenous
control), n (α) acetyltransferase 50 (Hs00363889_m1*;
meibomian gland epithelial cell endogenous control),
plasminogen activator, urokinase (Hs00170182_m1), serum
amyloid A1 (Hs00761940_s1), and uridine phosphorylase 1
(Hs00427695_m1*). Differential gene expression was
calculated according to the Comparative Ct method, as
outlined in Applied Biosystems User Bulletin 2 (updated
2001).

RESULTS
Androgen impact on gene expression in human ocular surface
and meibomian gland epithelial cells: To determine the effect
of DHT on gene expression in immortalized human
meibomian gland and conjunctival epithelial cells, cells were
exposed to placebo or DHT and processed for analysis by
using Illumina BeadChips and Geospiza software.

Our results demonstrate that DHT had a significant
impact on the expression of approximately 3,000 genes in
immortalized human meibomian gland and conjunctival
epithelial cells (Table 1). The relative direction of this

TABLE 1. INFLUENCE OF DHT ON GENE EXPRESSION IN HUMAN MEIBOMIAN GLAND AND CONJUNCTIVAL EPITHELIAL CELLS.

Immortalized human epithelial cell type DHT>Placebo Placebo>DHT Total
Meibomian gland 1,485 1,494 2,979
Conjunctiva 1,350 1,662 3,012

        Gene expression was significantly (p<0.05) upregulated  in cells exposed to DHT or placebo treatment, as shown by the
        analysis of log-transformed data.
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hormone effect was about the same in both cell types, with
DHT up- and down-regulating similar percentages of genes
(i.e., meibomian: 49.8% ↑; conjunctiva: 44.8% ↑). Examples
of genes that showed notable hormone-induced differences in
terms of ratios are listed in Table 2 and Table 3. In addition,
DHT significantly enhanced the expression of genes encoding
mucin 16 (2.2 fold ↑, conjunctiva) and reduced the activity of
genes for S100 calcium binding proteins A8 and A9 (2.1 and
1.4 fold ↓, respectively, conjunctiva). Analysis of BeadChip
raw data also revealed that DHT caused an 8.0 and 39.7 fold
decrease in the mRNA levels of the small proline-rich proteins
2F and 2A, respectively, in meibomian gland epithelial cells.

Genes that demonstrated the greatest alterations in terms
of statistical significance included those increased or
decreased by DHT in immortalized human meibomian gland
(aldo-keto reductase family 1, member C2 ↑, p<0.000001;
DNA topoisomerase IIα ↓, p<0.000001), and conjunctival
(uridine phosphorylase 1 ↑, p<0.000001; interferon, α-
inducible protein 6 ↓, p<0.000001) epithelial cells.

The nature of androgen action on gene expression was
predominantly cell-specific. Thus, 61.0 and 53.6% of
upregulated genes, and 58.1 and 52.0% of downregulated
genes, were unique to the meibomian gland and conjunctival
epithelial cells, respectively. In addition, between 12.9 to

TABLE 4. OPPOSITE EFFECTS OF DHT ON GENE EXPRESSION IN IMMORTALIZED HUMAN MEIBOMIAN GLAND AND CONJUNCTIVAL EPITHELIAL CELLS.

Cell 1 Cell 2 C1 ↑, C2 ↓ (Genes) % C1 ↓, C2 ↑ (Genes) %
Meibomian Conjunctiva 199 12.9–14.2 255 18.3–20.0

        Log transformed data were analyzed and the total number of genes with GEO sequence identities in each category was then
        determined. Gene expression was significantly (p<0.05) up (↑)- or down (↓)-regulated by DHT in the specific cell type.
        Abbreviations: “C” stands for “cell.”

TABLE 5. EFFECT OF DHT ON CHROMOSOMAL GENE EXPRESSION IN IMMORTALIZED HUMAN MEIBOMIAN GLAND AND CONJUNCTIVAL EPITHELIAL CELLS.

Chromosome DHT Genes ↑ Plac Genes ↑ DHT z-score Plac z-score
Meibomian gland

16 66 53 3.35 1.34
19 80 62 2.61 0.2
18 34 17 2.13 −1.44
2 73 95 -2.23 0.21

17 69 77 1.52 2.65
22 25 35 0.42 2.59
8 51 32 −0.08 -2.83
13 23 14 −1.23 -2.93

Conjunctiva
16 66 45 4.08 −0.49
20 51 37 3.84 0.18
1 143 147 3.51 1.77
19 73 73 2.42 0.94
8 32 40 -2.33 -2.22
13 15 19 -2.39 -2.37
3 47 94 -2.57 1.77
X 24 46 -2.63 −0.19
4 35 60 -2.72 −0.51
5 34 82 -3.6 1.27

12 46 92 −1.53 3.15
17 51 85 −0.31 2.94
15 34 26 0.2 -2.13
7 64 44 1.51 -2.51
2 88 75 0.27 -2.76

        Chromosomes with the highest and lowest z-scores were selected after analysis of log-transformed Illumina BeadChip data. A
        z-score is a statistical rating of the relative expression of genes, and shows how much they are over- or under-represented in a
        given gene list [59]. Positive z scores represent a greater number of genes meeting the criterion than is expected by chance,
        whereas negative z scores reflect fewer genes meeting the criterion than expected by chance [59]. Z-scores with values >2.0 or
        <-2.0 are quite significant and are highlighted in bold print. Terms: DHT Genes ↑ - number of genes upregulated in DHT-treated
        cells; Plac Genes ↑ - number of genes upregulated in placebo-treated cells; z-score - specific score for the upregulated genes in
        the DHT- and placebo-exposed cells.

Molecular Vision 2012; 18:1055-1067 <http://www.molvis.org/molvis/v18/a112> © 2012 Molecular Vision

1059

http://www.ncbi.nlm.nih.gov/geo
http://www.molvis.org/molvis/v18/a112


20.0% of regulated genes were expressed in the opposite
direction in these immortalized cells (Table 4).

The genes regulated by DHT were located on a variety of
chromosomes. As shown in Table 5, the cellular pattern of this
regulation showed some similarities and dissimilarities.

To confirm in part the Illumina BeadChip results, selected
genes were analyzed by qPCR. This experimental approach
verified the alterations of all tested genes (Table 6).

Androgen influence on the expression of gene ontologies and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways in human ocular surface and meibomian gland
epithelial cells: Androgen administration had a significant
impact on the biologic process, molecular function and
cellular component gene ontologies, as well as on the KEGG
pathways, in human ocular surface and meibomian gland
epithelial cells.

As shown in Table 7, DHT significantly increased
numerous ontologies in immortalized human meibomian
gland epithelial cells, such as those associated with protein
metabolism, signaling, tissue development, oxidoreductase
and peptidase activities, intracellular organelles and
peroxisomes. Treatment with DHT also stimulated 25
different ontologies (with ≥5 genes) concerned with lipid
biosynthesis, homeostasis, transport and binding, as well as
with cholesterol, fatty acid, phospholipid and steroid
dynamics, as we recently reported [2]. In turn, DHT decreased
ontologies linked to cell cycle, M phase, DNA metabolic
processes, angiogenesis, innate immunity, RNA binding, and

ribonucleoprotein complexes. These effects of DHT were
paralleled by significant alterations in KEGG pathways.
Androgen exposure upregulated pathways related to insulin,
mTOR and peroxisome proliferator-activated receptor
(PPAR) signaling, and downregulated those involved with the
cell cycle, RNA transport and cancer (Table 8).

The influence of DHT on immortalized human
conjunctival epithelial cells was quite different than that
observed in human meibomian gland epithelial cells. As
demonstrated in Table 9, DHT enhanced the expression of
genes related to epithelium development, regeneration,
wound healing, cell migration, Wnt receptor signaling,
antioxidant activity and vacuoles, and reduced those
associated with translation, RNA processing, mitotic cell
cycle, immune response, JAK-STAT cascades, NADH
dehydrogenase activity and ribosomes. In addition, androgen
administration stimulated KEGG pathways linked to
lysosomes, p53 signaling and endocytosis, and suppressed
pathways involved with oxidative phosphorylation, the
proteosome and RNA transport (Table 10).

Of interest, some ontologies were increased in both
immortalized cell populations, regardless of treatment, such
as cell death and apoptosis. In addition, there were ontologies
that were decreased by androgens in both immortalized cells,
including cellular component biogenesis, cellular location,
innate immune response and nucleic acid metabolic processes.
However, the majority of changes in gene ontologies and
KEGG pathways appeared to be cell-specific.

TABLE 6. CONFIRMATION OF SELECTED ILLUMINA BEADCHIP CHIP RESULTS BY QPCR.

Gene Illumina ratio qPCR ratio
Meibomian Gland Epithelial Cells
DHT>Placebo
Keratin 16 2.4 5.7
Aldo-keto reductase family 1, member C2 2.6 1.7
Kallikrein-related peptidase 11 1.8 2.4
Placebo>DHT
CDC28 protein kinase regulatory subunit 2 3.1 1.5
Minichromosome maintenance component 3 3.5 19.3
Leupaxin 3.1 57.8
Conjunctival Epithelial Cells
DHT>Placebo
Laminin, α3 5.6 6.9
Plasminogen activator, urokinase 5.3 1.1
Uridine phosphorylase 1 4.2 2.7
Placebo>DHT
Interferon, α-inducible protein 6 4.8 1.6
Serum amyloid A1 5.7 3.1
EGF-containing fibulin-like extracellular matrix protein 1 4.9 2.5

        The expression of designated genes, that were shown to be significantly altered in DHT-treated cells by using Illumina
        BeadChips, were re-examined with qPCR procedures. The qPCR data from meibomian gland cells were standardized to N (α)
        acetyltransferase B complex 50 and data from conjunctival cells were normalized to myosin, light chain 6, alkali, smooth muscle
        and non-muscle. Neither of the genes used for standardization responded to DHT exposure. The relative ratios of gene expression
        in 3 separate experiments are listed in the Illumina and qPCR “Ratio” columns.
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TABLE 7. INFLUENCE OF DHT ON THE EXPRESSION OF GENE ONTOLOGIES IN HUMAN MEIBOMIAN GLAND EPITHELIAL CELLS.

Ontology DHT Genes ↑ Plac Genes ↑ DHT z-score Plac z-score
Biologic Process
programmed cell death 136 143 5.18 5.09
oxidation-reduction process 95 61 4.85 −0.42
protein metabolic process 280 278 4.35 2.85
purine ribonucleotide metabolic process 50 37 3.8 0.87
nerve growth factor receptor signaling pathway 28 22 3.38 1.44
response to hormone stimulus 61 48 3.36 0.7
regulation of signaling 132 106 3.14 −0.45
tissue development 80 69 2.58 0.46
cell cycle 75 202 −0.65 13.58
M phase 14 107 -3.29 13.34
DNA metabolic process 38 118 −0.87 11.17
organelle fission 12 81 -2.41 11.94
RNA processing 39 111 −0.49 10.47
angiogenesis 21 30 1.05 2.95
immune system process 99 122 0.86 2.66
innate immune response 27 41 −0.08 2.28
blood vessel development 30 35 1.49 2.15
regulation of cellular biosynthetic process 139 148 -2.24 -2.39
regulation of transcription 111 119 -2.26 -2.33
neurologic system process 59 33 -3.68 -7.15
Molecular Function
protein binding 572 707 6.41 13.12
hydrogen ion transmembrane transporter activity 21 3 5.82 −1.58
oxidoreductase activity, acting on CH-OH group of donors 23 9 5.47 0.17
catalytic activity 423 403 5.11 2.27
translation factor activity, nucleic acid binding 16 8 4.47 0.82
peptidase activity 55 36 3.01 −0.63
RNA binding 61 127 1.12 10.03
nucleotide binding 164 243 1.32 7.58
ATPase activity 31 42 1.61 3.59
helicase activity 7 20 −0.89 3.2
ion channel activity 14 12 -2.51 -3.15
DNA binding 115 149 -2.82 −0.43
zinc ion binding 121 99 −0.68 -3.47
transporter activity 82 50 0.41 -3.94
transmembrane receptor activity 33 26 -5.76 -6.98
Cellular Component
vacuole 56 20 7.82 −0.56
lysosome 45 20 6.54 0.19
intracellular organelle 721 852 5.76 11.82
organelle membrane 191 152 5.26 0.86
endoplasmic reticulum 109 76 4.97 0.28
peroxisome 19 4 4.85 −1.23
nuclear part 165 335 −0.05 13.77
organelle lumen 195 344 1.62 13.26
ribonucleoprotein complex 37 104 0.52 12.01
chromosome 27 97 −1.62 10.08
spindle 9 47 −0.99 9.87
extracellular space 37 57 -2.23 0.31
cell junction 38 28 −0.19 −2.17
extracellular region 98 105 -3.36 -3.26
intrinsic to membrane 307 246 -2.55 −7.7

        Designated ontologies were selected after the analyses of log-transformed data. Criteria for inclusion were an ontology
        containing ≥8 genes and having a z-score >2.0 or <-2.0. High and low values for the placebo (Plac) and DHT groups in specific
        ontologies are highlighted in bold print. Androgen administration also stimulated over 25 different ontologies related to lipid
        biosynthesis, homeostasis, transport and binding, as previously shown [2].
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DISCUSSION
The present study demonstrates that androgen treatment
significantly influences the expression of thousands of genes
in immortalized human meibomian gland and conjunctival
epithelial cells. The nature of this DHT action is
predominantly cell-specific: some androgen responses are
shared by both cell types, the majority are unique, and others
are completely opposite. Depending upon the cell type, DHT
exerts a significant effect on many gene ontologies and KEGG
pathways, including those related to lipid dynamics, innate
immunity, cell cycle, JAK-stat cascades, oxidative
phosphorylation, the proteasome, and mTOR, Wnt and PPAR
signaling. Our findings support our hypothesis that androgens
regulate gene expression in human meibomian gland and
conjunctival epithelial cells.

Our finding that the nature of DHT action on ocular
surface and adnexal cells is predominantly cell-specific is not
surprising. It is well established that androgen effects are not
necessarily the same in different tissues. For example,
androgens increase immunoglobulin A (IgA) and secretory
component (SC) expression in the lacrimal gland, appear to
have no influence on IgA or SC levels in salivary, respiratory,
intestinal, uterine or bladder tissues, and actually decrease IgA
amounts in the mammary gland [22,23]. In addition, we have
found that testosterone induces a 7.8- to 13-fold increase in
epidermal growth factor and nerve growth factor mRNA
levels in the submandibular gland [24] but has no effect on
these factors in the lacrimal gland (unpublished). Conversely,
testosterone stimulates the expression of submandibular
androgen-repressed protein (SMARP) in the lacrimal gland,
but suppresses SMARP levels in the submandibular gland
[25]. As another example, androgens promote the angiogenic
activity of prostate epithelial cells, but reduce such activity by
prostate stromal cells [26]. In effect, the nature of androgen
influence is generally cell- and tissue-specific.

Androgen exposure caused a striking impact on gene
expression in immortalized human meibomian gland

epithelial cells. Most notable were the effects of DHT on lipid-
and keratin-related genes. Androgen treatment induced a
significant increase in the activity of numerous genes
associated with lipogenesis and cholesterogenesis [2]. This
hormone response is analogous to the androgen influence on
meibomian glands in vivo [27-30], wherein testosterone
stimulates many genes linked to lipid metabolic pathways.
Androgen administration also led to a 40 fold decrease in the
mRNA level of small proline-rich protein 2A (SPPR2A). This
gene, which is significantly upregulated in human meibomian
gland dysfunction (MGD) [31], encodes a protein that
promotes keratinization [32]; keratinization, in turn, is
believed to be a primary cause of MGD and the consequent
tear film hyperosmolarity and evaporative dry eye [3]. The
SPPR2A gene is also significantly downregulated by
androgens in meibomian glands of male and female mice
[27,28]. These combined DHT effects, increasing lipogenesis
and suppressing keratinization, may begin to explain how
topical androgens enhance the synthesis and secretion of
meibomian gland lipids, prolong the tear film breakup time
and alleviate evaporative dry eye disease [32,33]. In addition,
these DHT effects may account for why androgen
insufficiency (e.g., during anti-androgen treatment, complete
androgen insensitivity syndrome and/or aging) is associated
with keratinization of the meibomian gland ductal epithelium
(i.e., orifice metaplasia), altered meibum lipid profiles, and a
reduced quality of meibomian gland secretions [34-38].

Androgen treatment also led to a significant change in the
expression of many other genes in immortalized human
meibomian gland epithelial cells, such as those associated
with steroidogenesis, microbial protection, tissue
development, oxidative stress, mTOR and PPAR signaling,
cell cycle, innate immunity and angiogenesis. Androgen
administration upregulated the mRNA levels of defensin β1,
an antimicrobial peptide implicated in epithelial surface
resistance to microbial colonization [39], as well as
steroid-5α-reductase, α polypeptide 1, which catalyzes the

TABLE 8. DHT IMPACT ON KEGG PATHWAYS IN HUMAN MEIBOMIAN GLAND EPITHELIAL CELLS.

KEGG Pathway DHT Genes ↑ Plac Genes ↑ DHT z-score Plac z-score
Lysosome 26 7 5.76 −1.06
Oxidative phosphorylation 21 8 4.3 −0.57
Peroxisome 16 3 4.24 −1.48
Aldosterone-regulated sodium reabsorption 9 2 3.41 −0.83
Insulin signaling pathway 21 9 3.35 −0.82
mTOR signaling pathway 10 3 3.18 −0.67
PPAR signaling pathway 12 3 3.01 −1.24
DNA replication 1 19 −1.05 9.94
Spliceosome 4 39 −1.93 9.2
Cell cycle 5 36 −1.53 8.41
Mismatch repair 1 11 −0.51 7.22
RNA transport 12 27 0.14 4.27
p53 signaling pathway 7 15 0.79 4.03
Small cell lung cancer 8 17 0.61 3.89

        Pathways were selected after the analysis of log-transformed data. The criterion for inclusion was a pathway having a z-score
        >2.0 or <-2.0. High and low values for the placebo (Plac) and DHT groups in specific pathways are highlighted in bold print.
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TABLE 9. EFFECT OF DHT ON THE EXPRESSION OF GENE ONTOLOGIES IN HUMAN CONJUNCTIVAL EPITHELIAL CELLS.

Ontology DHT Genes ↑ Plac Genes ↑ DHT z-score Plac z-score
Biologic Process
apoptosis 141 152 6.33 4.91
response to stress 215 252 5.14 4.87
regulation of signal transduction 129 100 5.02 −0.55
epithelium development 50 33 4.95 0.25
nerve growth factor receptor signaling pathway 33 21 4.95 0.74
regeneration 18 9 4.87 0.51
wound healing 61 47 3.95 0.1
cell proliferation 106 144 3.17 5.15
cytokine production 32 30 2.99 1.36
cell migration 53 41 2.61 −0.81
cell adhesion 69 58 2.46 −0.79
MAPKKK cascade 35 19 2.59 −1.84
canonical Wnt receptor signaling pathway 15 14 2.32 1.18
toll-like receptor 4 signaling pathway 10 10 2.06 1.39
translation 27 109 −0.12 13.76
viral reproduction 19 103 −1.64 12.88
innate immune response 33 68 1.36 6.69
RNA processing 26 93 −2.41 6.63
cell cycle checkpoint 16 43 0.43 6.36
macromolecule metabolic process 411 583 0.7 5.9
gene expression 189 331 −2.00 5.18
immune response 69 103 1.66 4.27
mitotic cell cycle 54 82 1.65 4.2
JAK-STAT cascade 5 14 0.27 3.85
antigen processing and presentation 2 12 −0.98 3.53
system process 69 64 -4.59 -7.03
neurologic system process 57 40 -3.59 -7.13
regulation of transcription 105 117 -2.41 -3.68
Molecular Function
protein binding 562 709 6.93 9.48
enzyme inhibitor activity 44 22 6.2 −0.08
SH3 domain binding 21 9 5.25 0.05
cell adhesion molecule binding 9 4 3.85 0.35
antioxidant activity 10 8 3.57 1.89
catalytic activity 374 450 2.59 2.73
translation initiation factor activity 7 11 2.09 3.63
voltage-gated ion channel activity 3 9 -2.8 −1.65
structural constituent of ribosome 5 69 −1.71 16.86
RNA binding 32 153 -2.89 12.32
threonine-type endopeptidase activity 0 14 −1.22 9.88
NADH dehydrogenase activity 0 16 −1.56 8.37
small GTPase regulator activity 22 8 0.82 -3.22
zinc ion binding 95 98 -2.84 -4.69
DNA binding 103 137 -3.53 -2.83
G-protein coupled receptor activity 8 13 -6.46 -6.7
Cellular Component
vacuole 43 32 5.27 1.48
cytoplasm 642 854 8.33 13.06
intracellular 792 1059 5.01 11.05
cell surface 43 30 3.99 0.03
lysosome 34 32 4.2 2.45
intracellular organelle part 389 592 2.42 9.7
organelle 631 924 2.15 11.22
intrinsic to membrane 293 281 -2.3 -7.61
ribonucleoprotein complex 18 128 -2.64 14.84
ribosome 6 68 −1.74 14.78
mitochondrion 80 224 −0.25 13.3
membrane part 361 366 −1.26 -6.2

        Specific ontologies were selected after the analyses of log-transformed data. Criteria for inclusion in the Table were an ontology
        containing ≥8 genes and having a z-score >2.0 or <-2.0. High and low values for the placebo (Plac) and DHT groups in designated
        ontologies are highlighted in bold print.
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conversion of testosterone into the more potent androgen,
DHT [39]. This steroid regulation appears to be a form of feed-
forward control exerted by DHT on its own biosynthesis
[40]. Androgen increased the gene expression of leptin
receptor, involved in the regulation of fat metabolism, glucose
homeostasis, wound healing and the immune system [39];
FOXO1, a transcription factor that mediates cell responses to
oxidative stress [39] and is known to interact with androgen
receptors [41]; and stearoyl-CoA desaturase, an iron-
containing enzyme that catalyzes the synthesis of unsaturated
fatty acids. Testosterone enhances stearoyl-CoA desaturase
mRNA levels in mouse male and female meibomian glands
[27,28], and the targeted disruption of this rate-limiting
enzyme causes meibomian gland atrophy [42]. Androgen
exposure also increased ontologies and pathways related to
peroxisomes, which are organelles involved in metabolism of
fatty acids and other metabolites [39]; PPAR, which may
promote tissue differentiation [43,44]; and mTOR, a serine/
threonine protein kinase that may modulate cell growth, cell
proliferation, cell motility, cell survival, protein synthesis and
transcription [39,45,46], and is also activated by androgens in
the prostate [47]. Androgen administration downregulated
genes related to cell cycle regulation (e.g., ubiquitin-
conjugating enzyme E2C, cyclin-dependent kinase 1 and
cyclin B2), innate immunity (e.g., chemokine (C-X-C motif)
ligand 5 and thrombospondin 1) [39,48] and angiogenesis
(e.g., thrombospondin 1). Thrombospondin 1 mRNA content
is also decreased by androgens in the prostate, bladder and
breast cancer cells [49-52]. Also notable was the DHT
suppression of gene expression for matrix metallopeptidase 9,
an enzyme that is increased in the tear film in dry eye and is
known to promote corneal inflammation [53].

The effect of DHT on immortalized human conjunctival
epithelial cells was quite different than that observed in human
meibomian gland epithelial cells. For example, androgen
administration enhanced the expression of genes involved in
epithelium development, regeneration, wound healing and
cell migration (e.g., matrix metallopeptidase, kallikrein-

related peptidases 5, 6 & 11, cystatin E/M, laminin, α3), and
suppressed those related to the immune response (e.g.,
chemokine (C-X-C motif) ligand 6, serpin peptidase inhibitor,
clade B, member 4, complement component 1, r
subcomponent, interferon-induced protein 44-like, interferon
induced transmembrane protein, complement factor B) and
mitotic cell cycle (e.g., septin 4, endothelin 1, F-box protein
6 and proteasome subunit, β type, 9). The decrease in immune-
related gene activity may play a role in the reported androgen
ability to alter the development of allergic conjunctivitis [5]
and to attenuate the immune effect of lipopolysaccharide in
both conjunctival and meibomian gland epithelial cells [54].
The downregulation of conjunctival genes associated with the
cell cycle, which was also found in immortalized human
meibomian gland epithelial cells, may reflect a hormone-
induced bias toward cell differentiation as compared to
proliferation. Androgens are also known to inhibit the cell
cycle in other tissues [55-57].

Of particular interest was the DHT upregulation of mucin
16 (MUC16), and downregulation of mucin 1 (MUC1), gene
expression in the conjunctival epithelial cells. These
transmembrane mucins help to prevent pathogen penetrance
into the eye and to maintain a wet ocular surface phenotype
[18]. The mucin gene intensities in our study were relatively
low, especially for MUC16. This finding may reflect the fact
that we cultured cells in serum-free media: exposure of
conjunctival epithelial cells to serum, which leads to their
stratification, has been reported to promote mucin expression
[18]. It is possible that the lack of serum may also have
influenced the nature of the MUC1 response to DHT. Thus,
others have shown that androgen increases MUC1 expression
when breast and prostate cell lines are cultured in serum
[58]. This observation would be consistent with the decreased
MUC1 levels found in the conjunctiva an individual with
complete androgen insensitivity syndrome [12]. We are
currently investigating whether the presence or absence of
serum causes significant variations in the molecular biologic

TABLE 10. DHT INFLUENCE ON KEGG PATHWAYS IN HUMAN CONJUNCTIVAL EPITHELIAL CELLS.

KEGG Pathway DHT Genes ↑ Plac Genes ↑ DHT z-score Plac z-score
Bacterial invasion of epithelial cells 16 5 5.02 −0.81
Lysosome 20 16 3.89 1.15
p53 signaling pathway 13 8 3.69 0.43
Axon guidance 18 3 2.89 −2.97
Endocytosis 25 17 2.78 −0.8
Ribosome 1 48 −2.25 13.98
Oxidative phosphorylation 7 38 −0.53 8.25
Proteasome 2 20 −0.73 7.76
Antigen processing and presentation 2 14 −1.35 3.04
RNA transport 8 24 −0.98 2.42

        Pathways were chosen after the analysis of log-transformed data. The criterion for inclusion was a z-score >2.0 or <-2.0. High
        and low values for the placebo (Plac) and DHT groups in designated pathways are highlighted in bold print.
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response of ocular surface and adnexal cells to androgen
administration.

Ultimately, it is very important to demonstrate that
cellular responses in vitro duplicate those in vivo. Such
demonstrations, as we have recently done with androgens and
the meibomian gland [2,27-31,34-38], may provide new and
meaningful insight into the regulation of ocular surface cells
in health and disease.
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