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Abstract: Impaired antigen-specific cell-mediated immunity (CMI) is a primary immunological
disturbance observed in individuals that develop paracoccidioidomycosis (PCM) after exposure
to Paracoccidioides spp. Restoration of Paracoccidioides-specific CMI is crucial to stop the antifungal
treatment and avoid relapses. A convenient and specific laboratory tool to assess antigen specific
CMI is required for the appropriate clinical treatment of fungal infections, in order to decrease the
time of antifungal therapy. We used an interferon-γ release assay strategy, used in the diagnosis of
latent tuberculosis infection, to address our aims in this study. Information on proteins secreted by
two well-studied representative strains—Paracoccidioides brasiliensis (Pb18) and P. lutzii (Pb-01)—were
explored using PubMed or MEDLINE. From 26 publications, 252 proteins were identified, of which
203 were similar according to the Basic Local Alignment Search Tool. This enabled a selection
of conserved peptides using the MEGA software. The SignalP-5.0, TMHMM, IEDB, NetMHC II,
and IFNepitope algorithms were used to identify appropriate epitopes. In our study, we predicted
antigenic epitopes of Paracoccidioides that could bind to MHC class II and induce IFN-γ secretion.
These T cell epitopes can be used in the development of a laboratory tool to monitor the CMI of
patients with PCM.

Keywords: cellular immunity; paracoccidioidomycosis; in silico prediction; MHC II; IFN-γ;
Paracoccidioides brasiliensis; Paracoccidioides lutzii; interferon-gamma release assay

1. Introduction

Paracoccidioidomycosis (PCM) is a systemic mycosis endemic to Latin America and is caused
by fungi belonging to the genus Paracoccidioides [1]. Based on studies of nuclear and mitochondrial
genealogy, five species of Paracoccidioides—P. brasiliensis, P. lutzii, P. americana, P. restripiensis,
and P. venezuelensis—are reportedly responsible for PCM [2]. However, P. brasiliensis and P. lutzii are
the primary representative species used in clinical, molecular, morphological, and immunological
studies on fungi–host interplay, with the findings having implications in laboratory diagnosis [1,3].
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PCM is considered a neglected tropical disease and primarily affects males aged 30–50 years.
It is more prevalent among rural workers. In endemic areas, three new cases of PCM are registered
per 100,000 individuals annually [4]. In Brazil, PCM was considered as the eighth major cause of
mortality underlying all chronic and parasitic diseases and the first cause of mortality underlying
systemic diseases [5]. The infection occurs when mycelial phase propagules are inhaled by the host.
Upon infection, conidia turn into yeasts within the alveolar macrophages and multiply, thereby infecting
other cells. To curb the infection, Th1 and Th17 immune responses are polarized, thereby generating
subgroups of T cell cells, including T helper cells (TCD4+) [1]. Interferon-γ (IFN-γ) released by these
TCD4+ cells activates macrophages to produce high amounts of reactive oxygen species, which kill the
fungi [6].

The fungi can remain latent for many years or decades even after Th1 polarization [1,7].
When the fungi–host interplay is disrupted, Paracoccidioides-infected hosts develop PCM. In this
context, the Th2/Th9 immune response is dominant, and the remaining cellular-mediated immunity
(CMI) is not sufficient to restrict fungal spread [8]. Moreover, persistent systemic inflammatory
response is a hallmark of PCM, often conferring deleterious effects [9,10].

Antifungal therapies involve long-term regimens. The treatment duration depends on several
criteria—-clinical, mycological, radiological, and immunological [1]. CMI assessment is among
the primary challenges in PCM treatment. Detection of specific antibodies using double agar gel
immunodiffusion (IDD) has helped clinicians in deciding the extent and duration of treatment [11,12].
However, it is important to note that IDD evaluates humoral immunity and not CMI and is limited in its
sensitivity. Another factor limiting the use of IDD is that 10–40% of the patients diagnosed with PCM do
not test positive before and/or during the treatment, thereby posing challenges to the decision-making
process for cessation of the treatment [4]. The development of a lab-based approach to accurately
assess the recovery of antigen specific CMI can help overcome this challenge. The IFN-γ release assay
(IGRA) is a laboratory-based approach that has been used successfully in the immunological screening
of latent tuberculosis infection (LTBI). Briefly, a small volume of whole blood is incubated with purified
peptides from Mycobacterium tuberculosis for 24 h at 37 ◦C [13]. The recognition of tuberculosis antigens
by primed TCD4+ lymphocytes from infected individuals results in the production of significant
amounts of IFN-γ, the levels of which are detectable by ELISA [14]. Considering that patients with
PCM present with increased circulating clone-specific TCD4+ levels after the recovery from CMI [1],
in the present study, we predicted conserved antigenic peptides of P. brasiliensis and P. lutzii that would
bind to class II MHC molecules and induce secretion of IFN-γ, using in silico prediction approaches.

2. Material and Methods

2.1. Exploration of Candidate Proteins

Conserved peptides were explored using PubMed or MEDLINE between April 2019 and December
2019. The following descriptors were used: Paracoccidioides, proteomics, and genomics. These words
were separated with the commands AND and OR as follows: Paracoccidioides “[All Fields] AND
(proteome * [tw] or genome * [tw])”. The results of the search included articles relevant to the proteomics
and genomics of Paracoccidioides species. Only those articles containing data on P. brasiliensis (strain Pb18)
and P. lutzii (strain Pb01) were included; only proteins obtained via genomic (molecular phylogeny,
polymerase chain reaction, transcriptomics, and secretomics) and proteomic (NanoUPLC–MS or
LC–MS/MS) methods were included in the study. Review papers with descriptions of fungi and
methodological comparisons were excluded. Two authors (SBAR and BGCC) read the summaries
of all the included articles and duplicates and those that were not in accordance with the inclusion
criteria. Finally, 147 articles were selected and screened in detail, as indicated in Scheme 1.
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2.2. Bioinformatics Prediction Programs

Screening for peptides of P. brasiliensis and P. lutzii that would cause IFN-γ release in IGRA
involved the following steps: 1. target protein screening, 2. characterization of target proteins based
on conserved region (CDD)-related proteins associated with energy production, cellular respiration,
and immune defense, 3. search for conserved regions of the target proteins, 4. search for homology
of amino acid sequences between the two species, 5. search for conserved antigenic regions, 6.
prediction of immunogenicity of the binding peptide to class II MHC molecule, and 7. prediction of
IFN-γ secreted by T cells. The study design has been depicted in Scheme 2.

2.3. Investigation of Amino Acid Sequences

The first step comprised identification of upregulated proteins secreted in the yeast phase
using GenBank (Available online: https://www.ncbi.nlm.nig.gov/pubmed (accessed on 02 April 2019).

https://www.ncbi.nlm.nig.gov/pubmed
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The CDD5(conserved domain) was assessed to elucidate the protein classification and functions.
Proteins with multiple functions and nuclear activity and G-type glycoproteins (GPIs) were excluded.
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2.4. Alignment of the Amino Acid Sequences of P. brasiliensis and P. lutzii

P. brasiliensis and P. lutzii protein sequences were aligned using the basic local alignment
search tool (BLAST) [15] and downloaded in FASTA format from GenBank. The alignment
between the epitopes of P. brasiliensis and P. lutzii was assessed using the protein–protein
function (Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi ((accessed on 02 May 2019)).
This platform compares the amino acid sequences against reference sequences in GenBank using
the following criteria: Query (average converted into a percentage of the sequences in GenBank),
E-value (respective significance value of p < 0.01) and identity (intended for the percentage of similarity
between the sequences).

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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2.5. Identification of Conserved Peptides from Protein Sequences of P. brasiliensis and P. lutzii

To identify conserved peptides, the MEGA software v.7.0 (Molecular Evolutionary Genetics
Analysis) was used [16]. The tool showed variable and conserved regions along the sequences in pairs
obtained in the alignment. From the conserved regions, sequences that were 15 amino acids in length
(peptides) were selected for antigenicity and immunogenicity analyses.

2.6. Prediction of Antigenic and Immunogenic T Cell Epitope

Antigenicity prediction is essential for proper peptide synthesis because it indicates whether
a peptide can bind the MHC class II molecule and form an antigen complex that is recognized
by T cell receptors [17]. To determine which peptides would bind the MHC class II molecule,
two predictors—signal webserver v.3.0 and TMHMM webserver v.2.0—were used to indicate
signal peptide cleavage sites, with a cutting bridge <0.4 on the D axis [18]. Thus, the selected
peptides would remain intact without undergoing cleavage, thereby integrating the MHC molecule.
TMHMM webserver v.2.0 analysis revealed that the peptides in the host cell were in the extracellular
portion of the cell membrane. A threshold of >1 was considered for extracellular peptide regions [19].
To predict immunogenicity, we used two commonly accessed IEDB data sets (Free Epitope Database and
Prediction; available online: https://www.iedb.org/ (accessed on 02 May 2019) and NetMHCII webserver
v.2.3 (Available online: http://www.cbs.dtu.dk/services/NetMHCII (accessed on 02 May 2019). IEDB is
a data bank that integrates different algorithms for prediction of the binding affinity between peptides
and HLAs. Results were obtained via NetMHCpanII, NNAlign, SMMalign, Storniolo, and Consensus
methods, all based on the <1% rank for strong binders [20]. In this study, epitopes were predicted for
the seven subsets of HLA alleles existing in the overall global and Brazilian populations (HLA-DP,
HLA-DQ, and HLA-DR). NetMHC II webserver v. 2.3 is an algorithm that can predict the binding
affinity between peptides and HLAs (HLA-DR, HLA-DP, and HLA-DQ). However, this tool is based
on the percentage rank and affinity, which is calculated using the formula 1-log(IC50nM)/log(50.000).
Both methods classify potential ligands with values of <1 [21].

2.7. Prediction of IFN-γ-Inducing MHC Class II Binders

The IFNepitope algorithm was used to predict if the selected epitopes would induce secretion of
IFN-γ [16]. Antigenic regions were explored to confirm the ability of these epitopes to induce IFN-γ
secretion via MSV, classifying inducers as a positive and non-inducers as a negative. Positive epitopes
presented with a score of approximately 0.0.

2.8. Validation Screening

To validate our results, the ESAT-6 protein was used as a model. This protein was used in
commercial IGRA tests for LTBI and represents strong immunogenic epitopes, which are recognized
during tuberculosis infection [22]. The ESAT-6 sequence was downloaded (GenBank: ABD98021.1)
and submitted for analysis using the following algorithms: Signal P, TMHMM, NetMHC II, IEDB,
and IFNepitope. These data are shown in (Figure S1).

3. Results

3.1. Selected Articles and Protein Inclusion Criteria

Of the 150 articles, 25 containing information on the identity of the extracted amino acid sequences
in GenBank corresponding to P. brasiliensis and P. lutzii were included; these included articles that
described yeast proteins obtained from preparations of fungal culture, plasma, or peripheral blood
mononuclear cells without the intervention of any drugs. Upregulated proteins associated with the
fungal cell wall structure, respiration, defense, virulence, and induction of the immune response

https://www.iedb.org/
http://www.cbs.dtu.dk/services/NetMHCII
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were included. The sequence identities were searched for in the introduction, methodology, results,
or discussions of the articles listed in Table 1.

Table 1. Papers selected in the rapid review.

Study, Year
(Reference) Study of Methodology Upregulated Proteins

Alegre et al. [23] 2014 Genome Glycosyl hydrolase.

Do Amaral et al. [24] 2019 LC–MS/MS
Ligand RNA, fructose bisphosphate aldolase,
nucleic acid ligand, phosphoglycerate kinase,
perixosomal catalase.

Araújo et al. [25] 2017 NanoUPLC–MS Shock protein SSB1, glucan synthase.

Araújo et al. [26] 2019 NanoUPLC–MS

Gp 43, pyruvate dehydrogenase, ATP-citrate
synthase, succinyl CoA ligase, Shock protein
(Hsp 90, HPs 70, Hps 88, Hps 30, Hsp 7, Hsp 70,
Hsp 75), alcohol dehydrogenase,
pyruvate dehydrogenase. Cap 20,
progesterone ligand, regulatory myosin cdc 4,
mitochondrial perodoxin PRX1, DNA ligand,
shock protein 88, serine phosphatase, threonine,
protein F beta acin, enolase,
triosphosphate isomerase, carbonic anhydrase,
vacuolar protease 4, perodoxin, acetamidase.

Baeza, et al. [27] 2017 NanoUPLC–MS

GlucosaminE-6-phosphate-deaminase,
phosphoacetilglucosamina mutase, isocitrate
mutase, isocitrate liase, malate synthase,
3-hydroxybutyryl-CoA dehydrogenase,
3-Cetoacyl-CoA thiolase,
Acyl-CoA dehydrogenase, Acyl-Coenzyme A
oxidase, Enoyl-CoA hydratase,
short-chain dehydrogenase, carnitine,
adenosylomocysteinase,
threonine dehydrogenase,
methylcrotoyl-CoA carboxilase beta,
methylmalonate semialdehyde
dehydrogenase, catalase.

Castilho et al. [28] 2014 LC–MS/MS

RAC, vacuolar protease, 26 S regulatory subunit,
palmitoyl thioesterase, protein associated with a
pathogenesis. Cap 20, ligante de progesterona,
regulatory myosin cdc 4, mitochondrial
perodoxin PRX1, DNA ligand, shock protein 88,
phosphatase serine treonine, actin F protein beta,
enolase, triophosphate isomerase,
carbonic anhydrase, vacuolar protease 4,
perodoxin, acetamidase.

Chaves et al. [29] 2019 NanoUPLC–MS

Thioredoxin, superoxide dismutase (SOD Fe+,
SOD Cu +), serina protease,
mitochondrial acetonitate hydratase,
histidin kinase, perixossomal hydratase,
shock protein (Hsp 90, Hsp 88, Hsp 70, Hsp 30).

De Curcio et al. [30] 2017 NanoUPLC–MS

Carrier ATP/ADP, Plasma ATPpase,
YOP1 protein, phosphate mitochondrial,
osmosensor protein, ologossacaryl transferase,
alpha-1,2-mannosyltransferase KTR1,
dolichol-phosphato aminotransferase,
phosphoinositide phosphate,
oxoisovalerate dehydrogenase
beta, serine-3-dehydrogenase.
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Table 1. Cont.

Study, Year
(Reference) Study of Methodology Upregulated Proteins

Chaves et al. [31] 2017 NanoUPLC–MS

Carrier ATP/ADP, plasma ATPase, YOP1 protein,
mitochondrial phosphate, osmosis protein,
oligosaccaccharyl transferase,
alpha-1.2-mannosyltransferase KTR1,
dolichol-phosphate aminotransferase,
phosphoinositide phosphate, oxoisovalerate
dehydrogenase 3

Desjardins et al. [32] 2011 Genome

Chitin synthase, Shock protein (Hsp 60, Hsp, 88,
Hsp 90, Hsp 7, Hsp 70), mycoserosic acid
synthase, acyl transferase, Tioredoxina,
perixosomal hydratase, histidine kinase,
MATA_HMG-box, Interalpha-trypsin,
methyltransferase, N-acetyltransferase, peptidase,
transketolase, glucoamylase,
PADG_11448, PADG_01788.

De Oliveira, et al. [33] 2018 LC–MS/MS

Phosphoglycerato kinase,
glucose-6-phosphasto isomerase,
phosphomannomutase,
triosephosphate isomerase,
homogentified 1,2-dioxigenase,
alpha-ATPase subunit,
12-oxophytodienoate reductase,
PAAG_00340, ATP citrate synthase.

Lima et al. [34] 2014 NanoUPLC–MS

4-hydroxylphenolpyruvate dehydrogenase,
alanine-glyoxylate aminotransferase, cysteine
dioxygenase, aspartate aminotransferase, choline
dehydrogenase, glutamate decarboxylase,
methylcrotonoyl-CoA carboxylase, sorbitol SOU2,
inosine-dehydrogenase-5-monophosphate,
fumarylacetoacetate hydrolase, WD40, ATPase,
calnexin, complet T subunit T epsilon,
tetraclycine.

Munhoz, et al. [35] 2016 Genome

3-hydroxyantaranilate 3,4 dioxygenase, 1,3
glucanase, BUD 32 kinase, glucan 1,3 glucosidase,
aminopeptidase M18, serine protease, LOL,
cation efflux, RING, phosphatidyl inositol,
PADG_00954, thioredoxin, amino acid permease,
acyl-CoA dehydrogenase, 3-ketoacyl reductase,
transferrin peptidase.

Oliveira et al. [36] 2016 NanoUPLC–MS Epsilon protein, Rad24, ARF GTPase.

Parente, et al. [37] 2011 LC–MS/MS

2-nitropropane dioxygenase,
hydroxyacilglutathione hydrolase,
L-threonine-3-dehydrogenase,
spermidine synthase, glucokinase,
pyruvate dehydrogenase, component X protein,
nucleoside-diphosphate epimerase, thioredoxin,
pentafunctional AROM, adenisulfate kinase,
cytochromo c, anikirina, ubiquitin E1,
citocromo C, phosophoglycerate kinase,
D-hexose-6-phosphate epimerase,
hydrolipoyl dehydrogenase, carnitine O
acetyltransferase, perixosomal catalase.
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Table 1. Cont.

Study, Year
(Reference) Study of Methodology Upregulated Proteins

Parente, et al. [38] 2013 MALDI–MS/MS

Thioredoxin, protein Y20,
aldehyde dehydrogenase, shock protein (Hsp 30,
Hsp 30, Hsp 70, Hsp 88, SSB1),
malate dehydrogenase, methylcitrate synthase,
co-chaperone mitochondrial GrpE,
6-phosphogluconolactonase,
xanthine phosophoribosyl transferase,
aldehyde dehydrogenase,
aminoacyl-tRNA-synthase, oxidoreductase,
oxalocrotonate tautomerase,
metalloproteins, formamidase.

Parente-Rocha et al. [39] 2015 Nano-ESI-UPLC–MS

Phosphoglucomutase,
hydrolipoyl-dehydrogenase, succinate
dehydrogenase, alanine aminotransferase,
aspartate aminotransferase,
4-hydroxyfenylpyruvate dioxigenase,
vacuolar aminopeptidase, carboxypeptidase Y,
aspartyl protease, protepian Y20,
monitiol glutaredoxin, thioredoxin, cytochromo c
peroxidase, Superoxido dismutase Cu/Zn,
glucosamine-frutose-6-phosphato, ATP synthase
F1F0, NADP glutamato dehydrogenase,
gama glutamyltranspeptidase.

Pigosso et al. [40] 2013 MALDI- MS/MS

L-threonine-3-dehydrogenase, 1,2
diyidroxi-3-keto-5-methyllopententene-dioxigenase,
2,5-diceto-D-gluconic acid reductase A,
glutathione reductase, 27 KDa,
glycoprotein mitochondrial, DNA ligand,
corusmate mutase, formamidase fator-1-alpha,
phosphoenolpiruvato carboxikinase,
12-oxophitodienate reductase, citrate
synthase, gi295666522.

Pigosso et al. [41] 2017 NanoUPLC–MS

Formamidase, carnityl-CoA dehydratase,
acil-CoA dehydratase, GABA permease,
integral membrane protein,
12-oxophytodinoate reductase, ABB effux,
dienetaelone hydrolase, cysteine protease PalB,
xanthine dehydrogenase, phosphotransferase,
PADG_00675, treonina dehydrogenase, glioxilase,
acil-CoA dehydrogenase, metallohydrolase.

Rezende et al. [42] 2011 MALDI- MS/MS

Mitochondrial peroxiredoxin,
mannitol-1-phosphato-5-dehydrogenase,
aldehyde dehydrogenase, ciclofilin, cofilin,
protein G, trompomyosin, hydrolase,
phosphoglycerate kinase, cobalamin,
phosphoglucomutase,
acetylmomoserine(tiol)-liase.

Tamayo et al. [43] 2016 Genoma Superoxide dismutase (SOD, SOD Cu/Zn).

Tashima et al. [44] 2015 LC–MS/MS Alpha -tubulin.
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Table 1. Cont.

Study, Year
(Reference) Study of Methodology Upregulated Proteins

Tomazetti, et al. [45] 2019 LC–MS/MS

1,6 Glyceradeído-3-phosphate-dehydrogenase,
Aqualysin, Fructose-1,6-biphosphate aldolase,
enolase, Superoxide dismutase Fe+,
thioredoxin reductase, succinil-CoA ligase
subunidade beta, methyl-2-citrate-synthase,
cytochromo c1 mitochondrial heme, Hsp 30,
Hsp 70, cytocromo C peroxidase, oxirredutase,
Ras-2, methylcitrate dehydrogenase, thioredoxin,
5-aminolevulinato synthase, serine protease,
RPA3, ATPase, Profilin, reductase ferric,
S-adenosylmethionine
dehydrogenase-dependent-2-methyltransferase
beta, pyruvate dehydrogenase subunit E1 beta,
dyhydrolipoamide acetyl-transferase,
glucosamine-fructose-6-phosphate,
GTPase RhoA, receptor endossomal Erp3,
Shock protein (Hsp020, Hsp 70), perixosomal,
citochromo c peroxidase, phosphoesterase, cofilin,
estrictosidin synthase, destrin, RRM-Srp1p.

Tristão, et al. [46] 2015 Proteomic

Superoxide dismutase (SOD, SOD Cu/Zn,
SOD cytosolic, SOD cytosolic Cu/Zn), laccase 1,
L-ascorbitate oxidase, laccase IV, cupredoxin,
alcohol dehydrogenase, class II aldolase,
PADG_00743, mannose-6-phosphate isomerase,
peptidase M1, copper carrier ATPase,
heavy metal ATPase, urease,
D-arabinose-1-dehydrogenase, calcium carrier,
carrier CCC1, calcium carrier, iron and
magnesium, cytochromo, ypt5 binding GTPase,
mitochondrial porin, SEC62 protein,
chpA protein, binding GTPase ypt7, chaperone,
ECM33 precursor protein, extracellular matrix
component, GTPase sar1, G2/M RNA ligand,
iron carrier, vacuolar protein, Ras, clatrin,
beta-glucosidase, endosome carrier.

Weber, et al. [47] 2012 MALDI-Q-TOF MS

Aminotransferase, fumarylacetoacetase,
beta-glycosidase, glycosyl hydrolase, Grp1p,
peptidyl-propyl-cis-trans-isomerase A2,
disulfide isomerase Pdi1. Enolase, Hsp 10,
malate dehydrogenase,
serine hydroxylmethyltransferase.

3.2. Analysis of Proteins Based on Their Conserved Domain Database

First, 252 proteins were classified according to their family based on data from the conserved
domain database (CDD); 39 proteins related to nuclear activity and with multiple functions were
excluded. Similarly, G-type proteins, such as GPI glyceraldehyde aldolase, fructose-1,6-bisphosphate
aldolase, glyceraldehyde-3-phosphate, and GTPases, were excluded because the peptide ligands could
not dissociate from the host intracellular membrane; these would not be consequently expressed on
the cell membrane associated with the MHC molecule.

3.3. Similarity Analysis between the Proteins Selected for P. brasiliensis and P. lutzii

A total of 213 amino acid sequences were submitted for BLAST analysis. The sequences
were considered similar if they presented an E-value of 0.0, query of 97–100%, and identity



J. Fungi 2020, 6, 379 10 of 21

of 90–100%. Of these, 13 proteins had no similarity in alignment for any of the two species
and for aldehyde dehydrogenase (PADG_01174), L-threonine-3-dehydrogenase (PAAG_00966),
1,2 dihydroxyl-3-keto-methylopentene-dioxygenase (gI226294753), 2.5 diceto-D-gluconic reductase
A (giI295663891), glutamate reductase (giI295664022), aldehyde dehydrogenase (PAAG_05249),
enolase (ABQ45367), aminobutyrate aminotransferase (PADG_02214), and PADG_34 proteases.

Another 63 proteins were excluded for not fulfilling any of the similarity criteria. A total of
127 proteins were included based on their query score; however, despite having an E-value cutoff
equivalent, two proteins—-aqualysin (PADG_04168) and 1,3 β-gluconase (PADG_07461)—-exhibited <90%
identity and were excluded. A total of 125 antigen sequences were selected for further analysis (Table 2).

Table 2. Alignment of amino acid sequences of P. brasiliensis and P. lutzii by the BLAST tool.

Protein Identification E-Value Identity
Pb18 Pl 01

Carrier ADP/ATP PAAG_08620 0.0 100% 97%
Acyl-CoA dehydrogenase PAAG_03116 0.0 98% 100%
Acyl-CoA dehydrogenase PADG_06805 0.0 100% 98%
Acyl CoA dehydrogenase PADG_07604 0.0 100% 97%
Acyl CoA hydratase PAAG_06309 0.0 97% 100%
Actin F protein subunit uptake protein PADG_07756 0.0 100% 100%
Alcohol dehydrogenase PADG_01174 0.0 100% 97%
Alpha-1,2 mannosyltransferase PAAG_02462 0.0 100% 98%
Alpha-1,2 mannosyltransferase KTR1 PAAG_07238 0.0 97% 100%
Adenosillomocysteine PADG_02859 0.0 99% 100%
Aminotransferase PAAG_03045 0.0 100% 98%
Aminotransferase PAAG_00053 0.0 98% 100%
ATP citrate synthase PADG_04993 0.0 100% 98%
ATP_dependent 26S on proteasome regulation PAAG_01926 0.0 99% 100%
Calnexin PAAG_07037 0.0 95% 100%
Carrier ADP/ATP PAAG_08620 0.0 100% 97%
Carrier calcium PAAG_07762 0.0 100% 98%
Carnitil CoA dehydrogenase PADG_05773 0.0 100% 97%
Catalase PAAG_01454 0.0 100% 98%
Catalase PADG_00324 0.0 98% 100%
Catalase PAAG_01943 0.0 99% 99%
Chitin synthase VII class ABV31248.1 0.0 98% 99%
1,3 ketoacyl-CoA lyase PADG_07365 0.0 100% 98%
3-ketoacyl reductase PADG_01943 0.0 100% 95%
Citrate synthase PAAG_08075 0.0 98% 100%
Colin acetyltransferase PADG_07023 0.0 100% 98%
Gamma subunit complex T PAAG_07165 0.0 99% 100%
Corismate mutase PAAG_05198 0.0 98% 100%
Dehydrogenase PADG_07369 0.0 100% 98%
Dihydrolopiol PAAG_03330 0.0 97% 100%
Dihydrolopiol dehydrogenase PAAG_06494 0.0 100% 97%
Dolichol-phosphate mannosyltransferase PAAG_01874 0.0 98% 100%
Enoyl coenzyme crontonase PADG_01209 0.0 100% 97%
Formamidase PAAG_03333 0.0 99% 98%
Formamidase PADG_06490 0.0 100% 97%
Fumarylacetoacetoato hydrolase PAAG_00869 0.0 98% 100%
Glutamyl transferase range PADG_01479 0.0 97% 100%
Glutamate dehydrogenase PADG_04516 0.0 100% 98%
Glucan synthase PADG_07373 0.0 97% 100%
Glycosamine-6-phosphate deaminase PADG_00401 0.0 100% 97%
Hydratase mitochondrial acetones PAAG_00845 0.0 100% 99%
Hydroacylgluthatione hydrolase PAAG_02548 0.0 98% 100%
4-Hydroxyfenylpyruvate dioxygenase PAAG_08468 0.0 99% 100%
Hexose-6-phosphato epimerase PADG_03243 0.0 98% 100%
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Table 2. Cont.

Protein Identification E-Value Identity
Pb18 Pl 01

Hydratase PADG_11845 0.0 99% 100%
Hydroxyl-CoA dehydrogenase PADG_01228 0.0 100% 98%
Hydroacylglutathione hydrolase PAAG_02548 0.0 98% 100%
Histidin kinase PADG_11468 0.0 100% 96%
Hypothetical protein PAAG_02761 0.0 94% 100%
Hypothetical protein PADG_01788 0.0 98% 100%
Hypothetical protein PADG_01788 0.0 98% 100%
Interalpha trypsin PADG_06178 0.0 100% 96%
Inosine-S-monophosphate dehydrogenase
MD2
Isocitrate lyase PAAG_04542 0.0 98% 99%
Isocitrate lyase PAAG_06951 0.0 100% 98%
3-isopropyl dehydrogenase PAAG_05328 0.0 97% 100%
L-threonine dehydrogenase PAAG_00966 0.0 99% 100%
Laccase PADG_06196 0.0 100% 96%
Mallate dehydrogenase PAAG_00053 0.0 98% 100%
Mallate synthase, glyoxysomal PADG_04702 0.0 99% 97%
Mallate synthase, glyoxysomal PADG_04702 0.0 99% 97%
Mannitol-1-phosphate dehydrogenase PAAG_06473 0.0 100% 98%
Methyltransferase PADG_01183 0.0 100% 94%
Methyltransferase PAAG_09014 0.0 94% 100%
Methylcronotonoil-CoA carboxylase PAAG_04103 0.0 98% 100%
Methilmalonate-semialdehyde dehydrogenase PAAG_07036 0.0 98% 100%
Metalo hydrolase PADG_03136 0.0 100% 97%
Mitochondrial PAAG_05350 0.0 97% 100%
Mitochondrial acetonate hydratase PAAG_00845 0.0 100% 99%
NADP-especific glutamate dehydrogenase PADG_04516 0.0 98% 100%
2-nitropropane dioxygenase PAAG_06693 0.0 98% 100%
Osmosensor PAAG_04025 0.0 100% 97%
Oligosaccharide transferase PAAG_04719 0.0 98% 100%
Oxoisovalerate dehydrogenase beta subunit PAAG_01194.2 0.0 99% 100%
Oxoisovalerate dehydrogenase alpha subunit PAAG_01310 0.0 98% 100%
Oxirreductase PADG_06082 0.0 90% 100%
Plasma ATPase PAAG_08082 0.0 99% 100%
Phosphatase ser/thre PADG_03544 0.0 100% 100%
Plasma ATPase PAAG_08082 0.0 99% 100%
Perixosomal catalase PADG_01943 0.0 100% 95%
Perixosomal catalase PADG_00686 0.0 100% 96%
Perixosomal hydratase PADG_08651 0.0 100% 97%
Pyruvate dehydrogenase component E1 beta E1 PAAG_01534 0.0 98% 100%
Pyruvate dehydrogenase PADG_00246 0.0 100% 98%
Shock protein SSVB1 PAAG_07775 0.0 98% 100%
Serine 3 dehydrogenase PAAG_02354 0.0 97% 100%
Serine hydroxymethyltransferase PAAG_07412 0.0 99% 100%
Sorbitol SOU2 PAAG_04184 0.0 98% 100%
Succinate dehydrogenase PADG_06494 0.0 97% 100%
Succinate dehydrogenase PADG_08013 0.0 100% 98%
Succinyl CoA ligase PADG_02260 0.0 99% 100%
Shock protein 90 PADG_02785 0.0 100% 98%
Shock protein 98 PADG_00765 0.0 100% 99%
Shock protein SSVB1 PAAG_07775 0.0 98% 100%
Transferrin PADG_00686 0.0 100% 98%
Transketolase PADG_00246 0.0 100% 98%
Tetracycline transporter PAAG_07990 0.0 97% 100%
Thioredoxin PADG_03161 0.0 100% 97%
Thioredoxin PADG_01551 0.0 100% 97%
Urease PADG_03874 0.0 100% 97%
Urease PADG_00954 0.0 100% 97%
Xaa-Pro aminopeptidase PAAG_07500 0.0 100% 100%



J. Fungi 2020, 6, 379 12 of 21

SignalP identified 19 proteins with signal peptides in most of the P. brasiliensis and P. lutzii sequences.
However, of the nineteen proteins, the TMHMM server identified only six sequences that exhibited
transmembrane propellers. Nevertheless, these proteins were included in the peptide analyses as they
revealed extracellular regions in most sequences. In this study, only seven sequences were intracellular
and were excluded. Immunogenic analysis by NetMHC and IEDB of the sequences indicated that optimal
epitopes were present in the following proteins—interalpha trypsin (PADG_06178), chitin synthase
class VII (>ABV31248.1), peroxisomal hydratase–dehydrogenase–epimerase (PADG_08651),
and phosphoenolpyruvate carboxykinase (PAAG_08203).

NetMHC II analysis of interalpha trypsin identified the HLA-DRB10101 alleles related to MHC
epitope 1 as the binding partner—MSAFSRMTASLGFSK (15 amino acids, amino acid 510–526).
The results showed a percentage rank of 0.07 and an affinity calculation of 0.9, thereby indicating this
epitope as the strongest ligand in the group. For epitope 1, no signal peptide was found by the SignalP
algorithm, whereas TMHMM located it outside the cell membrane (Figure 1).
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Figure 1. Interaction analysis of interalpha trypsin (PADG_06178) by integrating different algorithms.
(A). Signal peptide prediction (signal peptide). (B). Prediction of transmembrane regions (TMHMM).
(C). Prediction of epitopic regions for MHC II (NetMHCII).

For class VI chitin synthase (ABV31248.1), NetMHC II identified alleles corresponding to MHC
(HLA-DRB10101) for peptide 2—FDFYYLLTSASTPA (15 amino acids, amino acid 193–208)—considering
the rank percentage of 0.05 and affinity calculation of 0.9. For epitope 2, no signal peptide was found by
SignalP and TMHMM in the extracellular portion of the membrane (Figure 2).

For peroxisomal protein hydratase (PADG_06851), NetMHC II identified alleles corresponding
to the MHC (HLA-DRB10101) for epitope 3—RAYALLFSKLGAAVV (15 amino acids, amino acid
326–341)—with a rank percentage of 0.5 and affinity calculation of 0.8. For epitope 3, no signal peptide
was found with the SignalP algorithm, and it was located in the outer part of the membrane (Figure 3).

For phosphoenolpyruvate carboxykinase (PAAG_08203), NetMHC II identified alleles
corresponding to MHC (HLA-DRB10101) for epitope 5—ERVSIIANPAVASLY (15 amino acids,
amino acid 118–132)—with a rank percentage of 1.6 and affinity calculation of 7.5. For epitope 4,
no signal peptide was found with the SignalP algorithm, and it was located on the outside of the cell
membrane (Figure 4).
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Figure 3. Analysis of the interaction of the peroxisomal protein hydratase dehydrogenase epimerase
(GenBank: PADG_06851) by integrating different algorithms. (A) Signal peptide prediction (signal
peptide). (B). Prediction of transmembrane regions (TMHMM). (C). Prediction of MHC II epitopes
(NetMHCII).
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Figure 4. Analysis of the interaction of the phosphoenolpyruvate carboxy kinase protein (PAAG_08203)
by integrating different algorithms. (A) Signal peptide prediction (signal peptide). (B). Prediction of
transmembrane regions (TMHMM). (C). Prediction of MHC II epitopes (NetMHCII).

Based on our findings, an in-depth analysis of the high-frequency peptides MSAFSRMTASGFSK
(PADG_06178), FVFYYLLTSASTPA (ABV.31248.1), RAYALLFSKLGAAVV (PADG_08651),
and ERVSIIANPAVASLY (PAAG_08203) was performed (Table 3).

Table 3. Prediction of epitopes for T helper lymphocytes of HLA class II alleles.

Pep_H1 MSAFSRMTASLGFSK (PADG_06178)

Peptide Allele Method Used Percentage Rank (%)

MSAFSRMTASLGFSK HLA-DRB1 * 07:01 Consensus (comb.lib./smm/nn) 1.11
HLA-DRB3 * 02:02 NetMHCIIpan 2.37
HLA-DRB5 * 01:01 Consensus (smm/nn/sturniolo) 2.92
HLA-DRB1 * 15:01 Consensus (smm/nn/sturniolo) 14.19
HLA-DRB1 * 03:01 Consensus (smm/nn/sturniolo) 14.96
HLA-DRB3 * 01:01 Consensus (comb.lib./smm/nn) 20.72
HLA-DRB4 * 01:01 Consensus (comb.lib./smm/nn) 32.06

Peptide Allele Method Used Percentage Rank (%)

Pep_SQ2FDVFYYLLTSASTPA (>ABV31248.1)

FDVFYYLLTSASTPA HLA-DRB1 * 07:01 Consensus (comb.lib./smm/nn) 1.67
HLA-DRB3 * 01:01 Consensus (smm/nn/sturniolo) 3.95
HLA-DRB1 * 15:01 Consensus (smm/nn/sturniolo) 3.58
HLA-DRB3 * 02:02 NetMHCIIpan 4.02
HLA-DRB5 * 01:01 Consensus (smm/nn/sturniolo) 4.34
HLA-DRB3 * 01:01 Consensus (comb.lib./smm/nn) 40.25
HLA-DRB4 * 01:01 Consensus (comb.lib./smm/nn) 42.57

Pep_PH3RAYALLFSKLGAAVV (PADG_08651)
HLA-DRB5 * 01:01 Consensus (smm/nn/sturniolo) 3.19
HLA-DRB1 * 15:01 Consensus (smm/nn/sturniolo) 3.37
HLA-DRB1 * 07:01 Consensus (smm/nn/sturniolo) 4.79
HLA-DRB3 * 02:02 NetMHCIIpan 11.93
HLA-DRB1 * 03:01 Consensus (smm/nn/sturniolo) 17.05
HLA-DRB4 * 01:01 Consensus (comb.lib./smm/nn) 23.65
HLA-DRB3 * 01:01 Consensus (comb.lib./smm/nn) 32.36
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Table 3. Cont.

Pep_H1 MSAFSRMTASLGFSK (PADG_06178)

Pep_ SQ4ERVSIIANPAVASLY (PAAG_08203)
HLA-DRB3 * 02:02 NetMHCIIpan 0.01
HLA-DRB1 * 15:01 Consensus (smm/nn/sturniolo) 2.60
HLA-DRB1 * 03:01 Consensus (smm/nn/sturniolo) 11.00
HLA-DRB1 * 07:01 Consensus (comb.lib./smm/nn) 15.00
HLA-DRB4 * 01:01 Consensus (comb.lib./smm/nn) 19.00
HLA-DRB3 * 01:01 Consensus (comb.lib./smm/nn) 7.70
HLA-DRB5 * 01:01 Consensus (comb.lib./smm/nn) 43.00

* HLA nomenclature.

3.4. Prediction of IFN-γ inducing MHC Class II Binders

To determine which of the four epitopes could lead to the best, possible, abundant secretion of
IFN-γ, three different analyses were performed using IFNepitope. To confirm the results, we used
ESAT-6 as a control, as shown in Table 4.

Table 4. Prediction of the four epitopes found and ESAT-6 epitope in the IFNepitope algorithm.

Epitope Method IFN-γ Score IFN-γ Score Other Cytokines Score Random IFN-γ

Epi 1—MSAFSRMTASLGFSK Scan/MSV Negative −0.14 0.49 0.81
Epi 2—FDVFYYLLTSASTPA Scan/MSV Negative −0.56 0.44 −0.00
Epi 3—RAYALLFSKLGAAVV Scan/MSV Positive −0.16 0.61 0.00
Epi 4—ERVSIIANPAVASLY Scan/MSV Positive 0.15 0.51 −0.38
ESAT-6—QWNFAGIEAAASAIQ San/MSV Positive 0.30 0.88 0.63

4. Discussion

In the present study, in silico analyses allowed the prediction of immunogenic epitopes from
P. brasiliensis and P. lutzii antigens. In this prediction, four peptides with fifteen amino acids restricted
to the HLA class II molecule were identified as the optimal epitopes in the recognition of T cells.

These peptides were obtained from interalpha trypsin, chitin synthase, peroxisomal
hydratase–dehydrogenase–epimerase, and phosphoenolpyruvate carboxykinase. In general,
these proteins are produced when the fungus undergoes a mechanism of adaptation to the intracellular
environment, in order to survive in a latent state [28,32,33,41,48]. The low-oxygen environment allows
the fungus to survive via metabolic adaptation, thereby enabling the fungus to evade intracellular
defense mechanisms while remaining protected by the endosome. To stay into the endosome,
the fungus inhibits the phagolysosome maturation, lyses the host cell, detoxifies oxidative or nitrosative
reagents, and uses different metabolic pathways to obtain energy from the available nutrients [26,49,50].
This mechanism is characterized by interactions between the fungus and host molecules and with
the components of the cellular matrix, thereby causing delays in immune response induction [51].
Despite efforts required for fungal evasion, infected macrophages can act as antigen-presenting cells
APCs, and can process and present antigens to TCD4+ cells. Recognition promotes the differentiation
of TCD4+ cells into auxiliary T (Th1) cells, which when activated secrete IFN-γ, further activating the
microbicidal function of alveolar macrophages and stimulating the presentation of antigens at the
infected sites [52].

The alignment of protein sequences using BLAST made it possible to acquire data on conserved
peptides of P. brasiliensis and P. lutzii (Table 2). The aligned sequences when compared with GenBank
sequences exhibited high similarity, thereby indicating that a conserved peptide could be identified.
As P. brasiliensis and P. lutzii are detected at a higher frequency in Brazil [4] compared to that detected
in the remaining regions of the world, only proteins of P. brasiliensis and P. lutzii were prioritized.
As recommended, the alignment of protein sequences was assessed by checking the codons of the
genome between the two species (ClustalW). This allowed us to select conserved peptides and to
confirm the conservation of immunogenic epitopes predicted by the immunogenicity prediction
analysis tools. Next, antigenicity and immunogenicity analyses were performed for these conserved
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peptide regions with reference to 125 genomic protein sequences. Thus, it was possible to identify the
best HLA class II epitopes [53].

Four strong candidate peptides for stimulation of the in vitro cellular immune
response were found—-MSAFSRMTASLGFSK, FDVFYYLLTSASTPA, RAYALLFSKLGAAVV,
and ERVSIIANPAVASLY. MSAFSRMTASLGFSK has been identified in interalpha trypsin peptide.
This protein stimulates cellular differentiation [32]. High levels of trypsin have been observed in
the sputum of patients with pulmonary cystic fibrosis. This is because the protein induced mucus
hypersecretion and promoted the leukocyte recruitment to the inflammation site [54].

FDVFYYLLTSASTPA is part of the chitin synthase protein sequence, which forms α-glucan,
a fungal cell wall layer in yeast. Studies have shown that high amounts of chitin synthase secreted by
the fungus via proteolytic enzymes of the phagolysosome are used to reconstruct and maintain the cell
wall [45,55,56]. Recently, this immunomodulatory activity of chitin synthase was demonstrated in the
maturation of dendritic cells infected by P. brasiliensis, in vitro [57].

RAYALLFSKLGAAVV is a peroxisomal hydratase–dehydrogenase–epimerase peptide and studies
have shown that the secretion of this protein is increased under stress conditions in fungal cultures
and phagocytes infected by Paracoccidioides. It inhibits oxidative reactions and detoxifies molecules
released by the lysosome [26,29,51].

ERVSIIANPAVASLY is a phosphoenolpyruvate carboxykinase peptide abundant in macrophages
infected by Paracoccidioides [30]. Immunogenic epitopes of this antigen have already been identified in
Leishmania major and L. donovani and have been used to develop a recombinant vaccine for leishmaniases.
In animal models, this vaccine has shown promising results since the phosphoenolpyruvate epitopes
activate TCD4+ lymphocytes, thereby promoting clonal expansion and increasing IFN-γ secretion [58].

In antigenicity analysis, proteins with a peptide signal at the beginning of the sequence or those
lacking the signal exhibited higher affinity for antigenic epitopes. To determine this, we used two
predictors—SignalP and TMHMM. SignalP revealed which peptides would be located in extracellular
regions of proteins. The obtained results were confirmed using TMHMM, which showed that the
peptides were located on the host cell membrane surface, thereby indicating an association with MHC.
Both predictors have been used in studies analyzing proteins secreted by Fusarium oxysporum and
Alternaria brassicicola for elucidation of proteins that are intracellular molecules and are involved in the
pathogenesis of fungal infections [59].

Our four candidate peptides were extracellular molecules; in contrast, seven proteins were
excluded because they presented signal peptides and cleavage sites in almost all peptide regions,
thereby indicating an association with intracellular catalytic mechanisms. This may increase the costs
associated with the production of these peptides as they could be cleaved during in vitro stimulation
in blood monocytes. These analyses were possible because SignalP, in particular, is a predictor that
classifies proteins as secretory or non-secretory in addition to indicating cleavage sites in the image.
Thus, proteins that will be transported outside the cell and those that are localized inside the cytoplasm
can be identified [60].

Although some proteins having a GPI anchor (e.g., glyceraldehyde dehydrogenase and fructose
1.6 bisphosphate) show no secretory signals, the presence of signal peptide in the C terminal chain
has been considered [53]. This signal peptide was confirmed by the transmembrane helix analysis
(TMHMM); therefore, although some proteins were antigenic, they were excluded as the peptides
could not disintegrate from the membrane and cross the host cell membrane.

The results of the predictions performed by the NetMHCII and IEDB algorithms were promising
as the epitopes with the highest binding affinity demonstrated values close to 0. The analysis of seven
different subsets of HLA existing in the population showed that the four peptides identified exhibited
excellent affinity, considering their IC50 and NNAlign rank [61].

Furthermore, IEDB analysis showed that among the four peptides, Pep_H1 MSAFSRMTASLGFSK
had a high binding affinity coverage for HLA-DRB1 * 07: 01. Additionally, two peptides showed
satisfactory affinity for the HLA-DRB1 * 15: 01 allele—-RAYALLFSKLGAAVV and ERVSIIANPAVASLY.
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Thus, based on the knowledge that the most frequent alleles in the Brazilian population are HLA-DRB1
* 15: 01, HLA-DRB1 * 07: 01, and HLA-DRB1 * 03: 01, the four peptides found exhibited appropriate
coverage for the Brazilian population [62–64].

To compare our results, we used the ESAT-6 protein of M. tuberculosis that was used as a positive
control in the IGRA. In NetMHCII, ESAT identified two strong binding epitopes of rank <50% (epitope 1,
QWNFAGIEAAASAIQ; epitope 2, WFAIEAAASAIQG). The IEDB showed greater binding affinity for
HLA-DRB1 * 07: 01, HLA-DRB1 * 15: 01, HLA-DRB5 * 01: 01, HLA-DRB4 * 01: 01, HLA-DRB3 * 01: 01,
and HLA-DRB1 * 03: 01 in the global population and to HLA-DRB1 * 07: 01 and HLA-DRB1 * 03: 01 in
the Brazilian population. However, in the antigenicity analysis, the peptides QWNFAGIEAAASAIQ
and WFAIEAAASAIQG did not show a peptide signal in SignalP and were located outside the host cell
membrane as per TMHMM. Comparing the epitopes of ESAT-6 with the ones we found, the highest
coverage of class II MHC was noted for the highest-class coverage percentage of 0% and <50%.

Epitope 4 induced the highest IFN-γ secretion in silico, via MHC class II. This result was similar
to that found for the ESAT-6 epitope. Epitopes 2 and 3 have been shown to induce greater production
of IFN-γ. Only epitope 2 did not show any relation with IFN-γ. We used the IFNepitope algorithm to
confirm the induction of cytokines such IL-4 by epitope 2. However, for this purpose, it is essential to
utilize the support vector machine (SMV). Furthermore, the relationship of IL-4 shows the involvement
of these antigenic regions with the humoral immune response [20] and may be used in other contexts.
In summary, the results show that epitope 4—-ERVSIIANPAVASLY—-can be most easily synthesized
and incorporated into the IGRA laboratory tool for diagnosis and monitoring of PCM.

5. Conclusions

The present study predicted, in silico, four conserved epitopes present in P. brasiliensis and P. lutzii
with potential for in vitro stimulation of T lymphocytes. The epitopes demonstrated high affinity by
human allelic subsets in the Brazilian population. The epitope ERVSIIANPAVASLY showed the best
performance in the induction of INF-γ, as compared to the epitope of ESAT-6 used in tests for IGRA.
Therefore, the epitope identified herein can be used in the development of an IGRA for PCM, which,
in combination with clinical assessments, can assist in the clinical follow-up of patients with PCM.
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