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Abstract

A growing number of computational tools have been developed to accurately and rapidly

predict the impact of amino acid mutations on protein-protein relative binding affinities. Such

tools have many applications, for example, designing new drugs and studying evolutionary

mechanisms. In the search for accuracy, many of these methods employ expensive yet rig-

orous molecular dynamics simulations. By contrast, non-rigorous methods use less exhaus-

tive statistical mechanics, allowing for more efficient calculations. However, it is unclear if

such methods retain enough accuracy to replace rigorous methods in binding affinity calcu-

lations. This trade-off between accuracy and computational expense makes it difficult to

determine the best method for a particular system or study. Here, eight non-rigorous compu-

tational methods were assessed using eight antibody-antigen and eight non-antibody-anti-

gen complexes for their ability to accurately predict relative binding affinities (ΔΔG) for 654

single mutations. In addition to assessing accuracy, we analyzed the CPU cost and perfor-

mance for each method using a variety of physico-chemical structural features. This allowed

us to posit scenarios in which each method may be best utilized. Most methods performed

worse when applied to antibody-antigen complexes compared to non-antibody-antigen

complexes. Rosetta-based JayZ and EasyE methods classified mutations as destabilizing

(ΔΔG < -0.5 kcal/mol) with high (83–98%) accuracy and a relatively low computational cost

for non-antibody-antigen complexes. Some of the most accurate results for antibody-anti-

gen systems came from combining molecular dynamics with FoldX with a correlation coeffi-

cient (r) of 0.46, but this was also the most computationally expensive method. Overall, our

results suggest these methods can be used to quickly and accurately predict stabilizing ver-

sus destabilizing mutations but are less accurate at predicting actual binding affinities. This

study highlights the need for continued development of reliable, accessible, and reproduc-

ible methods for predicting binding affinities in antibody-antigen proteins and provides a rec-

ipe for using current methods.
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Introduction

Protein-protein binding is an essential physiological event that governs a large number of bio-

logical processes in the cell [1]. Amino acid mutations of these proteins can introduce diversity

into genomes, and disrupt or modulate protein-protein interactions by changing the underly-

ing binding free energy (ΔG, i.e. binding affinity), the amount of energy required to form pro-

tein complexes [2]. The binding free energy associated with a protein-protein complex

determines the stability of the complex formation and the conditions for protein-protein asso-

ciation. Accurate prediction of binding free energies allows us to understand how these affini-

ties can be modified, and leads to a more comprehensive understanding of protein

interactions in living organisms [3].

Experimental biophysical methods can quantitatively measure change in the protein-pro-

tein binding free energy due to a mutation (i.e. relative binding affinity, ΔΔG), but these meth-

ods are typically costly, laborious, and time-consuming since all mutant proteins must be

expressed and purified. Many researchers have developed and utilized computational methods

to predict ΔΔG values for single- or multiple-amino acid mutations (see e.g. [4–6]). Histori-

cally, the most promising in terms of accuracy are rigorous methods based on statistical

mechanics that use molecular dynamics (MD) simulations and thus automatically address

conformational flexibility and entropic effects [7, 8]. However, these methods are computa-

tionally expensive since they employ rigorous sampling and utilize classical mechanics [9] or

quantum mechanics [10] approximations of intermolecular interactions, and require a large

number of calculations per time-step. Because of the expense, rigorous methods are not well-

suited to studying large sets of mutations or large proteins thus necessitating less expensive,

non-rigorous methods.

Non-rigorous high-throughput methods attempt to lower the computational cost, as com-

pared to rigorous methods, while still providing accurate ΔΔG predictions. They accomplish

this by including precalculated physico-chemical structural information in combination with

predictive algorithms. The core mechanics that drive these methods fall under numerous clas-

sification umbrellas which have been covered by review articles [11, 12]. These review articles

provide a broad overview but do not provide an unbiased, rigorous, comparative analysis out-

side of what the original developers provide. The developers of any given method tend to pro-

vide comparisons with other methods of the same general class to define where their method

fits in the current landscape. BindProfX, for example, is available as a web server and stand-

alone and utilizes structure-based interface profiles with pseudo counts. Upon release, it was

most notably compared to FoldX (a semi-empirical trained method [13]) and DCOMPLEX (a

physics-based method [14]) [15, 16]. iSEE, a statistically trained method based on 31 structure,

evolution, and energy-based terms was tested against FoldX, BindProfX, and BeAtMuSiC (a

machine learning-based approach [17]). Mutabind [18] and some other methods not explored

in this work follow a similar testing methodology [19–21]. While these comparisons are bene-

ficial in providing context for how a given model fits in the existing research landscape, they

are not very robust, since only a narrow subset of methodologies are included. Conversely for

folding stability, Kroncke et al. compared a large number of available software methods on a

small dataset of transmembrane proteins providing a general overview of performance [6].

Despite the narrow dataset, this study provides a diverse, useful collection of evaluation met-

rics between multiple classes of methods. Our intent in this study is to provide a similar robust

comparison of methods for non-rigorous binding affinity estimation.

In this work, we evaluate the ability of eight non-rigorous methods to predict relative bind-

ing affinities due to single amino acid mutations. We restrict our study to cases where both an

experimental structure of the complex, and experimentally determined binding affinity values
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are available. To investigate the trade-off between speed and accuracy, we chose 16 protein-

protein test complexes with empirical ΔΔG values for observed mutations. We calculated the

ΔΔG values for each mutation using all eight methods and compared the results against empir-

ical ΔΔG values. The goal of this study was to determine whether software methods that use

(most costly) energy functions with a wider variety of physico-chemical structural features

would provide more accurate binding affinity and interface destabilization predictions com-

pared to those that rely on a single descriptive (less costly) energy function. We have deter-

mined scenarios in which some of these methods may be better or worse than traditional

computational methods in predicting ΔΔG values.

Methods

Compilation of experimental ΔΔG values

To assess the performance of a range of protein-protein binding affinity prediction methods,

we first assembled a dataset containing single amino acid mutations with known experimental

ΔΔG values. This list was assembled from Structural Kinetic and Energetic database of Mutant

Protein Interaction (SKEMPI) version 2.0 [22]. SKEMPI uses data from a variety of different

biophysical measurement techniques; these are converted to ΔΔG values if not explicitly

reported. Overall, the error associated with experimental ΔΔG values reported in the SKEMPI

dataset is thought to range from 0.25 to 1 kcal/mol [22]. While generating this list, we consid-

ered four aspects: (i) type of protein-protein complex; (ii) availability of quality 3-D structural

information; (iii) range of experimental ΔΔG values; and (iv) the type of mutations at differing

sites on the complex. Our final dataset contained 654 mutations from 16 protein-protein com-

plexes and their respective experimental ΔΔG values. We further categorized these 16 com-

plexes as either non-antibody-antigen (non-Ab) or antibody-antigen (Ab). Table 1 shows the

complexes in our dataset with their respective non-Ab and Ab categories and the number of

mutations associated with each complex. The dataset contains a total of 401 non-Ab mutations

and 253 Ab mutations.

Selection of protein-protein binding affinity methods

Binding affinity prediction methods were chosen to have both a distinct approach to binding

affinity calculation that utilized 3-D structural information and had functional standalone soft-

ware in September 2020, available either online or upon request to the author. Table 2 summa-

rizes the methods selected in this study, their approaches, and their type of scoring functions.

Table 1. Dataset used in our study containing 16 protein complexes.

Non-Ab Ab

PDB ID # Mutations # Residues PDB ID # Mutations # Residues

1a4y [23] 32 [24–29] 583 1bj1 [30] 10 [31, 32] 547

1brs [33] 30 [34–37] 199 1jrh [38] 42 [39, 40] 540

1cbw [41] 31 [42, 43] 299 1mlc [44] 11 [45] 561

1iar [46] 36 [47] 336 1vfb [48] 48 [45, 49, 50] 352

1jtg [51] 37 [52–56] 428 1yy9 [57] 16 [45, 58] 1058

1lfd [59] 19 [60, 61] 254 2jel [62] 43 [63] 520

1ppf [64] 190 [65, 66] 274 3hfm [67] 71 [68–72] 558

2wpt [73] 26 [74–76] 220 4i77 [77] 12 [78] 549

For both non-Ab (left) and Ab (right) categories, columns show PDB IDs, total number of residues in a complex, and number of experimental mutants per complex.

https://doi.org/10.1371/journal.pone.0240573.t001
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For simplicity, we categorized scoring functions (mathematical functions to calculate ΔΔG val-

ues) as semi-empirical, statistical, or physics-based. Semi-empirical methods replace as many

calculations as possible with pre-calculated data and are trained using existing crystal struc-

tures and known binding affinity measurements for mutations [79]. Statistical methods use

pre-calculated data and consider changes in coarse structural features such as the change in

overall volume [80]. Physics-based methods use molecular mechanics based-energy functions

to estimate enthalpic binding contributions [14]. In general, statistical or semi-empirical scor-

ing functions involve a training step where existing datasets are leveraged to determine the

weight of input parameters. MD, JayZ, and EasyE were not developed by training the methods

against experimental data designed to improve predictive power while all other methods uti-

lized this step.

Calculation and comparison of computational speed

The methods in Table 2 were used to predict ΔΔG values for each mutation on our experimen-

tal list shown in Table 1. Detailed protocols for predicting ΔΔG values using each selected

method are provided in the (see S1 File). Runtimes were determined by using a representative

protein complex from each category: 1ppf, a non-Ab complex with 274 total amino acids, and

1yy9, an Ab complex with 1058 total amino acids (see Table 2). These runtimes are estimates

provided to give a point of comparison between the speeds of different methods. Specific run-

times will be determined by hardware specifications, method parameters, the number of muta-

tions being computed, and overall protein size. For MD+FoldX, computational runtime was

the length of time of the MD simulation plus the FoldX runtime for a single mutation. Report-

ing runtime in this fashion highlights the large CPUh requirement needed in order to add the

sampling of MD into FoldX calculations. We note that, in contrast to the other methods tested

here, the MD simulations that must be performed for MD+FoldX can be completed very

Table 2. Methods used for comparison in study with a short summary of their approach and scoring function.

Name Brief Description Scoring

Function

Runtime (CPU

hours)

BindProfX [15, 16] Interface profile score based on conservation of homologous interfaces Semi-

Empirical

1ppf = 0.57 CPUh

1yy9 = 0.73 CPUh

BindProfX(BPX)+FoldX v4

[15, 16]

Profile score weighted and combined with FoldX energy potential Semi-

Empirical

1ppf = 0.62 CPUh

1yy9 = 0.71 CPUh

iSEE [81] Random forest model using structural, evolutionary, and energy-based features Statistical 1ppf < 0.01 CPUh

1yy9 < 0.01 CPUh

DCOMPLEX v2 [14] Structural ideal-gas reference state potential Physics-Based 1ppf = 0.013 CPUh

1yy9 = 0.001 CPUh

EasyE v1.0 [80, 82] GMEC-based method utilizing the Rosetta [83, 84] energy function Statistical 1ppf = 0.48 CPUh

1yy9 = 0.09 CPUh

JayZ v1.0 [80, 82] Partition-function method utilizing Rosetta energy function Statistical 1ppf = 0.14 CPUh

1yy9 = 0.21 CPUh

FoldX v4 [13, 79] Empirical energy score based on various energy parameters (e.g. van der Waals, solvation,

electrostatics, hydrogen bonding)

Semi-

Empirical

1ppf = 0.42 CPUh

1yy9 = 0.16 CPUh

MD+FoldX v4 [85–87] Molecular dynamics used to explore conformation space and generate snapshots; FoldX score

calculated for each snapshot and averaged

Semi-

Empirical

1ppf = 941 CPUh

1yy9 = 4093 CPUh

Columns (left to right) indicate the method, a brief description of the method, the type of scoring function used, and runtimes. Runtimes are the amount of CPU hours

for estimating the ΔΔG for a representative protein complex for Ab (1yy9, 1058 residues) and Non-Ab (1ppf, 274 residues) categories. Although 1yy9 is roughly four

times bigger than 1ppf, the total runtime may or may not be affected depending on the method used.

https://doi.org/10.1371/journal.pone.0240573.t002
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quickly on modern GPUs, significantly offsetting the high initial cost of the MD+FoldX

method. For all other methods, the algorithms rely either on various pre-calculated data or

limited conformational sampling to calculate ΔΔG values rapidly.

Comparing experimental and predicted ΔΔG values

To carry out statistical analysis of our results we built an in-house Python script (see S2 File)

that uses a combination of libraries including matplotlib, numpy, pandas, statistics, scipy, and

sklearn. Using this script, we compared predicted values to experimental ΔΔG values for each

method.

To evaluate the predictive ability of each method tested, we compared the following correla-

tion coefficients using our script: concordance (ρc), Pearson (r), Kendall (τ), and Spearman (ρ)

(see Table 3). We distinguish between methods that were trained to predict ΔΔG values from

methods that compute metrics that are expected to linearly correlate with ΔΔG values. This

distinction is important since for optimal performance we expect a regression line that passes

through the coordinate origin and has a slope of 1, leading to a correlation coefficient equal

to 1.

To compare the discriminating power of the methods, we generated receiver operating

characteristic (ROC) curves (see Table 3). These curves quantify the ability of a method to cor-

rectly classify point mutations as destabilizing (ΔΔG< −0.5 kcal/mol) or neutral/stabilizing

(ΔΔG> −0.5 kcal/mol). ROC curves that are skewed toward a higher true positive rate (sensi-

tivity) classify mutations more accurately, as quantified by area under curve (AUC, ranging

between 1.0 and 0.5 for perfect and chance classification, respectively).

We also used our script to parse the results on the basis of several physico-chemical and

structural features to allow us to evaluate the methods based on these characteristics: wild type

amino acid type, mutant amino acid type, protein-protein interacting versus antibody-antigen,

secondary structure classification of the mutation [89, 90], coordination number [91], Sneath

index [92], mostly α-helical proteins versus mostly β-sheet proteins versus a mix of both α-

helical and β-sheet proteins, percent exposure, location of the mutation, change in charge,

change in polarity, change in volume, and whether or not the mutation location is predicted as

an active or passive residue [93–95]. The script uses data from S3 File as an input and outputs

scatter plots, correlation plots, receiver operating characteristic (ROC) curves, and box plots to

visualize the data, as well as correlations and standard deviations for each method. All plots in

this manuscript were generated using this script.

Table 3. Statistical measures used to test the performance of each method in predicting ΔΔG values.

Correlation Brief Description Type

Concordance The concordance correlation coefficient (ρc) measures the degree to which the predicted ΔΔG value equals the actual experimental value

(0 indicates no agreement and 1 perfect agreement).

Linear

Pearson The Pearson correlation coefficient (r) measures the degree to which a uniform linear transformation of the predicted ΔΔG values (i.e., a

shift and scale change) would yield the actual experimental values (0 indicates no agreement after transformation, 1 perfect agreement,

and −1 perfect inverse agreement).

Linear

Kendall and

Spearman

The rank correlation coefficient measures the degree to which the rank ordering of the predicted ΔΔG values matches the rank ordering

of the actual experimental values (0 indicates no agreement after transformation, 1 perfect agreement, and −1 perfect inverse

agreement). In a normal case, the Kendall correlation (τ) is considered more robust than the Spearman correlation (ρ) because of a

smaller gross error sensitivity and more efficient due to a smaller asymptotic variance [88].

Rank

AUC and ROC The receiver operating characteristic (ROC) curve tests several cutoff values for binning mutations as neutral or destabilizing between

the most negative calculated ΔΔG value and the most positive calculated ΔΔG value, with true positive rates (sensitivity) calculated at

each point. As the true positive rate is calculated, the classifier is moved to less extreme values; this yields the ROC curve. The area under

curve (AUC) is a summary statistic that approximates how well the predictor actually discriminates between the two classifications.

N/A

https://doi.org/10.1371/journal.pone.0240573.t003
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Results

The purpose of our study was to assess the ability of eight different relative binding affinity cal-

culation methods (see Table 2) to estimate ΔΔG values. We selected 16 different protein com-

plexes (eight Ab, eight non-Ab, see Table 1) with a total of 654 single amino acid mutations.

Each method was then used to estimate ΔΔG values of 654 mutations and a variety of statistical

measures were employed to assess their predictive ability. We also examined the computa-

tional speed of each method in the context of accuracy to determine its efficiency.

Non-antibody-antigen (non-Ab) results

Our dataset of eight non-Ab test protein complexes contains 401 total mutations and are

mainly classified as protein-protein systems formed by inhibitors and receptors that range

from 199 to 583 residues in size. The distribution and our classification of experimental ΔΔG
values for all non-Ab test complexes is as follows: 13% of point mutations resulted in ΔΔG val-

ues less than -0.5 kcal/mol (classified as destabilizing); 31% between -0.5 and 0.5 kcal/mol

(neutral); and 56% greater than 0.5 kcal/mol (stabilizing).

Figs 1 (blue data points and values) and 2 show various performance metrics for each

method to assess their ability to predict the non-Ab ΔΔG values. Overall, EasyE has the highest

correlation coefficient, r = 0.62, and iSEE has the lowest, r = 0.17 (see Figs 1 and 2). JayZ and

EasyE, both of which utilize Rosetta’s conformational sampling algorithms, consistently have

the best r values for non-Ab mutations.

Fig 3 shows the ROC plot for all the tested methods. These ROC plots highlight how well a

method can discriminate between stabilizing and destabilizing mutations. JayZ (0.84), EasyE

(0.83), DCOMPLEX (0.82), FoldX (0.79), and MD+FoldX (0.76) have the highest AUC. Com-

bined with the results from Figs 1 and 2, for the systems studied here, JayZ and EasyE methods

are the best overall performers in terms of accuracy, discriminating stabilizing mutations from

destabilizing, and ranking mutations based on their experimental ΔΔG values.

Table 2 reports CPUh required (i.e. runtimes) for each method to calculate ΔΔG for the

entire list of mutations for a representative non-Ab protein complex. BindProfX, BindProfX

(BPX)+FoldX, JayZ, and EasyE allow users to specify a list of mutations that the method is

then able to calculate in one setting. This list can be optimized based on the available hardware

to achieve efficiency. iSEE requires significant preparatory work (see S1 File) prior to calcula-

tion, but once completed, it calculates the ΔΔG values for the entire list of mutations nearly

instantly. DCOMPLEX is not as flexible out of the box but can handle large numbers of muta-

tions through an automated script. For MD+FoldX, 1yy9 (roughly four times larger than 1ppf)

requires considerably more CPUh to calculate. All other methods calculate 1yy9 in a shorter

time frame than 1ppf. This may seem counterintuitive. However, MD must statistically sample

the conformational energy of the entire complex, while all other methods use algorithms that

are likely impacted more by the number of residues involved in the interaction rather than the

protein size. Overall, DCOMPLEX has a much faster runtime compared to other methods,

and if the goal is to determine stabilizing and destabilizing non-Ab mutations, it offers similar

discriminating power to JayZ and EasyE, at a fraction of the computational cost. JayZ estimates

ΔΔG value of one mutation in ~2.7 s, EasyE in ~9.1 s, but DCOMPLEX requires just ~0.25 s.

Overall, EasyE appears to be the best option for balancing accuracy and speed and DCOM-

PLEX is recommended for discriminating between stability and destabilizing mutations.

A method might not be a good overall performer in predicting ΔΔG values but could still

perform well for mutations with certain physico-chemical and structural features. Therefore,

we calculated various statistical measures to assess each method on unique subsets of muta-

tions (see Table 4 and S1–S4 Figs). This table shows eight different data subsets with two r per
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method. EasyE has the highest r for non-Ab for five out of eight subsets (wild type non-gly or

non-pro, alpha helix, beta sheet, surface exposure, and large volume changes). Where this

method did not have the highest r, it had either the second or third highest r. JayZ mirrors the

Fig 1. Calculated ΔΔG values (x-axis) compared to experimental ΔΔG values (y-axis) for each method tested in this study. Black, red, and blue lines are simple

linear regressions from which r are derived. The red points are a scatter for Ab complexes and the blue points are for non-Ab complexes. The dashed line is the y = x
line measuring perfect agreement between predicted and experimental ΔΔG values. The solid black, red, and blue lines indicate a linear relationship between

calculated and experimental observations for all data points, Ab complexes, and non-Ab complexes respectively. The top values in black, red, and blue match the

root-mean-square error and the bottom values indicate r for all values, Ab values, and non-Ab values respectively.

https://doi.org/10.1371/journal.pone.0240573.g001
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performance of EasyE in all the same categories and performs better than Easy in the neutral

charge subset. These results further highlight the versatility of EasyE’s and JayZ’s performance

in estimating the effects of non-Ab mutations compared to the other methods tested in this

study. All methods apart from iSEE and BindProfX perform surprisingly well in the WT Gly

or Pro subset. iSEE’s performance in this subset, while still mediocre compared to the other

tested methods, is substantially better than in all other subsets.

Antibody-antigen (Ab) results

Our dataset of eight Ab test protein complexes contains 253 mutations and the proteins range

in size from 352 to 1058 residues. The distribution and our classification of experimental ΔΔG
values for all Ab test complexes is as follows: 5% of point mutations resulted in ΔΔG values less

than -0.5 kcal/mol (classified as destabilizing); 40% between -0.5 and 0.5 kcal/mol (neutral);

and 55% greater than 0.5 kcal/mol (stabilizing).

Figs 1 (data points and values in red), 4, and 5 show the performance of each method in

predicting the ΔΔG values of Ab mutations. Overall, the highest correlation is for MD+FoldX

with r = 0.39 and the lowest is iSEE with r = -0.09 (see Figs 1 and 4). An interesting trend is

that the methods with the highest r values for non-Ab complexes do not have the highest r for

Ab complexes.

Fig 5 shows the ROC plot for all the tested Ab methods. These ROC plots highlight how

well a method is actually able to discriminate between stabilizing and destabilizing mutations.

Compared to non-Ab complexes, all methods performed better for antibody-antigen com-

plexes except for FoldX and DCOMPLEX which were marginally worse. JayZ (0.97), EasyE

(0.98), FoldX (0.85), and MD+FoldX (0.82) had the highest AUC values. Combined with the

results from Figs 1 and 4, at least for the systems studied here, it appears that the MD+FoldX

Fig 2. Performance of each method for non-Ab complexes (401 total mutations) in predicting true ΔΔG values (ρc), linearly correlated ΔΔG values (r), and rank

order (ρ and τ). The error for each method is reported under the correlation points.

https://doi.org/10.1371/journal.pone.0240573.g002

PLOS ONE Assessment of software methods for estimating protein-protein relative binding affinities

PLOS ONE | https://doi.org/10.1371/journal.pone.0240573 December 21, 2020 8 / 20

https://doi.org/10.1371/journal.pone.0240573.g002
https://doi.org/10.1371/journal.pone.0240573


method is the best overall performer in terms of accuracy, discriminating stabilizing mutations

from destabilizing, and ranking mutations based on their experimental ΔΔG values.

Compared to other methods, EasyE has a much faster runtime and is recommended if the

goal is to discriminate between stabilizing and destabilizing (ΔΔG for one mutation takes ~21

s, see Table 2). By comparison, MD+FoldX cost ~941 CPUh for one mutation of 1yy9. DCOM-

PLEX provides a slightly lower r (0.31) and computational cost (~0.35 s) for one mutation of

1yy9. Overall, MD+FoldX appears to be the best option for accuracy and EasyE or JayZ are the

best options for discriminating between destabilizing and stabilizing mutations.

Table 4 summarizes the ability of each method to predict ΔΔG values for subsets of Ab

mutations. Most methods had mediocre r values less than 0.60. The exceptions to this are

MD+FoldX and DCOMPLEX within the WT Gly or Pro subset with r = 0.71 and 0.89, respec-

tively. BPX+FoldX has the highest r for Ab complexes for five of the eight subsets (WT nonGly

or nonPro, beta sheet, surface exposure, neutral charge, hydrophobic to polar, and large vol-

ume changes) and performs equally well for the neutral charge subset as DCOMPLEX, which

Fig 3. Receiver operating characteristic (ROC) curves for non-Ab complexes of the classification of variants as stabilizing (ΔΔG< -0.5 kcal/mol) or destabilizing

(ΔΔG> 0.5 kcal/mol). The values in the legend represent the area-under-curve (AUC). The higher the value, the better method is at discriminating between

destabilizing and destabilizing mutations.

https://doi.org/10.1371/journal.pone.0240573.g003
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Table 4. All methods r with respect to certain subsets.

Method WT Gly or Pro WT Non-Gly or

Non-Pro

Alpha Helix Beta Sheet Surface

Exposure

Neutral Charge Hydrophobic to

Polar

Large Vol

Changes

BindProfX Non-Ab: 0.08

Ab: -0.03

Non-Ab: 0.34

Ab: 0.33

Non-Ab: 0.29

Ab: 0.16

Non-Ab: 0.34

Ab: 0.48

Non-Ab: 0.22

Ab: 0.31

Non-Ab: 0.37

Ab: 0.45

Non-Ab: 0.33

Ab: 0.29

Non-Ab: 0.13

Ab: 0.38

BPX+FoldX Non-Ab: 0.78

Ab: 0.09

Non-Ab: 0.46

Ab : 0:43

Non-Ab: 0.43

Ab: 0.38

Non-Ab: 0.35

Ab : 0:52

Non-Ab: 0.32

Ab : 0:40

Non-Ab: 0.52

Ab : 0:56
Non-Ab: 0.41

Ab : 0:35

Non-Ab: 0.71

Ab : 0:43

FoldX Non-Ab: 0.83

Ab: -0.11

Non-Ab: 0.45

Ab: 0.25

Non-Ab: 0.39

Ab: 0.25

Non-Ab: -0.05

Ab: 0.31

Non-Ab: 0.50

Ab: 0.26

Non-Ab: 0.42

Ab: 0.41

Non-Ab: 0.41

Ab: 0.11

Non-Ab: 0.63

Ab: -0.32

MD+FoldX Non� Ab : 0:84
Ab: 0.71

Non-Ab: 0.49

Ab: 0.42

Non-Ab: 0.44

Ab : 0:54

Non-Ab: 0.08

Ab: 0.49

Non-Ab: 0.47

Ab: 0.35

Non-Ab: 0.46

Ab: 0.46

Non� Ab : 0:46

Ab: 0.31

Non-Ab: 0.71

Ab: 0.35

DCOMPLEX Non-Ab: 0.65

Ab : 0:89
Non-Ab: 0.34

Ab: 0.37

Non-Ab: 0.33

Ab: 0.31

Non-Ab: 0.22

Ab: 0.30

Non-Ab: 0.52

Ab: 0.27

Non-Ab: 0.36

Ab : 0:56

Non-Ab: 0.38

Ab: 0.16

Non-Ab: 0.62

Ab: 0.28

JayZ Non-Ab: 0.77

Ab: 0.54

Non-Ab: 0.49

Ab: 0.24

Non-Ab: 0.44

Ab: -0.06

Non-Ab: 0.30

Ab: 0.16

Non-Ab: 0.59

Ab: 0.36

Non� Ab : 0:62

Ab: 0.26

Non-Ab: 0.41

Ab: 0.01

Non-Ab: 0.83

Ab: 0.19

EasyE Non-Ab: 0.78

Ab: 0.29

Non� Ab : 0:52

Ab: 0.22

Non� Ab : 0:51

Ab: 0.06

Non� Ab : 0:36

Ab: 0.03

Non� Ab : 0:60

Ab: 0.35

Non-Ab: 0.61

Ab: 0.23

Non-Ab: 0.45

Ab: 0.02

Non� Ab : 0:84
Ab: 0.18

iSEE Non-Ab: 0.32

Ab: 0.43

Non-Ab: 0.29

Ab: -0.16

Non-Ab: 0.05

Ab: -0.04

Non-Ab: 0.14

Ab: -0.24

Non-Ab: 0.38

Ab: 0.11

Non-Ab: 0.15

Ab: -0.11

Non-Ab: 0.14

Ab: -0.05

Non-Ab: 0.24

Ab: -0.44

“WT Gly or Pro” are wild type amino acids that are either glycine or proline. “WT Non-Gly or Non-Pro” are wild type amino acids that are neither glycine nor proline.

“Alpha Helix” are mutations that occur in a helix structure. “Beta Sheet” are mutations that occur in a beta structure. “Surface Exposure” are mutations that occur in an

amino acid that have relative solvent accessibility values between 0 and 10%. “Neutral Charge” is a neutrally charged wild type amino acid mutating to a neutrally

charged mutant amino acid. “Hydrophobic to Polar” is a hydrophobic or polar wild type amino acid mutating to a polar or hydrophobic mutant amino acid,

respectively. “Larger Vol Changes” is a mutant amino acid that is greater than 40% larger than the wild type amino acid. Values that are bolded are the highest r for each

method and protein type. Values that are red or blue are the highest r for each subset, blue for non-Ab and red for Ab.

https://doi.org/10.1371/journal.pone.0240573.t004

Fig 4. Performance of each evaluated method for Ab complexes (253 total mutations) in predicting true ΔΔG values (ρc), linearly correlated ΔΔG values (r), and

rank order (ρ and τ). The error for each method is reported under the correlation points.

https://doi.org/10.1371/journal.pone.0240573.g004
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also has the highest r for WT Gly or Pro subset. For the beta sheet subset, MD+FoldX had the

second highest r. In the surface exposure subset, JayZ and EasyE both had nearly identical r
(0.36 and 0.35 respectively), the highest for this subset, but substantially worse than they did

for non-Ab complexes.

Discussion

We assessed the performance of eight distinct protein-protein binding affinity calculation

methods that use 3-D structural information. To test the performance of these methods, we

selected 16 different protein complexes (see Table 1) with a total of 654 single amino acid

mutations: eight antigen-antibody complexes (Ab, 253 mutations) and eight non-antigen-anti-

body (Non-Ab, 401 mutations) complexes. Each method was used to estimate ΔΔG values of

the 654 mutations, a variety of statistical measures, CPU cost, and physico-chemical structural

features to assess the performance. Our results suggest each method has both strengths and

Fig 5. Receiver operating characteristic curves of the classification of variants that are more destabilized or less destabilized than 0.5 kcal/mol. The values in the

legend represent the area-under-curve (AUC). The higher the value, the better the prediction capability of the method.

https://doi.org/10.1371/journal.pone.0240573.g005
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weaknesses depending on the properties of the protein system. Most methods did not perform

well when applied to mutations in Ab complexes compared to non-Ab complexes. Rosetta-

based JayZ and EasyE were able to classify mutations as destabilizing (ΔΔG< -0.5 kcal/mol)

with high (83–98%) accuracy at relatively low computational cost. Some of the best results for

Ab systems came from combining MD simulations with FoldX with a r coefficient of 0.39, but

at the highest computational cost of all the tested methods.

Fig 1 summarizes the performance of each method in terms of its ability to estimate ΔΔG
values for all (non-Ab + Ab) single mutations. None of the test methods show a very high r
between experimental and predicted ΔΔG values. Two of the best performing methods, JayZ

and EasyE, both have an r of 0.49 for all mutations, with a higher r of 0.61 and 0.62 respectively

for non-Ab complexes. These results agree with published results from the authors of JayZ and

EasyE. Our results agree moderately with published results from iSEE (they obtained r = 0.25,

we obtained r = 0.17) and BindProfX (they used a much larger dataset). Published results for

DCOMPLEX show a very good correlation of r = 0.87; much larger than what we obtained

here. This difference is very likely due to the dataset size and compilation; DCOMPLEX was

originally tested against 69 experimental data points, compared to the 654 values used here.

MD+FoldX has an r of 0.39 for Ab complexes and appears to perform well for larger systems,

which could indicate the importance of conformational sampling for antibody-antigen sys-

tems. Other methods used in this study have little to no conformational sampling which could

explain their poor performance on Ab complexes. By contrast, these same methods perform

well for non-Ab complexes, suggesting that conformational sampling is not the limiting factor

to achieve accurate results for these protein complexes. For example, FoldX has a trained scor-

ing function derived using a dataset of mostly non-Ab complexes and performs poorly for Ab

complexes when using a single structure (see Table 2). However, when used with snapshots

from an MD simulation, this same method outperforms all other methods selected in this

study. This highlights the need for conformational sampling for reliable and efficient predic-

tions of binding affinity for some systems. In our previous study, we combined coarse-grained

forcefield with umbrella sampling to calculate ΔΔG values for eight mutations of 3hfm Ab

complex (one of the test systems in this study) and obtained better predictions than FoldX and

MD+FoldX [96]. This study further emphasizes the need for better conformational strategies

for some systems. A rigorous endpoint free energy method could potentially be employed to

overcome the conformational sampling problem. Endpoint methods typically use molecular

mechanics force fields to generate conformational ensembles at the two states of interest.

These ensembles are then evaluated with implicit solvent models such as molecular mechanics

generalized Born surface area (MM/GBSA) and molecular mechanics Poisson–Boltzmann sur-

face area (MM/PBSA) [97–99]. These methods are computationally less expensive than other

rigorous approaches since simulations are only performed for two states, however their accu-

racy is system-dependent and sensitive to simulation protocols such as sampling strategy and

entropy calculation. MM/PBSA and MM/GBSA have been successfully used by several groups

to estimate ΔΔG values for a small number of protein complexes and recently reviewed by

Wang E et al [98] and Wang C et al [99]. These studies obtained consistently higher overall

correlation to experimental ΔΔG values, albeit for a small subset of mutations, compared to the

methods tested in our study, but at the expense of significantly higher computational costs.

Statistical measures used to analyze performance are listed and defined in Table 3. For Ab,

BPX+FoldX, MD+FoldX, and DCOMPLEX have the highest r values of the methods in our

study (see Fig 4). MD+FoldX appears to be the most accurate method for Ab complexes. Bind-

ProfX, FoldX, JayZ, EasyE, and iSEE have low r and ρc indicating that affinities estimated

using these methods do not correlate well with experimental ΔΔG values using a linear
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transformation. Also, the τ and ρ were lower compared to MD+FoldX, indicating these meth-

ods do poorly at calculating a rank order that matches experimental data.

The ROC curves allow us to determine each method’s ability to classify mutations as either

destabilizing or neutral/stabilizing (Figs 3 and 5). For non-Ab complexes, JayZ (0.84 AUC)

and EasyE (0.83 AUC) have the best true positive rate followed by DCOMPLEX (0.82 AUC).

For Ab complexes, JayZ (0.97 AUC) and EasyE (0.98 AUC) have better true positive rates than

MD+FoldX, the method with the highest r value. If classification of destabilizing vs stabilizing

is the primary need, then JayZ or EasyE are both recommended over the other methods tested

here due to their high accuracy and fast runtime.

While accuracy is generally the main reason for choosing a particular method, computa-

tional efficiency is also an important consideration, especially when predicting the effects of a

large number of mutations. Here, we discuss the performance of each method in terms of its

trade-off between speed and accuracy for predicting ΔΔG values. For all single mutations and

our non-Ab subset, EasyE and JayZ performed well; JayZ is the faster method of the two with

EasyE at a similar speed to FoldX. DCOMPLEX is more accurate than FoldX for all single

mutations and has similar accuracy as FoldX for non-Ab mutations, but at much lower cost.

MD+FoldX has similar accuracy to DCOMPLEX for all single mutations and has similar accu-

racy to FoldX in non-Ab mutations but is by far the most computationally expensive method

we tested. Although a synergistic combination of BPX+FoldX implements several structural

and physico-chemical interaction terms in its algorithm, computation time was longer than all

but MD+FoldX without a concomitant improvement in r. We note that this method is perhaps

the most accessible of those tested, due to the easy-to-use online server interface and accuracy

that is similar to FoldX for most systems. BindProfX utilizes the same scoring profile as BPX

+FoldX without the FoldX calculations. In this case, accuracy decreased while calculation

speed remained similar to BPX+FoldX. iSEE, the least correlating method, employs the widest

variety of information to obtain relative binding affinity predictions and is the fastest of all

methods (not including the non-trivial preparation time). For Ab complexes, MD+FoldX, the

slowest of all the methods, had the highest accuracy, followed by DCOMPLEX. iSEE is again

the fastest of all methods but also the least accurate. BindProfX utilizes several pre-calculated

physico-chemical structural data in its scoring function while, JayZ and EasyE each layer an

additional predictive calculating feature on top of Rosetta’s backbone sampling, adding com-

plexity to the predictive algorithms. However, all three have similar r yet they do not achieve

the accuracy of MD+FoldX. Overall, for non-Ab complexes, EasyE and JayZ appear to have

the best balance between speed and accuracy of the methods we tested. For Ab complexes,

DCOMPLEX appears to have the best balance.

We have demonstrated that all the tested methods have specific strengths and weaknesses;

some perform better in specific contexts (Table 4), and some have longer runtimes to obtain

similar predictive power to comparably faster methods. This highlights the complexity of the

physico-chemical properties and structural features that drive, and limit, these predictive mod-

els. Moreover, our study highlights the need to separately evaluate the performance of future

ΔΔG predictors for both Ab and non-Ab complexes. There is also a need for a much larger

training dataset of experimentally measured binding affinities for both types of complexes.

New binding affinity calculation approaches are also needed to properly account for the con-

tribution of bridging water molecules that are often present at the protein-protein interface.

Our results can be used to make informed decisions for methods that may be preferable for a

particular study or system. Table 4 suggests that if the goal is to estimate only the order of mag-

nitude or sign of relative binding affinities, then the preferred method will likely be very differ-

ent than if the goal is to obtain the best possible accuracy for antibody-antigen systems. To

improve accessibility, we have generated an in-house Python script (provided in the
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supplement with the full dataset used in this work) that can be used to parse any of the parame-

ters used in this study and provide tailored information. This information in combination

with the runtime and other details provided in this study can be used to inform users on meth-

ods that can provide the best accuracy and efficiency for a given protein-protein complex type,

set of physico-chemical features or structural parameters, and set of mutations. Additionally,

the script can be extended to other methods and feature-sets, potentially elucidating specific

problems or areas of improvement to existing and future methods.

Conclusions

In this study, we have assessed the accuracy and efficiency of eight computational methods on

predicting binding affinity changes due to single amino acid mutations. Methods were tested

on 16 different protein complexes: eight antigen-antibody (Ab) and eight non-antigen-anti-

body (Non-Ab) complexes. While some methods perform consistently better than others, how

well each performs depends on the physico-chemical and structural components of each com-

plex. EasyE was the most accurate for non-Ab complexes, and MD+FoldX was most accurate

for Ab complexes. JayZ and EasyE were better able to distinguish between destabilizing

(ΔΔG> 0.5 kcal/mol) and stabilizing (ΔΔG< -0.5 kcal/mol) as compared to any other

method. Future work could include more systems or different methods, including those that

are solely web server-based in order to expand and better refine our conclusions on their pre-

dictive capability.
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