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ABSTRACT
Background. Human-induced changes to ecosystems transform the availability of
resources to predators, including altering prey populations and increasing access to
anthropogenic foods. Opportunistic predators are likely to respond to altered food
resources by changing the proportion of food they hunt versus scavenge. These shifts in
foraging behavior will affect species interactions through multiple pathways, including
by changing other aspects of predator behavior such as boldness, innovation, and social
structure.
Methods. To understand how foraging behavior impacts predator behavior, we
conducted a controlled experiment to simulate hunting by introducing a prey model to
captive coyotes (Canis latrans) and compared their behavior to coyotes that continued
to scavenge over one year. We used focal observations to construct behavioral budgets,
and conducted novel object, puzzle box, and conspecific tests to evaluate boldness,
innovation, and response to conspecifics.
Results. We documented increased time spent resting by hunting coyotes paired with
decreased time spent active. Hunting coyotes increased boldness and persistence but
there were no changes in innovation. Our results illustrate how foraging behavior can
impact other aspects of behavior, with potential ecological consequences to predator
ecology, predator-prey dynamics, and human-wildlife conflict; however, the captive
nature of our study limits specific conclusions related to wild predators. We conclude
that human-induced behavioral changes could have cascading ecological implications
that are not fully understood.

Subjects Animal Behavior, Ecology
Keywords Anthropogenic food, Foraging ecology, Novel object, Puzzle box, Predator-prey, Canis
latrans

INTRODUCTION
Predators are strongly impacted by human-induced global change due to their large spatial
and resource needs (Ripple et al., 2014). Through large-scale ecological changes, humans
have altered the availability of both natural prey and non-prey resources for predators (Coon
et al., 2019; Ciucci et al., 2020; Mills & Harris, 2020). Despite a frequent emphasis on the
effects of the presence or absence of predator on prey (Salo et al., 2010), minimal research
has addressed how the loss of prey may impact predator ecology and behavior (Rodewald,
Kearns & Shustack, 2011;Newsome et al., 2015a). Availability of prey has decreased for apex
predators globally (Wolf & Ripple, 2016; Vinks et al., 2021), although prey resources have
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increased in some areas (Prange, Gehrt & Wiggers, 2004). Simultaneously, human activity
has altered scavenging opportunities (Yirga et al., 2012;Fey et al., 2015) and increased access
to anthropogenic resources (Newsome et al., 2015a; Ciucci et al., 2020). Some predators
successfully hunt in disturbed environments, often focusing on small prey that become
more abundant with human presence (Prange, Gehrt & Wiggers, 2004; Coon et al., 2019;
Rodriguez, Lesmeister & Levi, 2021). However, other predators are likely to shift to using
non-prey resources that have become increasingly abundant (Yirga et al., 2012;Newsome et
al., 2015a; Cozzi et al., 2016). In some situations, predators have shifted almost exclusively
to non-prey resources (Parsons, Newsome & Young, 2022). Changes to resource availability
are most evident in globally expanding urban and suburban environments (McDonnell &
Hahs, 2015; Robins et al., 2019). However, human influence also alters resource availability
in non-urban ecosystems through livestock production, rural landfills, and spillage of food
during transportation (Ciucci et al., 2020; Mourier, Claudet & Planes, 2020). These shifts
in resource availability may influence predator resource use and ecological interactions
(Beckmann & Berger, 2003; Ciucci et al., 2020; Gámez & Harris, 2021).

Changes in resource use could alter predator ecology through multiple pathways. First,
the use of alternative resources will affect interactions with prey species and other predators
(Manlick & Pauli, 2020). Second, predators incorporating more scavenged foods may alter
their behavior (Chilvers & Corkeron, 2001; Cozzi et al., 2016; Parsons, Newsome & Young,
2022), and there is a potential relationship between individual diet specialization and animal
personality (Toscano et al., 2016). Animal personality describes consistent differences in
behaviors between individuals through time, space, and ecological contexts (Young,
Mahe & Breck, 2015; Toscano et al., 2016). However, these consistent differences between
individuals do not preclude changes to behavioral traits in response to the environment
(Sih, Bell & Johnson, 2004).

Personality traits that are likely related to foraging behavior include boldness, persistence,
and innovation (Table S1). Boldness describes an individual’s risk aversion (Brooks, Kays
& Hare, 2020) and is linked to foraging decisions including willingness to forage alone and
to explore novel foraging opportunities (Michelena et al., 2009; Kurvers et al., 2012; but see
Carter et al., 2012). Persistence is defined as the amount of time animals spend interacting
with a stimulus, or the rate of interaction, which impacts an animal’s ability to acquire
resources from novel sources (Chow, Lea & Leaver, 2016; Jacobson et al., 2021). Innovation
describes the ability of animals to display new behaviors or modify present behaviors to
solve novel problems (Johnson-Ulrich, Johnson-Ulrich & Holekamp, 2018; Barrett, Stanton
& Benson-Amram, 2019); a key trait to acquiring resources in new environments. Bold,
persistent, and innovative individuals are more likely to succeed when changing foraging
strategies as they will be more likely to interact with and solve new foraging problems (Sol,
2009; Sol, Lapiedra & González-Lagos, 2013). Such behavioral changes could also lead to
cascading effects, including increased human-wildlife conflict (Barrett, Stanton & Benson-
Amram, 2019; Brooks, Kays & Hare, 2020) and altered predator–prey dynamics (Szopa-
Comley et al., 2020). Although abundant research has addressed how prey behavioral traits
mediate predator–prey interactions (Blake & Gabor, 2014; Toscano, 2017), knowledge
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regarding the importance of predator traits is lacking (but see Parsons, Newsome & Young,
2022).

Foraging behavior may also influence social behavior of predators. Foraging
behavior relates to group size in coyotes (Canis latrans; Bowen, 1981), cooperative
behavior in bottlenose dolphins (Tursiops truncates; Díaz López & Shirai, 2008), and
conspecific tolerance in multiple species (Peirce & Van Daele, 2006; Fallows, Gallagher
& Hammerschlag, 2013; but see Gilchrist & Otali, 2002). Similarly, the abundance of
easily captured food in urban environments may increase conspecific tolerance, reduce
territoriality, and increase group sizes for predators exploiting these resources (Bateman &
Fleming, 2012). Changes to social structure are complex and could alter the distribution of
predators on the landscape as well as the landscape of fear experienced by mesopredators
and prey species (Prugh et al., 2009; Kohl et al., 2019).

Opportunistic predators that integrate diverse food items into their diet aremost likely to
alter resource use and experience behavioral changes (Eddine et al., 2020; Parsons, Newsome
& Young, 2022). In North America, coyotes are ubiquitous opportunistic carnivores
that have vastly expanded their range over the past century (Hody & Kays, 2018). This
expansion includes urban environments where coyotes consume both prey and non-prey
resources (Fedriani, Fuller & Sauvajot, 2001; Gehrt, 2007; Murray et al., 2015) and display
different behavioral traits than rural coyotes, including increased boldness and exploratory
behavior (Breck et al., 2019; Brooks, Kays & Hare, 2020). Coyotes in urban environments
differ widely in their use of anthropogenic foods, likely due to the broad spectrum
of urban conditions (Schell et al., 2020). Anthropogenic foods constitute 50% or more
of coyote diet in some locations (Fedriani, Fuller & Sauvajot, 2001; Murray et al., 2015;
Newsome et al., 2015b) and reliance on anthropogenic food may increase the prevalence of
human-wildlife conflicts (White & Gehrt, 2009; Schell et al., 2021). Because of their range
expansion associated with human development and ability to consume diverse resources,
coyotes present a valuable model system for understanding how foraging strategies impact
predator behavior and subsequently influence community ecology and human-wildlife
conflict.

We used captive coyotes to investigate relationships between foraging behavior and
other behavioral traits. Conducting this work with captive animals allowed us to repeatedly
observe the same individuals over one year, control their food availability and delivery,
and maintain a relatively constant environment; all factors that are infeasible to manage
in wild systems where changes to available food resources often occur with changes to
the physical environment (Coon et al., 2019; Robins et al., 2019). By working with captive
individuals, we were able to isolate the effect of foraging behavior from other factors.
However, working with captive animals that were exclusively scavengers, contrary to
their wild counterparts, meant we had to change the foraging behavior by introducing
hunting opportunities. Captive animals are typically scavengers, with hunting introduced
to prepare them for release into the wild (Vargas & Anderson, 1999) and as an enrichment
activity (Markowitz & LaForse, 1987). The opposite shift would be expected with wild
predators—from hunting to scavenging (e.g., Fedriani, Fuller & Sauvajot, 2001; Murray
et al., 2015). Even so, shifts from scavenging to hunting have been observed in wild
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populations (Whitehead & Reeves, 2005). Identifying the extent of the relationship between
foraging behavior and other behavioral traits is valuable because shifts in either direction
require behavioral flexibility, a key trait to surviving in dynamic environments (Sol, 2009;
Barrett, Stanton & Benson-Amram, 2019), and innovation in solving new foraging tasks to
access novel prey or scavenging resources (Griffin & Guez, 2014; Daniels et al., 2019).

We conducted a controlled experiment to assess relationships between predator foraging
patterns and individual behavior. We used a population of captive coyotes as a model
system that behave similarly to wild coyotes (Shivik et al., 2009). We selected a subset of the
captive coyotes to hunt prey—we introduced a prey model that resembled a lagomorph
and required pursuit and capture to acquire food. Control coyotes were also given an
immobile prey model to control for the novelty of the model. We compared behavioral
budgets, innovation, persistence, and boldness between treatment and control coyotes,
and modeled trends in each behavior separately with covariates for treatment, month, and
interaction to account for seasonal, annual, and other changes not due to our hunting
treatment. We hypothesized that hunting coyotes would decrease stereotyping behavior
and increase time spent searching for food due to the increased stimulation of pursuing
prey. Learning to capture the prey model also required interacting with a novel object,
persistence, and problem-solving skills. Coyotes had to be willing to approach the prey
model, interact with the model, and successfully knock the model over to acquire food. We
expected that hunting coyotes would become bolder, more persistent, and more innovative
than control coyotes across the study period. Finally, we expected that hunting coyotes
would behave more aggressively towards an unknown conspecific due to the increased
effort to acquire food. These hypotheses are based on previous literature (Williams et
al., 1996; Kistler et al., 2009; Breck et al., 2019; Newsome, Howden & Wirsing, 2019), but
also reflect the unique conditions of our study system because directions of behavioral
change will depend both on initial conditions and how resource availability changes. Our
results provide insights into how foraging behavior is linked with other behavioral traits.
Results will improve our understanding of the role hunting plays on individual behavior,
which could impact predator–prey dynamics (Szopa-Comley et al., 2020), human-wildlife
conflict (Barrett, Stanton & Benson-Amram, 2019), and predator conservation (Bombieri et
al., 2021) in wild populations.

MATERIALS & METHODS
Study site
We conducted this study at the United States Department of Agriculture National Wildlife
Research Center’s (NWRC) Predator Research Facility in Millville, Utah, USA. This facility
maintains ∼90 adult coyotes, typically housed as male–female pairs in outdoor enclosures
(0.1–1.0 ha).

Study subjects
Our study was conducted on eight coyote pairs, four treatment pairs and four control
pairs, ranging from 1.5 to 3.5 years old at the start of the study (details in Supplementary
Information). We split coyotes equally among treatment groups based on age. Because
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our study took place across a year, two pairs of treatment coyotes and two pairs of control
coyotes reared pups (April–June) during this study for colony management purposes. All
coyotes used in this study were captive-born with minimal human intervention at the
facility. Occasionally wild birds and mammals have entered the coyote enclosures and
some coyotes have therefore killed live prey (S Brummer, pers. comm., 2019). We observed
the coyotes involved in this study and their enclosures on a near-daily basis and monitored
for any sign of predation and documented no cases by any of the study coyotes throughout
the project.

Ethics statement
All research methods and procedures were approved by NWRC’s Institutional Animal
Care and Use Committee (QA-3151).

Feeding treatments
Each coyote was fed 650 g of commercialmink food (Fur Breeders Agricultural Cooperative,
Logan, Utah, USA) at least six days per week (i.e., 1,300 g per pair) by animal care staff
who enter and scatter the food in each enclosure. We continued this feeding method for
our control coyotes and for three days per week with our treatment coyotes.

For the hunting treatment, we created a rabbit prey model from a remote-controlled
car (Everest Gen7 Sport RC Crawler, Redcat Racing, Phoenix, AZ, USA). We removed
the car body and draped the car chassis with rabbit fur. We used foam to sculpt a rabbit
head and attached this to the front of the car (Fig. S1). The prey model was approximately
43×18×19 cm, similar in size to a snowshoe hare (Lepus americanus; Reid, 2006). We
fed treatment coyotes using the prey model three days per week to mimic a wild predator
acquiring 50% of its food through hunting and 50% through scavenging. To feed coyotes
with the prey model, we placed one portion of food on the prey model and placed the
food-laden model in the enclosure. Initially, we left the prey model stationary and scattered
additional food around it for coyotes to become comfortable with the prey model and
associate it with food. As coyotes became more comfortable with the prey model, we began
moving it in small, predictable circles, and slowly increased complexity and speed to an
unpredictable path to simulate hunting. Upon capturing the prey model, coyotes were
allowed to consume the food. We defined capture as knocking the prey model over so
that it could no longer move. This required innovation from study subjects because they
had to identify ways to access the mobile food. Then we retrieved the model and scattered
the remaining food for the day throughout the enclosure. If coyotes did not successfully
hunt on a given day, we removed the prey model after one hour and returned at least
two hours later and fed the pair using the standard procedure for the facility. While this
treatment does not fully mimic hunting in the wild, it does require pursuit and capture
of the prey model, two key components of the hunting process (MacNulty, Mech & Smith,
2007). Control coyote pairs were fed with a stationary prey model three days per week to
control for the presence of a novel object during feeding.
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Behavioral tests
Feeding and nonfeeding focal sampling
We began this study in October 2019 by collecting baseline measures in a pretrial phase
for all coyotes. We first introduced the prey model in December 2019. From January to
November 2020, we conducted a suite of behavioral tests (Fig. S2).

We conducted monthly focal observations during both feeding and nonfeeding times
to construct behavioral budgets for coyotes (Fig. S2). We modified the ethogram from
Shivik et al. (2009; Table 1) and conducted continuous observations for 15 min for each
coyote. We conducted shorter observations than Shivik et al. (2009) but the same length as
other research with captive coyotes (Leary, Schultz & Young, 2021). Shorter observations
facilitated sampling multiple times each month and allowed time for behavioral tests
and daily animal care routines to be completed during daylight hours. Each month, we
observed each coyote during four nonfeeding times, four feedings without the prey model,
and four feedings with the prey model (Table S2), with two nonfeeding observations in
the morning (6:00–10:00) and two nonfeeding observations in the afternoon/evening
(14:00–21:00; depending on the time of year and day length). We conducted nonfeeding
observations using a dedicated observation vehicle as a blind parked >50 m away (Schell
et al., 2018). We video-recorded all feeding observations for later behavioral coding.
Focal observations provided behavioral budget data and we used the proportion of time
coyotes spent interacting with the prey model during prey-model feedings as a measure of
persistence while hunting.

Novel object trials
We conducted a novel object test every three months starting in the pretrial phase to
measure coyote boldness (Fig. S2 and Table S2). We placed a novel object near the center
of the coyote enclosure and used a video camera to record interactions for one hour.
Coyotes were in the enclosure when the novel object was placed and generally retreated to
the far end of the enclosure 20–50 m away depending on enclosure size. Observation time
started when the researcher closed the gate and exited the enclosure. We used a new novel
object each period but kept approximate size consistent between periods; novel objects
were the puzzle box during the first puzzle box trial (see below), two car tires attached to
form a ball, a traffic cone, a 5-gallon water jug, and a cylindrical wire cage. During the
initial presentation of the puzzle box, we did not include food so that we could use it as a
novel object. All coyotes received the novel objects in the same order so that any differences
between control and treatment coyotes could be attributed to longitudinal trends and not
confounded by individuals receiving different objects at different timesteps (Schell, 2015).
A trained observer coded videos to extract the latency to approach within 5 m, 1 m, and to
touch the novel object.

Multi-access puzzle box tests
We used a multi-access puzzle box to test persistence and repeated innovation every
three months starting in the pretrial phase (Fig. S2 and Table S2) (Auersperg et al., 2011;
Johnson-Ulrich et al., 2021). The puzzle box was a 45.7 × 45.7 × 45.7 cm cube constructed
with three sides of clear PVC sheeting with a door in each and three sides of white PVC
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Table 1 Ethogram of behaviors used to construct behavioral budgets for coyotes.Observers coded be-
havior based on the behavior and descriptions. Behaviors were then condensed into five broad categories
for analysis to reduce the number of behaviors and potential for interobserver error. Modified from Shivik
et al. (2009).

Behavior Description Broad category

Resting Coyote laying or sitting down Resting
Locomotion Purposeful walking, trotting, or running with head up Active
Standing Standing still with head raised NA
Foraging Orientating, stalking, and searching at a slow pace with

head lowered
Feeding

Eating Coyote eating with visible jaw movement Feeding
Aggressive Teeth bared, biting, growling, chasing mate away from

food.
Social

Play Playful behavior with mate, tail wagging, non-threatening
posture

Social

Neutral Social Howling and other behaviors directed at mate that are
neither aggressive, nor playful

Social

Stereotyping Repetitive movement with no apparent goal that is repeated
for greater than 2 cycles.

Active

Investigating car* Head and gaze oriented towards prey model from a distance
while standing or walking slowly.

Feeding/Car

Interacting with car* Behaviors directed towards prey model such as chasing,
pouncing, scratching, or biting.

Feeding/Car

Scent marking Urinating or defecating –point event NA

Notes.
*These behaviors were only relevant during car feeding observations.

sheeting (Fig. S3). One door pushed inwards, one door pulled outwards with a racquetball
handle, and the third door swung open if a wooden peg was removed. During each testing
period, we presented the coyotes with the puzzle box for 10, two-hour trials. The puzzle box
remained in the enclosure throughout each testing period (i.e., between daily trials) to allow
coyotes to become and remain familiar with its presence. We introduced the puzzle box
with food inside and left all doors open for three days for the coyotes to gain familiarity with
the puzzle box before trials began. On the first day of testing, we replaced any remaining
food, closed all doors, and filmed interactions with the puzzle box continuously for two
hours. We placed small bits of food around the doors and smeared peanut butter on the
doors to encourage interaction. At the end of each two-hour test trial, we opened the doors
and removed the food to prevent coyotes from learning that they could access the food by
waiting for the trial to end. We left the box, with the doors open, to reduce neophobia at
the beginning of subsequent days. We repeated this procedure for five consecutive days,
then left the box inside the enclosure and open with food inside to give study subjects and
observers a reprieve from trials for two days before repeating the test procedure on days
8–12 for a total of 10 test days each period. If a coyote solved one solution to the puzzle
box, that solution was locked for the remainder of that test period to encourage interaction
with other solutions (Jacobson et al., 2021). During the next trial period, all coyotes started
with all solutions available to document whether coyotes used familiar solutions or novel
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solutions. We did not require an individual to use a solution multiple times before locking
the solution (e.g., Johnson-Ulrich, Johnson-Ulrich & Holekamp, 2018) because the lack of
interaction with the puzzle box (see Results) made this approach untenable. A trained
observer coded puzzle box videos for the proportion of time that coyotes spent within 5 m,
1 m, and interacting with the puzzle box. We defined interaction as touching, pawing, or
biting the puzzle box. The proportion of time interacting with the puzzle box was used as a
measure of persistence. We also recorded latency to approach, interact with, and touch the
puzzle box as a second measure of boldness because the responses of coyotes to the novel
object and puzzle box were likely to differ since we presented the puzzle box with food
and across repeated trials; thus, providing measures of boldness in novel situations and
foraging contexts. Finally, we used the number of solutions a coyote solved as a measure
of repeated innovation and flexibility.

Conspecific aggression trials
We used a dummy coyote (Lone Howler Coyote Decoy, Flambeau Outdoors, Middlefield,
OH, USA; Fig. S4) to test the response of coyotes to an unknown conspecific every three
months starting in the pretrial phase (Fig. S2; Table S2). We placed the dummy near the
edge of the enclosure and for one hour recorded how coyotes interacted with the dummy.
We did not include any scent or auditory stimuli. A trained observer coded videos to
record the latency for coyotes to approach within 5 m, 1 m, and interact with the dummy.
We documented instances of aggressive or playful behavior directed towards the dummy
(Table 1). We conducted the novel object, puzzle box, and conspecific tests every three
months to provide longitudinal data without constantly exposing the coyotes to unfamiliar
stressors.

Coder reliability
Live focal observations were initially conducted by a single observer before two other
observers joined the study in March and August. Before conducting independent
observations, new observers conducted at least 10 simultaneous observations with the
original observer for training. Training continued until the total time spent in each activity
exhibited >90% agreement. The same behavioral categories were used for video-recorded
feeding observations, and all three trained observers coded feeding videos after successful
training on live observations.

The same three observers coded novel object, puzzle box, and conspecific videos.
We trained each coder by watching multiple videos together and at least one video
independently to ensure consistency. We conducted a post hoc test of coder reliability
with the original coder independently coding one puzzle box video from each of the other
coders. The intraclass correlation was >0.95 between all video coders (95% Confidence
interval: 0.76–1.00; McGraw &Wong, 1996). We conducted coder reliability on a puzzle
box video because it contained all the same behavior definitions as novel object and
conspecific videos.
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Statistical analyses
We combined behaviors into five categories because of the low proportion of time spent
in many activities: resting, active (locomoting and stereotyping), feeding (foraging, eating,
investigating prey model, interacting with prey model), social (aggression, play, howling),
and prey model (investigating prey model, interacting with prey model). For the feeding
trials with the prey model, investigating and interacting with the prey model were included
in feeding behavior, but also analyzed separately because of our interest in behaviors
directed at the prey model. We did not include standing behavior in the analysis because
it made up a small proportion of time and lacked ecological relevance. Initial plotting
showed no trends in scent-marking behavior; therefore, we did not formally analyze these
data. We used mixed-effects beta regression from the ‘‘glmmTMB’’ package (Brooks et al.,
2017) in Program R version 4.1.0 (R Core Team, 2021) to test fixed effects of month and
treatment and an interaction between month and treatment. We included random effects
for individual coyote ID nested within pair. With this model specification, a significant
interaction term indicates that treatment and control coyotes showed different behavioral
changes through time, suggesting a treatment effect. The fixed effect of month accounts
for seasonal shifts in behavior, and our control group allows us to separate seasonal trends
from treatment effects. Our design also accounts for changes in behavior due to breeding
since both control and treatment groups had equal numbers of breeding and nonbreeding
pairs.

For novel object data, we used mixed-effects cox proportional hazards models from
the ‘coxme’ package (Therneau, 2020) to test the effects of time (i.e., month of study),
treatment, and their interaction on latency to approach 5 m, 1 m, and touch the novel
object. We also included a random effect to control for pair and coyote ID. Each behavioral
metric was tested in a separate model for all statistical tests. For the puzzle box data, we
used mixed-effects beta regression to model the proportion of trial time that coyotes spent
interacting with the puzzle box as a measure of persistence using the same model structure
as above. We also used mixed-effects cox proportional hazards models to model the latency
to approach 1 m and interact with the puzzle box as a measure of boldness. Because only a
single coyote solved the puzzle box, we did not conduct any statistical analyses on solving
data. For the conspecific test data, we also used mixed-effects cox proportional hazards
models and the same model structure as above to model the latency to approach within
5 m and 1 m of the conspecific model. Due to limited interactions with the conspecific
model, we did not conduct statistical analyses with interaction data.

We used principal component analysis (PCA) and permutational multivariate ANOVA
(PERMANOVA) to evaluate multivariate trends in coyote behavior. We created a
multivariate response matrix that included monthly mean proportions of time resting,
feeding, and moving during both feeding and nonfeeding observations, monthly mean
proportion of time spent within 1 m of the puzzle box, monthly mean proportion of time
interacting with the puzzle box, and the latency to approach within 1 m of the puzzle
box and 5 m of the novel object for each coyote. We plotted the first two components
of the PCA for each month to visualize the grouping of hunting and nonhunting coyotes
in multivariate space. We then used PERMANOVA to statistically evaluate separation

Parsons et al. (2022), PeerJ, DOI 10.7717/peerj.13366 9/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.13366


between groups (Oksanen et al., 2018). We conducted a separate PERMANOVA for each
month and included a fixed effect for foraging treatment. All statistical analyses were
conducted in Program R 4.1.0 (R Core Team, 2021). We used the BORIS software to code
all videos (Friard & Gamba, 2016).

RESULTS
Feeding and nonfeeding focal sampling
Few coyotes successfully hunted the prey model (Table S3). Ten individual coyotes
interacted with the prey model, moving or stationary, at least once. Only six coyotes
regularly fed from the prey model, two hunting coyotes and four nonhunting coyotes.
The two hunting coyotes were from different pairs, one male and one female, and began
regularly feeding from the moving prey model in February and April. The four nonhunting
coyotes were from three different pairs, two females and two males, and began regularly
feeding from the stationary model in May, June, July, and September (Fig. S2). Despite
this lack of hunting, we analyzed the data using the a priori treatment assignments. This
approach should lead to conservative estimates of change due to the treatment, as hunting
coyotes that did not interact with the prey model should weaken treatment effects.

During nonfeeding observations, both hunting and nonhunting coyotes increased the
proportion of time spent resting throughout the study (z = 2.284, p= 0.022). This increase
was greater for hunting coyotes (z = 2.10, p= 0.036; Fig. 1). The increase in resting
behavior was paired with a decrease in time spent active for both groups (temporal term:
z = −3.459, p= 0.001; temporal-treatment interaction term: z = −2.302, p= 0.021).
Stereotyping behavior decreased in hunting coyotes, but not to a significant degree (z
= −0.553, p= 0.580). Contrary to our predictions, there were no significant trends in
time spent foraging by either hunting or nonhunting coyotes during nonfeeding times
(Table S4).

During feeding observations, both hunting and nonhunting coyotes increased the
proportion of time they spent feeding as the study progressed (z = 3.025, p= 0.002), which
was paired with a decrease in time spent active outside of feeding (z = −8.611, p< 0.001;
Fig. 2). We did not observe any changes in other behaviors during feeding observations
and there was no evidence of treatment effects on behavioral budgets during feeding
observations (Table S5).

During prey model feeding observations, hunting coyotes decreased the proportion
of time spent feeding throughout the study (z = −3.945, p≤ 0.001) while nonhunting
coyotes decreased the proportion of time spent active (z = −7.762, p≤ 0.001). Both
hunting and nonhunting coyotes increased the proportion of time interacting with the
prey model (z = 2.394, p= 0.017), and this increase was larger for hunting coyotes
(z = 2.522, p= 0.012; Fig. 3; Table S6). The two coyotes that successfully hunted the prey
model displayed progressive innovation in solving the foraging task. Initially, they followed
the prey model, consuming small bits of food that fell off when the model hit bumps. They
then progressed to grabbing mouthfuls of food off the moving model, before ultimately
developing strategies of biting or pawing the model to knock it over. While they were able
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Figure 1 Nonfeeding behavior. The proportion of time spent resting by hunting coyotes (grey triangles)
and nonhunting coyotes (black circles) during nonfeeding focal observations throughout the study period
from November 2019 (Pre) to November 2020. Error bars represent standard error.
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0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Month

P
ro

po
rt

io
n 

of
 ti

m
e 

fe
ed

in
g

Jan Feb Mar Apr May June July Aug Sep Oct Nov

Nonhunters
Hunters

Pre

Figure 2 Feeding behavior. The proportion of time that hunting (grey triangles) and nonhunting (black
circles) coyotes spent feeding during feeding trials from November 2019 (Pre) through November 2020.
Error bars represent standard error.

Full-size DOI: 10.7717/peerj.13366/fig-2

to access some food without innovating, modifying behaviors increased the amount of
food available.

Novel object trials
For the novel object, puzzle box, and conspecific tests, results were similar at the different
distances observed (5 m, 1 m, touch/interact). We present representative results here, and
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Figure 3 Prey model behavior. The proportion of time that hunting (grey triangles) and nonhunting
(black circles) coyotes spent interacting with the prey model during feedings from January through
November 2020. Error bars represent standard error.
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model results for each distance are in the supplementary material. The initial presentation
of the puzzle box, without food, was used as a novel object trial. All subsequent novel
objects were different objects.

In general, all coyotes showed an unwillingness to approach novel objects. Only five
coyotes approached within 1 m of a novel object, and only one regularly approached novel
objects (Table S3). Of 78 recorded trials, coyotes approached the novel object within 5 m
31 times, 1 m eight times, and touched only twice. There were no significant effects of time,
treatment, or their interaction on the latency to approach 5 m, 1 m, or touch the novel
object (Table S7).

Multi-access puzzle box tests
Seven coyotes interacted with the puzzle box at least once, but four of these did not occur
until August or November. Only a single coyote successfully solved any of the puzzle box
solutions (Table S3). This was a hunting coyote that solved two doors in August and one
door in November. Because of this lack of solving, we were unable to use the puzzle box
as an indicator of innovation in coyotes. Both hunting and nonhunting coyotes increased
the proportion of time they spent within 1 m of the puzzle box throughout the study
period (z = 2.292, p= 0.022), and this increase was greater for hunting coyotes (z = 4.271,
p< 0.001). Neither group showed any trend in the proportion of time interacting with
the puzzle box (Fig. 4A; Table S8). Both hunting and nonhunting coyotes decreased
their latency to approach within 1 m of the puzzle box throughout the study (z = 2.78,
p= 0.006). Only hunting coyotes decreased their latency to interact with the puzzle box
(z = 2.59, p= 0.010; Fig. 4B; Table S9).
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Figure 4 Puzzle box behavior. (A) The proportion of time that hunting coyotes (grey triangles) and
nonhunting coyotes (black circles) spent within 1 m of the puzzle box and (B) the latency of coyotes to
interact with the puzzle box during puzzle box trials throughout the study period from November 2019
(Pre) through November 2020. Error bars represent standard error.
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Conspecific aggression trials
Coyotes showed minimal interest in the coyote dummy used in the conspecific test.
Fourteen coyotes approached within 5 m of the conspecific dummy, but only four did so
multiple times (Table S3). During the pretrial phase, one coyote pulled the dummy down
by the tail, but no other direct interactions occurred throughout the study. Both hunting
and nonhunting coyotes slightly decreased their latency to approach within 5 m of the
dummy across time (z = 2.00, p= 0.045), but there were no trends in latency to approach
within 1 m (z = −1.19, p= 0.23; Table S10).

Combined results
Only a single coyote displayed measurable behaviors in all tests (Table S3). This was
a hunting coyote who began regularly capturing the prey model in April, approached
within 1 m of four novel objects, approached within 5 m of the conspecific model on four
occasions, and solved two doors on the puzzle box in August and one door in November.
This was also the only coyote involved in the study that had two wild-born parents.
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Table 2 Variable loadings and proportion of variance explained by the first two components of the
principal component analysis. The principal component analysis (PCA) loading for each behavioral met-
ric included in the PCA for the first two components. Behavioral metrics followed by (NF) are from non-
feeding observations and metrics followed by (F) are from feeding observations. The final row provides
the proportion of variance explained by each component.

Behavioral metric PC1 loading PC2 loading

Prop time rest (NF) −0.5466 0.2456
Prop time feed (NF) 0.4099 −0.0494
Prop time active (NF) 0.5205 −0.0989
Prop time rest (F) 0.0176 −0.0461
Prop time feed (F) −0.3777 0.0559
Prop time active (F) 0.2746 0.1379
Puzzle box w/in 1 m −0.1428 −0.5071
Puzzle box interact −0.0206 −0.0456
Novel object latency 5 m 0.0493 −0.2328
Puzzle box latency 1 m 0.1438 0.7769
Proportion of Variance Explained 0.491 0.687

Multivariate analysis revealed that hunting and nonhunting coyotes occupied similar
behavioral spaces until the end of the study. The first two components of the PCA
explained 69% of the variation in behavioral space (Table 2). Visually, the PCA plots show
overlap between the two treatment groups in the pretrial, February, May, and August data.
However, the November plot shows some separation between groups. PERMANOVA
confirmed that there were significant differences in behavioral space for hunting and
nonhunting coyotes in November (F = 4.024, p= 0.018; Fig. 5; Table S11). Based on PCA
loadings, this difference was largely due to hunting coyotes spending more time resting
during focal observations.

DISCUSSION
We used a controlled experiment to determine how changes in foraging behavior affect
individual behavior in captive coyotes. We documented changes in behavioral budgets,
boldness, and persistence of coyotes given the opportunity to pursue prey compared to those
that remained as scavengers. Consistent with our predictions, hunting coyotes increased
boldness and persistence during the puzzle box tests and hunting trials, respectively, and
increased time spent resting, which was partially due to decreases in time spent locomoting
and stereotyping. Contrary to our hypotheses, we did not observe increases in time spent
foraging, innovation, or response to a conspecific. These results indicate that shifts in
foraging behavior affect some aspects of predator behavior but not others. Our results are
similar to findings from wild black bears (Ursus americanus), which decreased activity and
changed temporal activity patterns with changes to foraging behaviors (Beckmann & Berger,
2003). This may have broader consequences, such as shortening hibernation season and
altering reproductive patterns of bears (Johnson et al., 2018; Gould et al., 2021). The wild
bears shifted from hunting to increased scavenging, while we implemented the opposite
shift with coyotes, yet the same pattern of foraging behavior altering other behavioral traits
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ing (grey triangles) and nonhunting (black circles) coyotes for the pre-treatment data (A), in February (B),
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occurred. Thus, this trend could exist across predators and requires further investigation
in wild and captive settings.

Changes to coyote behavioral budgets could reflect the different mechanisms that
facilitate successful foraging by predators who hunt versus scavenge. Hunting predators
often pursue prey during times that optimize success and rest otherwise (Kohl et al., 2019),
while scavenging predators must cover large areas in search of food and are therefore
more active across time (Kane & Kendall, 2017). In our system, scatter feeding likely left
small pieces of food more dispersed throughout the enclosure than our hunting treatment.
Scavenging coyotes may have been more likely to search for remaining pieces throughout
the day and, thus, remained more active. However, we did not observe changes in the
proportion of time foraging, which would have provided additional support for this
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hypothesis. While delivering food unpredictably in space and time increases food searching
behavior in captive red foxes (Vulpes vulpes; Kistler et al., 2009), it does not have the same
effect on captive coyotes. Instead, captive coyotes change only a few behaviors, such as
vocalization and marking, along with the time of day certain behaviors occurred (Gilbert-
Norton, Leaver & Shivik, 2009). Thus, adding temporal unpredictability in addition to
hunting behavior could alter predator behavior synergistically. Scavenged resources are
often more temporally predictable than live prey, potentially impacting behavioral budgets
in wild predators (Mourier, Claudet & Planes, 2020). Predator activity patterns that may
change to better track novel resource use can have cascading effects on other wildlife
by altering the non-consumptive effects of predators (Moll et al., 2017). Prey species and
mesopredators often seek refuge in both space and time to minimize predation risk (Kohl
et al., 2019; Smith et al., 2020). Altering predator activity budgets could shift when and how
frequently prey are released from predation risk.

We also observed seasonal trends in the behavioral data, including changes in resting
during nonfeeding observations (Fig. 1) and time spent feeding during feeding observations
(Fig. 2). We expected seasonal trends in behavior (Ellington, Muntz & Gehrt, 2020), and
some of these trends were likely related to the breeding season. Our treatment-control
design allowed us to account for these seasonal trends in analysis. We did not observe
any clear differences in the response to the puzzle box or novel objects by coyotes raising
pups either during observations or in the data. Because we designed the project to evaluate
foraging behavior and due to small sample sizes, we were unable to explicitly examine
changes related to breeding season or between breeding and nonbreeding coyotes.

Persistence is likely a key trait for predator success both while hunting and when
exploiting scavenged foods. Successfully capturing prey requires identifying, pursuing, and
attacking target animals (MacNulty, Mech & Smith, 2007), and cursorial predators may
cover multiple kilometers through this process (Hubel et al., 2016). Persistence is required
because successful hunts are rare (Cresswell & Quinn, 2010; Hubel et al., 2016). Persistence
is also required for scavenging predators due to the risks presented by other predators and
humans (Prugh & Sivy, 2020) or having to access novel food resources (Young, Touzot &
Brummer, 2019). In our system, hunting coyotes had to learn to pursue and capture a novel
prey item. Completing this task required multiple exposures and persistence, and most
coyotes did not begin regularly interacting with the prey model until the fifth month of
trials (Fig. 2). Hunting coyotes showed a greater increase in time spent interacting with the
prey model, indicating higher persistence in the foraging task.

Persistence is also a key trait for scavenging predators learning to access novel food
resources, particularly in urban environments where food may be secured in trash bins and
containers, behind fences, or inside structures (Beckmann & Berger, 2003; Newsome et al.,
2015a; Newsome et al., 2015b; Breck et al., 2019). However, we did not observe changes in
persistence during interactions with the puzzle box. Most coyotes approachedmore quickly
and spent more time near the puzzle box as the study progressed but did not spend more
time interacting with the puzzle box. This contradiction between persistence during the
hunting task and the puzzle box trials could be related to the more visibly accessible food
during hunting trials or because coyotes were exposed to the prey model every week instead
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of every three months thereby increasing habituation. Hunting and scavenging predators
are both likely to experience new foraging tasks in the form of novel prey or non-prey
foods due to global change. These changes could introduce additional selective pressures
on predators for persistence due to links between persistence and problem solving (Chow,
Lea & Leaver, 2016; Daniels et al., 2019; Young, Touzot & Brummer, 2019).

We documented increased boldness with respect to the puzzle box in both groups,
but not toward the novel objects. This is likely because coyotes associated the puzzle
box with a food reward and habituated to its repeated presence compared to the novel
objects, and were, therefore, more willing to approach as the study progressed. Previous
research has identified boldness as a key trait for urban predators (Breck et al., 2019; Brooks,
Kays & Hare, 2020). Bold predators are more likely to approach and interact with novel
objects and less likely to be disturbed by human presence, thus increasing the likelihood
of discovering new foraging opportunities (Young et al., 2020). However, bold predators
may also experience reduced survival because they are more likely to incite human-wildlife
conflict (Greenberg & Holekamp, 2017). Therefore, boldness may not only correlate to
accessing resources but also human perceptions of wildlife (Young et al., 2020).

The ecological and conservation consequences of persistent and bold predators are
complex. Bold predators are more prone to human-wildlife conflict and more likely to be
lethally removed due to conflict situations (Bombieri et al., 2021; Schell et al., 2021), and
increased predator boldness could hamper predator conservation efforts in wildland-urban
interfaces (Nyhus & Tilson, 2004; Brooks, Kays & Hare, 2020). Despite this, the prevalence
of increased boldness in predators expanding their range into urban environments indicates
boldness is a valuable trait in novel environments (Barrett, Stanton & Benson-Amram,
2019). Boldness also impacts individual foraging decisions. Bold individuals are more likely
to forage in dangerous habitats, which may alter available food resources (Toscano et al.,
2016). For mesopredators, increased boldness could also increase predation risk (Geffroy
et al., 2015), disrupting expected niche partitioning behaviors. Knowledge on the effects of
traits like boldness or persistence on hunting success is lacking and should be addressed in
the future to better understand how behavioral traits impact predator–prey interactions.

The captive nature of the study subjects allowed necessary control over experimental
conditions, yet inherently limits the scope of inference and the transferability to wild
predators. Because the subjects were housed as mated pairs in enclosures, they were
insulated from the effects of direct intra- and interspecific interactions, dynamic
environments, and other aspects of natural systems. They also likely responded to each
other during our trials, although we never observed more than one individual within a
pair participate in any trials. While we do not think the individuals within a pair prevented
the other from participating, and wild coyotes typically maintain pair bonds, further tests
of individuals could be warranted to compare with our results. Regardless, supporting the
concept of linkages between foraging mode and behavior with captive animals is a valuable
first step. Additionally, our approach shifted scavenging predators to become hunting
predators, the opposite shift we hypothesize to become more common with global change
(Parsons, Newsome & Young, 2022). However, the broad relationship between foraging
mode and other behavioral traits we observed likely exists across predators, whether they
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are captive or wild. This is supported by evidence of behavioral change in urban black bears
with access to human refuse (Beckmann & Berger, 2003) and multiple species with access to
landfills (Hidalgo-Mihart et al., 2004; Cozzi et al., 2016). Our results indicate that activity
budgets, boldness, and persistence may change with altered resource use, but specific
changes will be dependent on the context of predator species and resource changes. We
encourage future efforts with wild predators in areas with changing resource availability to
evaluate behavioral responses.

Many predators successfully adapt to shifts in resource availability (Bateman & Fleming,
2012; Gámez & Harris, 2021). However, certain individuals in a population likely succeed
in this adaptation, while others do not (Schell et al., 2021). In this study, only two of eight
coyotes in the hunting treatment fully adapted to the foraging task and regularly fed from
the preymodel, while six remained wary of the preymodel and only occasionally knocked it
over. Our approach specifically addressed changes in behavior of individual coyotes over a
short time. However, the highly variable participation of individual coyotes highlights that
each had different baseline behavioral norms. The individuals who were bolder from the
beginning were most likely to approach the prey model sooner and learn the new foraging
task. Individuals who failed to adjust quickly would likely struggle in response to shifting
resources, highlighting that shifts in resource availability can be a strong selection pressure
for inherently bold, innovative, persistent, or flexible individuals. The understanding of the
heritability of these behavioral traits is still developing, but research has identified genetic
correlations with boldness in multiple vertebrate species (Bubac et al., 2021; Stratton, Nolte
& Payseur, 2021) and differential heritability among different behaviors in donkeys (Equus
asinus; Navas González et al., 2019). Therefore, environmental changes that select for bold,
innovative, or persistent individuals paired with the heritability of these traits could result
in shifts in behavior at the population level over time. These selection patterns, in addition
to resource spatial heterogeneity, could lead to segregation of predators with different traits
and the possible development of new ecotypes (Chilvers & Corkeron, 2001).

There were limited interactions between coyotes and the puzzle box and conspecific
model. Like previous research, coyotes struggled to solve the puzzle box task (Stanton
et al., 2021). Only one coyote solved the puzzle box, indicating that it was possible but
that most of the coyotes were unwilling to interact with the puzzle box enough to find
solutions. Very few coyotes made significant attempts to access the food inside the puzzle
box and were content to eat the small portion scattered around the box even though the
quantity was insufficient to reach satiation. Therefore, we were unable to draw conclusions
related to innovation. Similarly, few coyotes interacted with the coyote dummy for us to
measure conspecific interactions. We observed many coyotes approach the dummy at the
first encounter, but few approached within 5 m of or interacted with the dummy. It is likely
that as the coyote approached the dummy, they recognized it was inanimate and not a
territorial intruder. Adding a scent or auditory cue may have increased interactions, but we
elected to keep methods consistent throughout this study. For animal welfare purposes, we
could not use a live conspecific coyote; properly documenting interactions with unfamiliar
conspecifics would best be observed in the wild.
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CONCLUSIONS
Changes to resource availability due to global changewill continue to alter predator foraging
behavior. It is well understood that changes in foraging behavior can impact space use
(Hidalgo-Mihart et al., 2004), migration (Cozzi et al., 2016), and social structure (Chilvers
& Corkeron, 2001). Individual behavioral changes are less well understood, likely because
it is difficult to observe in the wild due to limited ability to repeatedly test or alter available
resources for individuals. Working with captive animals allowed us to observe individuals
succeed and fail at adapting to a new foraging task and showed how some behavioral traits
change in response to altered foraging behavior. Altered activity budgets, persistence, and
boldness will affect how predators interact with other wildlife and humans, leading to
ecological consequences (Parsons, Newsome & Young, 2022) and increased human-wildlife
conflict (Barrett, Stanton & Benson-Amram, 2019). Future research with wild predators
should evaluate the relationship between predator behavioral traits and the proportion of
natural food in diets to further elucidate links between foraging and behavior and improve
our understanding of ecological consequences.
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