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Abstract: Light Detection and Ranging (LiDAR) is a sensor that uses a laser to represent the sur-
rounding environment in three-dimensional information. Thanks to the development of LiDAR,
LiDAR-based applications are being actively used in autonomous vehicles. In order to effectively use
the information coming from LiDAR, extrinsic calibration which finds the translation and the rotation
relationship between LiDAR coordinate and vehicle coordinate is essential. Therefore, many studies
on LiDAR extrinsic calibration are steadily in progress. The performance index (PI) of the calibration
parameter is a value that quantitatively indicates whether the obtained calibration parameter is
similar to the true value or not. In order to effectively use the obtained calibration parameter, it is
important to validate the parameter through PI. Therefore, in this paper, we propose an algorithm to
obtain the performance index for the calibration parameter between LiDAR and the motion sensor.
This performance index is experimentally verified in various environments by Monte Carlo simula-
tion and validated using CarMaker simulation data and real data. As a result of verification, the PI
of the calibration parameter obtained through the proposed algorithm has the smallest value when
the calibration parameter has a true value, and increases as an error is added to the true value. In
other words, it has been proven that PI is convex to the calibration parameter. In addition, it is able to
confirm that the PI obtained using the proposed algorithm provides information on the effect of the
calibration parameters on mapping and localization.

Keywords: LiDAR; extrinsic calibration; performance index; motion sensor; localization; mapping

1. Introduction

Autonomous vehicles combine information from various sensors, such as light detec-
tion and ranging (LiDAR), cameras, Global Navigation Satellite System (GNSS), and Inertial
Navigation System (INS), with vehicle data to recognize the surrounding environment and
determine the current vehicle status. In this case, each sensor has its own unique coordinate
system. Therefore, in order to effectively integrate and use the sensor values measured
based on each sensor coordinate system, it is necessary to unify each sensor coordinate
system into one reference coordinate system. In order to unify the reference coordinates, it
is essential to find a transformation relationship between the respective sensor coordinates
and the reference coordinates. The process of obtaining such a transformation, which in-
cludes rotation and translation relationship between coordinate systems, is called extrinsic
parameter calibration.

Extrinsic calibration between LiDAR and the motion sensor involves finding the trans-
formation relationship between the LiDAR and the motion sensor. At this time, the motion
sensor refers to an integrated sensor when it is integrated into one by applying a certain
methodology [1] to an in-vehicle sensor, such as a yaw-rate sensor or wheel speed sensor,
attached to several locations. Alternatively, the inertial measurement unit (IMU) sensor
or INS sensor itself, which includes all information that can indicate vehicle movement,
is defined as a motion sensor. It is extremely essential, as the result of calibration has a
significant influence on the performance of LiDAR-based autonomous driving applications,
such as mapping [2], localization [3,4], and object detection [5]. Therefore, research on
extrinsic calibration between LiDAR and the motion sensor is being actively conducted.
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Conventional LiDAR and motion sensor calibration methods include a direct calibra-
tion method that derives parameters directly using surrounding structures or calibration
room and an indirect calibration method that derives parameters indirectly through an
algorithm. In order to derive accurate parameters through the direct calibration method,
time or human resources are greatly required. Therefore, the algorithm-based indirect
calibration method is widely used. However, as this value is derived based on an algo-
rithm, it is not always possible to derive a value similar to the actual value. Therefore, in
order to effectively verify the parameters derived from in-direct calibration, it is necessary
to quantitatively indicate whether this value is similar to the true value or not, and this
quantitative value is called the performance index PI of the extrinsic calibration parameter.

One of the widely used methods for PI is to analyze the root mean square error (RMSE)
with the ground-truth value. At this time, it is assumed that the value set when attaching
the sensor or the direct calibration value previously measured is ground truth. RMSE
can represent the degree of the error directly and intuitively. In real situations, however,
as the measured ground truth is likely to change, it is very difficult to always obtain an
accurate ground-truth value. Another method is to use standard deviation, repeatability,
and convergence as performance indicators after trying indirect calibration several times.
Although this method provides the characteristics of the calibration parameters, it has
the disadvantage of not responding to biased results. The last method is to compare the
generated map smoothness using calibration parameters to evaluate. However, this method
only provides a relative PI for the calibration parameter and does not provide an intuitive
and absolute PI. In addition, all three methods do not provide information on how much
the derived calibration parameters affect mapping and localization.

Therefore, in order to overcome the problems of the existing performance indices,
we propose an algorithm to obtain a performance index for a 6-degree-of-freedom (DoF)
extrinsic calibration parameter between LiDAR and the motion sensor. The performance
index obtained through this algorithm can easily derive an unbiased absolute performance
index without ground truth, and it is possible to figure out how much influence it has on
mapping and localization from the derived calibration parameter. The main contribution
of this paper is as follows:

• It presents a novel algorithm to obtain a performance index for the 6-DoF extrinsic
calibration parameter between LiDAR and the motion sensor based on localization
and mapping. It can determine how much it influences the localization performance
as well as the goodness of fit for extrinsic calibration results.

• It was experimentally verified through Monte Carlo simulation as to whether it is
effective in various environments.

• In addition, more accurate correction parameters can be derived by applying global
optimization using the obtained PI as a cost function, and this is briefly introduced in
Appendix A.

The remainder of this paper is organized as follows: Section 2 briefly reviews previous
studies. In Section 3, we introduce the proposed algorithm to obtain the PI of the calibration
parameter. We verify the validity of the proposed algorithm in various environments
through Monte Carlo simulation in Section 4. Then, we show the experimental results
using simulation and real data in Section 5, and, finally, the conclusion is described in
Section 6.

2. Previous Studies
2.1. Approaches for Extrinsic Parameter Calibration

The traditional method for extrinsic parameter calibration between sensors can be
largely divided into direct calibration and indirect calibration. Direct calibration measures
distance and angle manually by either placing landmarks to control points or by using
known spatial maps, such as calibration room [6–8]. These methods, however, consume
both time and labor with experts. To address these issues, indirect calibration approaches
based on the motion data of each sensor have been studied in recent decades. They are



Sensors 2022, 22, 106 3 of 23

generic approaches because they exploit relative pose information regardless of the type of
sensor. There are various ways to find a solution for the calibration parameter.

Hand–eye calibration finds the relationship between the sensor on the robot’s end-
effector and base frame of the robot [9–11]. They attempt to solve a homogeneous matrix
equation formed as “AX = XB” where “A” is related to the relative pose of a reference
motion sensor and “B” is related to the relative pose of a target sensor. In this problem, it is
important to obtain the sensor’s trajectory by measurements because they cannot provide
the sensor’s relative pose information directly.

Reference [12] estimates calibration parameters for LiDARs without any specific and
known environmental features based on a fully unsupervised approach. It does not require
a specific calibration target. With contiguous surface assumption, it finds globally consistent
parameters by optimizing an energy function that evaluates whether points are far away
from surfaces.

The graph-optimization-based approach was also proposed to consider properties
for sensors mounted in an autonomous vehicle [13]. By applying additional constraints, it
improved robustness and reliability.

2.2. Approaches for Evaluation of Extrinsic Calibration Parameter

The extrinsic calibration parameters obtained through the various methods introduced
above are evaluated in terms of how appropriate they are with some evaluation indices.
There are two main ways to evaluate them: with and without ground-truth data. Ground
truth can be found by applying various calibration methods and further optimization
techniques. For example, the KITTI dataset provides the ground-truth extrinsic calibration
parameters between LiDAR-IMU that are calculated based on the hand–eye calibration [7].
The Lyft Level 5 dataset conducted manual calibration with its own calibration room [8]. In
addition, ref. [14] also applied a method of measuring parameters using CAD drawings.

Several studies evaluate their calibration parameter by errors between estimated ones
and ground truth that are given by either the KITTI dataset or their own dataset [7,13,15].
With ground truth, a mean and standard deviation of errors can represent the reference
best fitness of the system. However, these methods cannot be used for online calibration
problems that require considering environments in which parameters can be varied over
time or events and are inefficient as they require a lot of time and cost when the parameters
are changed.

For real data, it is difficult to find ground-truth data with simulation. In this case,
the standard deviation of the parameters, convergence, or repeatability can be used to
evaluate how the proposed system is robust and stable [13,16–18]. The mean of parameters
are useful to figure out the precision of the system but cannot evaluate accuracy from the
biased results. A performance index based on map smoothness that is related to mapping
performance was applied to evaluate parameters [13,19–21]. Map smoothness is introduced
as a metric that can be used to determine how blurry a map will be generated through
the estimated calibration parameter. This has the advantage of being able to see how well
the estimated parameters fit the mapping application. However, to be used as an absolute
performance index, it is inappropriate because it is a relative indicator that cannot provide
a standard value for fit.

2.3. Limitations of Previous Methods

The requirements to cover the limitations of the existing method are summarized
as follows:

• It should not require obtaining the ground-truth parameters, which require much time
and cost.

• It should have an unbiased value.
• It should have an intuitive and absolute value, not a relative indicator.

The proposed index can overcome all of them, and if it is used as a cost function that
minimizes this index, it can also be used to find the globally optimal calibration parameter



Sensors 2022, 22, 106 4 of 23

through global optimization techniques. In addition, unlike other indices, the proposed
performance index can check how much influence the mapping and localization have on
performance through the obtained performance index. The next section introduces how to
obtain this evaluation index.

3. Calibration Performance Index of LiDAR and Motion Sensor

This section introduces the algorithm used to obtain the performance index of the
calibration parameter between LiDAR and the motion sensor. It is based on two properties
that consider map smoothness, introduced in the previous study. The first principle is that
the mapping result is accurate and has less blurring when point cloud mapping uses a good
calibration parameter, whereas the mapping result using a bad calibration parameter is
inaccurate and has large blurring. The second principle is that the matching result is good
when matching between an accurate map and point cloud, whereas matching is inaccurate
when matching between an inaccurate and blurred map and point cloud. To evaluate
a calibration parameter using these properties, the algorithm to obtain the proposed PI
consists of two steps. First, the point cloud map (PCM) is generated using motion data
obtained from the motion sensor, the point cloud obtained from LiDAR, and a calibration
parameter for performance evaluation. Second, the matching error between the created
PCM and the input point cloud used for mapping is obtained. The obtained distance and
rotation matching error is used as the performance index PIdist, PIrot. This algorithm is
shown in Figure 1 and is described in detail in Sections 3.1 and 3.2.

Figure 1. Algorithm of obtaining the proposed performance index of the calibration parameter.

Before the detailed algorithm, we define the notation that is used in this algorithm and
describe the input data. Three coordinates: world coordinate; motion sensor coordinate;
LiDAR coordinate; are used in this algorithm. The relationship between each coordinate
system is as follows and is shown in Figure 2. Tworld

lidar i is the transformation matrix consisting
of LiDAR’s 6-DoF pose in time i based on world coordinate. Tworld

lidar i ∈ SE(3) is equal
to [Rworld

lidar i|t
world
lidar i], where Rworld

lidar i ∈ SO(3) is a rotation matrix that consists of LiDAR’s
orientation in time i, and tworld

lidar i ∈ R3 is a translation vector that consists of LiDAR’s
position in time i. Tworld

motioni is the transformation matrix consisting of the motion sensor’s 6-
DoF pose in time i based on world coordinate. Tworld

motioni ∈ SE(3) is equal to [Rworld
motioni|t

world
motioni],

where Rworld
motioni ∈ SO(3) is a rotation matrix that consists of the motion sensor’s orientation
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in time i, and tworld
motioni ∈ R3 is a translation vector that consists of the motion sensor’s

position in time i. Tmotion
lidar i is the calibration transformation matrix consisting of the 6-DoF

calibration parameter from the motion sensor to LiDAR. The calibration parameter is
a (6 × 1) vector consisting of the 3-axis translation distance (xmotion

lidar , ymotion
lidar , zmotion

lidar ) and
rotation angles, which are represented by ZYX Euler angle (rollmotion

lidar , pitchmotion
lidar , yawmotion

lidar )
of the LiDAR on the motion sensor. Rmotion

lidar ∈ SO(3) and tmotion
lidar ∈ R3 can be created using

a calibration parameter, and Tmotion
lidar ∈ SE(3) is equal to [Rmotion

lidar |t
motion
lidar ].

Figure 2. Relationship between the coordinate systems: world, motion, LiDAR coordinates.

The data used for point cloud mapping and evaluation using the matching error are
as follows. plidari

is the point cloud on the LiDAR coordinate obtained from the LiDAR in
time i. If it consists of n points, it is a matrix of size (n × 3). gyromotioni and velmotioni are the
angular velocity and linear velocity on motion sensor coordinate obtained from the motion
sensor in time i. It contains 3-axis angular velocities and linear velocities. Finally, calibparam
is a (6× 1) vector including 3-axis translation distances and rotation angles between LiDAR
and the motion sensor, and it is a variable for evaluating performance. A point cloud map is
created using plidari

, gyromotioni , velmotioni , and calibparam given as inputs. Next, we evaluate
matching error using this generated map and plidari

, gyromotioni , velmotioni and calibparam are
used to create the point cloud map. This process is described in detail below.

3.1. Mapping of Point Cloud Map (PCM)

It receives plidari
, gyromotioni , velmotioni , and calibparam as input and output PCMs on

world coordinates. In general, the motion sensor is faster than the LiDAR. Therefore, when
collecting data from the motion sensor quickly, it is assumed that LiDAR data with a slow
frequency is collected at the same time at a certain point in time.

3.1.1. Generation of Motion Sensor’s Pose Using Input Motion Data

By applying input motion data such as gyromotioni and velmotioni to dead reckoning
or other vehicle models, it is necessary to obtain the 6-DoF motion sensor’s poses. The
homogeneous transformation matrix tworld

motion is obtained using these poses.

3.1.2. Point Cloud Conversion

To create a point cloud map, plidari
, is given as input of a LiDAR coordinate and

is converted into the point cloud of the world coordinate. At time i, the point cloud
plidari

can be converted to pworldi
, point cloud on a world coordinate using Equations (1)

and (2). To convert point cloud using a transformation matrix, plidari
is converted into

plidar_homi
= [plidari

|1], which is in the homogeneous coordinate.

Tworld
lidar i = Tworld

motioniT
motion
lidar (1)
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(pworld_homi
)T = Tworld

lidar i(plidar_homi
)T (2)

3.1.3. Generation of Point Cloud Map by Accumulation

By accumulating the overall point cloud on the world coordinate, a point cloud map
on a world coordinate can be obtained. If the map is created using the correct calibration
parameter between the motion sensor and the LiDAR, it will generate an accurate map with
less blurring. On the other hand, if a map is created using the wrong calibration parameter,
it will create a blurred and inaccurate map. The mapping results according to the calibration
parameter are shown in Figure 3, and the algorithm is described in Algorithm 1.

PCM = ∪i pworldi
(3)

Figure 3. (a) Result of accumulated point cloud map (PCM) using the good calibration parameter;
(b) result of accumulated PCM using the wrong calibration parameter.

Algorithm 1 Point Cloud Mapping

1: Inputs
Motion data in time i: gyromotioni , velmotioni
Point cloud in time i: plidari

Calibration transformation matrix: Tmotion
lidar

2: Output
Accumulated point cloud map: PCM

3: for i = 1 to N do
4: Tworld

motioni ← VehicleModel(gyromotioni , velmotioni )

5: Tworld
lidar i ← Tworld

motioniT
motion
lidar

6: pworldi
← Tworld

lidar i plidari
7: PCM← Accum(PCM, pworldi

)
8: end for

3.2. Evaluation of Matching Error

To evaluate matching error, it receives created PCM and plidar, gyromotion, velmotion,
calibparam used to make PCM as inputs, and outputs the matching error. The assumptions
about time synchronization are the same as in Section 3.1.

3.2.1. Generation of Ground-Truth Motion Sensor’s Pose Using Input Motion Data

The 6-DoF motion sensor’s poses and transformation matrix Tworld
motion can be obtained

using the same method and data as when generating PCM.
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3.2.2. Generation of Predicted Motion Sensor’s Pose Using Point Cloud-PCM Matching

The 6-DoF-predicted LiDAR poses on the world coordinate are obtained through
matching between the created PCM on the world coordinate and the point cloud on the
LiDAR coordinate given as input. In this case, matching is performed using a registra-
tion method such as point-to-point, point-to-line, point-to-plane, generalized ICP, and
NDT [22–26], and the matching result becomes the pose of the LiDAR in the world coordi-
nate. Therefore, a value near the LiDAR pose is required as the initial value of registration.
If the LiDAR pose used for mapping is given as an initial value in registration, the value
applied to the initial value on the input point cloud will almost coincide with the map-
ping point. Therefore, this initial value will be the registration result. In this case, it does
not satisfy the property that the matching result is not accurate when matching between
the blurred map and the point cloud. Therefore, the property is satisfied by not using
the LiDAR pose as the initial value of registration, but using the value added with the
random value to the LiDAR pose as the initial value. The random value to be used for
the initial value at time i consists of xrandi

, yrandi
, zrandi

, rollrandi
, and pitchrandi

, yawrandi
,

and Trandi
∈ SE(3), a homogeneous transformation matrix, can be obtained through these

parameters. At this time, these xrandi
, yrandi

, zrandi
, rollrandi

, pitchrandi
, and yawrandi

values
are obtained by extracting random values within a reasonable value of the maximum error
that a calibration parameter can have. After obtaining the random value, the initial value
of registration at time i, Tiniti ∈ SE(3) can be obtained through Equation (4).

Tiniti = Tworld
lidar iTrandi

(4)

The predicted LiDAR pose on the world coordinate obtained through matching be-
tween the PCM and the point cloud in time i is defined as Tworld

pred_lidari
. When matching using

sharp and accurate map, Tworld
pred_lidari

will be obtained, which is similar to the LiDAR pose

used when generating the map, Tworld
lidar i. On the other hand, when matching using blurred

and inaccurate map, Tworld
pred_lidari

will be far from the LiDAR pose used to generate the map.
The matching results according to the calibration parameter are shown in Figure 4.

Figure 4. (a) Result of matching between PCM and point cloud using the good calibration parameter;
(b) result of matching using the wrong calibration parameter; blue points represent PCM on world
coordinate, orange points represent matched points using registration, and green points represent
points that are converted using ground truth LiDAR pose.
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The predicted motion sensor’s pose in the world coordinate can be obtained by
multiplying the derived predicted LiDAR pose in the world coordinate, Tworld

pred_lidari
, by the

calibration parameter inversely. The predicted motion sensor’s pose in time i is defined as
Tworld

pred_motioni
, and it is expressed as the following equation:

Tworld
pred_motioni

= Tworld
pred_lidari

(Tmotion
lidar )−1 (5)

Similarly, the predicted motion sensor’s pose obtained using the correct calibration
parameter will almost match the ground truth motion sensor’s pose which is obtained
by applying motion data to dead reckoning or other vehicle models, and the predicted
motion sensor’s pose obtained using the incorrect calibration parameter will be far from
the ground truth pose.

3.2.3. Obtaining the Localization Error between Ground-Truth Motion Sensor’s Pose and
Predicted Pose

Localization errors between Tworld
pred_motioni

and Tworld
motioni are calculated, and the distance

root mean square error (RMSE) and rotation RMSE from these distance and rotation errors,
obtained from the entire data, can be derived. The distance RMSE and rotation RMSE
are defined as PIdist, PIrot, respectively. At this time, the amount of computation can be
reduced by obtaining PI only at the time selected through distance sampling instead of
obtaining PI for the entire data. As a result, when the correct calibration parameter is used
in this algorithm, PIdist and PIrot will be small, and the larger the error in the calibration
parameter, the larger PIdist, PIrot will be. This is proven through Monte Carlo simulation in
Section 4.

Algorithm 2 Evaluation of Matching Error

Inputs
Motion data in time i: gyromotioni , velmotioni
Point cloud in time i: plidari

Calibration transformation matrix: Tmotion
lidar

Accumulated point cloud map: PCM
2: Output

Performance index according to calibration parameter: PIdist, PIrot
for i = 1 to N do

4: Tworld
motioni ← VehicleModel(gyromotioni , velmotioni )

Tworld
lidar i ← Tworld

motioniT
motion
lidar

6: Trandi ← RandomGenerator
Tiniti ← Tworld

lidar Trandi
8: Tpred_lidari ← MatchingbtwPCMandPC(PCM, plidari

, Tiniti )

Tpred_motioni ← Tpred_lidari
(Tmotion

lidar )−1

10: dist_erri ← tpred_motioni
− tmotioni

rot_erri ← Rpred_motioni
	 Rmotioni

12: end for
PIdist ← RMSE(dist_err)

14: PIrot ← RMSE(rot_err)

4. Experimental Verification Based on Monte Carlo Simulation

In this section, it was experimentally verified that the proposed PI is convex for the
added calibration parameter error using the Monte Carlo simulation method. It is proved
that if the error of the calibration parameter is 0, the proposed PI will be 0, and the proposed
PI increases when the calibration parameter is added. After introducing the simulation
environment, variables, and equations for verification, this verification process and results
will be explained.
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4.1. Environment of Verification
4.1.1. Definition of Variables

The variables used for validation are as shown in Figure 5. Tworld
motion, which is a trans-

formation matrix composed of 6-DoF pose of motion sensor, and Tlidar
motion composed of a

calibration parameter are obtained through Monte Carlo sampling. The 6-DoF pose of
LiDAR can be obtained through Equation (1). In order to exclude registration error during
PCM-point cloud matching, it is assumed that there is a directional landmark, and Tlandmark
is the transformation matrix of this landmark. Through this landmark, the transformation
matrix Tdetection, which is the detection of the landmark from the LiDAR, is obtained from
Equation (6). Figure 5 shows the relationship described above.

Tdetection = Tworld
landmark(T

world
lidar )−1 (6)

Figure 5. Relationship between the coordinate systems: world, motion, LiDAR, landmark coordinates.

4.1.2. Generation of Motion Sensor’s Pose and Calibration Parameter through Monte
Carlo Sampling

Using Monte Carlo simulation, we generate n different motion sensor’s poses and m
different calibration parameters. Assume that a directional landmark’s x, y, and z positions
are each 0, and the x-direction of the coordinate points upward. Motion sensor poses with
random x, y, and z positions within a radius of 50 m of this landmark, and random roll,
pitch, and yaw orientations within 360 degrees, are generated. The landmark and the
generated n motion sensor’s poses are shown in Figure 6.
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Figure 6. (a) Landmark for detection (green) and 100 sampled motion sensor’s poses (black).
(b) 10 sampled LiDAR poses (blue) based on one motion sensor’s pose (black).

4.2. Process of Verification Using Monte Carlo Simulation
4.2.1. Generation of Landmark Using n Motion Sensor’s Pose and One
Calibration Parameter

New landmarks are generated using one calibration parameter and n motion sensor’s
poses. At this time, the process of generating new landmarks using the ith motion sensor’s
pose and the transformation of detection between LiDAR and landmark is expressed in
Equation (7). As the calibration parameter does not contain an error, newly generated
landmarks match the actual landmark. However, the calibration parameter to be evaluated
contains errors. Therefore, newly generated landmarks obtained using the calibration
parameter, including the calibration error, can be derived using Equation (8), and it is
shown in Figure 7.

Tnew_landmarki
= Tworld

motioniT
motion
lidar Tdetectioni

(7)

Tnew_landmarki
= Tworld

motioniT
motion
lidar TerrorTdetectioni

(8)

Figure 7. (a,b) Landmark for detection (green) and newly generated blurred landmark using
Equation (8) (cyan).



Sensors 2022, 22, 106 11 of 23

To obtain PI, it is necessary to obtain the predicted LiDAR pose through matching
to obtain the predicted motion sensor’s pose described in Section 3.2. Unlike previously
described, to exclude registration errors during matching, one must randomly select one
of the newly generated landmarks instead of registration. If the index of the randomly
selected landmark is defined as j, then the selected landmark is expressed as Equation (9).
The ith predicted LiDAR pose using this landmark as a matching result can be obtained
through Equation (10). The predicted motion sensor’s pose can be obtained by inversely
multiplying the predicted LiDAR pose by the calibration parameter containing the error.
The ith predicted motion sensor’s pose is expressed in Equation (11).

Tworld
sel_landmarki = (Tworld

motion jT
motion
lidar TerrorTdetectionj

)j=rand(1,...,n) (9)

Tworld
pred_lidari

= (Tworld
motion jT

motion
lidar TerrorTdetectionj

)j=rand(1,...,n)(Tdetectioni
)−1 (10)

Tworld
pred_motioni

= Tsel_landmarki
(Tdetectioni

)−1(Terror)
−1(Tmotion

lidar )−1 (11)

Distance error can be obtained from the x, y, z component of Tworld
pred_motioni

, which is the
transformation matrix of the predicted motion sensor’s pose, and the x, y, z component of
Tworld

motioni in index i. In addition, the rotation error is obtained from the roll, pitch, and yaw
components of Tworld

pred_motioni
and Tworld

motioni. The distance and rotation errors are calculated
from the indexes from 1 to n, respectively, and distance RMSE and rotation RMSE are
obtained through these. This distance, rotation RMSE is used as PIdist, PIProt according to
the calibration parameters. To verify that PIdist and PIrot increase as the calibration error
increases, the calibration error is added, as shown in Table 1.

Table 1. Calibration parameter error configuration for Monte Carlo simulation.

Calibration Error Parameter Range [m]/[deg] Interval [m]/[deg]

x, y, z −5∼5 0.01
roll, pitch, yaw −10∼10 0.02

4.2.2. Generation of Landmark Using n Motion Sensor’s Pose and m Calibration Parameter

The above procedure was performed for m calibration parameters. Therefore, Monte
Carlo simulation was performed by adding each error in Table 1 to the total number of
cases of n × m.

4.3. Result of Verification

The results for n × m cases are shown in Figure 8 as box plots. The x-axis of the graph
represents the calibration parameter error, and the y-axis represents PIdist or PIrot obtained
through Monte Carlo simulation. The error is 0 at the center of the x-axis and increases as it
goes on both sides in the x-axis, as in Table 1. The result for n × m cases for each error are
shown as box plots. It can be confirmed that the red line, which is the average of the entire
simulation, is 0 when the error is 0, and when the error increases, the average value also
increases. However, if there is no rotation error in the calibration parameter, Tworld

pred_motion and

Tworld
motion, which are the rotation matrix of Tworld

pred_motion and Tworld
motion, are equal by Equation (11).

Therefore, in this case, PIrot becomes 0. Through Monte Carlo simulation, it was proved
that the proposed PI is convex according to the calibration error, except the PIrot when only
x, y, and z errors are included. Therefore, the proposed PI is valid for various motion sensor
movements and calibration parameters.
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Figure 8. Cont.
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Figure 8. (a,c,e,g,i,k) are PIdist when adding each x, y, z, roll, pitch, and yaw error to the calibration
parameter as much as in Table 1. (b,d,f,h,j,l) are PIrot when adding error.
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5. Experiment

In this section, the validity of the proposed algorithm was verified using simulation
data and real data. Experiments using simulation data are focused on verifying whether
the algorithm is valid in various environments. Experiments using real data are focused on
verifying that the algorithm is valid in a noisy real environment.

5.1. Experiment Using Simulation Data
5.1.1. Simulation Environment

The purpose of the experiments is to verify the validity of the proposed performance
index, and it was evaluated using simulation data in various environments. Various
environments consist of the various movements of sensors and calibration configuration
between LiDAR and the motion sensor. Therefore, it was verified using IPG-CarMaker,
the virtual test drive simulator that can generate sensor configurations and a sensor’s
movements as desired by the user. Data were generated from one motion sensor at
10 Hz, and six time-synchronized Velodyne vlp-16 LiDARs. The configuration of various
calibration parameters used in the experiment is shown in Table 2. To verify the algorithm
according to the various movements of the sensor, the trajectory of the motion sensor and
the surrounding environment were set as shown in Table 3.

Table 2. Calibration parameter between one motion sensor and six LiDARs.

Sensors Translation—x, y, z [m] Rotation—Roll, Pitch, Yaw [deg]

Motion sensor—LiDAR1 0.0, 0.0, 0.0 0.0, 0.0, 0.0
Motion sensor—LiDAR2 3.0, 0.0, 0.0 0.0, −5.0, 0.0
Motion sensor—LiDAR3 0.8, 0.8, 1.0 −5.0, 10.0, 20.0
Motion sensor—LiDAR4 0.8, −0.8, 1.0 5.0, 10.0, −20.0
Motion sensor—LiDAR5 −0.8, 0.8, 0.0 0.0, 5.0, 150.0
Motion sensor—LiDAR6 −0.8, -0.8, 0.0 0.0, 5.0, −150.0

Table 3. Various environments for experiments using simulation data. Green lines represent trajecto-
ries of vehicle. Rectangular boxes represent buildings from which point cloud can be obtained.

Straight Corner Rectangular

Circle Sinuous
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5.1.2. Result and Analysis of Experiments

The experiment was conducted using the point-to-point ICP registration method. To
reduce the effect of the initial registration value, the experiment was performed 10 times
for each error, and the total PI is defined as the average value of 10 PIs. The result of
the experiment using simulation data with the calibration parameter error configuration
described in Table 4 is shown in Table 5.

Table 4. Calibration parameter error configuration.

Calibration Error Parameter Range [m]/[deg] Interval [m]/[deg]

x, y, z −1∼1 0.1
roll, pitch, yaw −5∼5 0.2

Table 5. Result of experiment using simulation data.

Scenario PIdist [m] PIrot [deg]

Straight

Straight

Corner
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Table 5. Cont.

Scenario PIdist [m] PIrot [deg]

Corner

Rectangle

Rectangle

Circle

Circle
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Table 5. Cont.

Scenario PIdist [m] PIrot [deg]

Sinuous

Sinuous

In each scenario, PIdist and PIrot are shown when errors are added to the x, y, and z
elements and to the roll, pitch, and yaw elements, respectively. In Section 4.3, it was proved
that there is no change in PIrot when there is an error only in the x, y, and yaw components
among the calibration parameters. However, it was confirmed that rotation error occurred
because registration was used rather than randomly selected during matching. In addition,
as there is no rotational movement of the motion sensor and LiDAR in the straight scenario,
the point cloud map is not blurred, and only bias is generated. Therefore, because the
basic concept of the proposed algorithm is not satisfied, there is no change in the results
of PIdist and PIrot. Except for this case, it was confirmed that PIdist and PIrot are convex to
calibration error for all calibration parameter configurations in the remaining scenarios.

5.2. Experiment Using Real Data
5.2.1. Experimental Environment

To verify that the algorithm is valid in a noisy real environment, data was obtained
from the outdoor parking lot with the autonomous vehicle platform of Konkuk University
in Figure 9. This vehicle was equipped with two RoboSense rs-lidar-16 LiDARs, one
RoboSense rs-lidar-32 LiDAR, and one NovAtel CPT7 INS including HG4930 MEMS IMU.
At this time, the INS sensor itself was used as a motion sensor. The performance of the
algorithm was verified with respect to the calibration parameters between the NovAtel
CPT7 INS and the three LiDARs. The calibration parameter configuration of an INS and
three LiDARs is described in Table 6. This value was acquired by obtaining the result
of hand–eye calibration, which is one of the calibration methods. In addition, in order
to check the correlation between pi and localization, localization RMSE was derived by
implementing extended Kalman filter-based map-matching localization [27–29] within the
same conditions.
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Figure 9. (a) The outdoor parking lot used for data acquisition; green line represents trajectory of the
vehicle. (b) Autonomous vehicle platform of Konkuk University used for data acquisition.

Table 6. Calibration parameter between one motion sensor (IMU) and three LiDARs (LiDAR1:
Top-left LiDAR, LiDAR2: Top-mid LiDAR, LiDAR3: Top-right LiDAR) on the the vehicle.

Sensors Translation—x, y, z [m] Rotation—Roll, Pitch, Yaw [deg]

Motion Sensor—LiDAR1 0.8, 0.66, 1.51 3.0, −3.0, 0.0
Motion Sensor—LiDAR2 0.8, 0.02, 1.75 0.0, −3.0, 0.0
Motion Sensor—LiDAR3 0.8, −0.58, 1.54 0.0, −3.0, 0.0

5.2.2. Results and Analysis of Experiment

The experiment was conducted using the point-to-point ICP registration method and
performed 10 times for each error described in Table 4. The result of PIs using real data is
shown in Table 7 by solid lines. Distance RMSE and rotation RMSE are indicated by dotted
lines. As a result of the experiment using real data, it was confirmed that PIs generally
had a large value because noisy real data, which degrades the performance of registration,
was used. Nevertheless, it can be seen that the derived PIs are convex for the calibration
parameter error. Although the localization result changed according to the tuning value
setting of the localization algorithm, it showed the same distribution as the PI, regardless
of the tuning value. In addition, in most cases, it was confirmed that the localization result
showed a value smaller than the PI. Through this, it was possible to check the validity of
the proposed PI in the real environment, which has the advantage of knowing how much
the calibration parameter affects the map-matching localization.

Table 7. Result of experiement using real data.

PIdist and Localization Distance RMSE [m] PIrot and Localization Rotation RMSE [deg]
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Table 7. Cont.

PIdist and Localization Distance RMSE [m] PIrot and Localization Rotation RMSE [deg]

6. Conclusions

This paper proposes the algorithm involving obtaining the performance index for
extrinsic calibration parameters of LiDAR and the motion sensor. It was experimentally
verified through Monte Carlo simulation, and its validity has been verified through experi-
ments using CarMaker simulation data and real data. As a result, it was verified that is
effective in situations except for the straight scenario without rotation movement of the
motion sensor. Through these PIs, the validity of indirect calibration can be derived more
easily and conveniently, and an unbiased absolute performance index can be derived. In
addition, it can be known how much these PIs affect localization performance, and the
more accurate calibration parameters can be obtained by applying the derived PIs to global
optimization (described in Appendix A).

The algorithm for obtaining the performance index proposed in this paper can be
applied to online calibration. Therefore, in the future, the study can be expanded to update
the calibration parameter using this performance index, which is used as an index to
determine the fault of the calibration parameter in real time.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available upon reasonable request to the corresponding author.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

In this section, the process of deriving the more accurate calibration parameter through
the derived PI is briefly introduced. The algorithm proposed in this paper receives
calib_param, point cloud, and motion data and outputs PIdist and PIrot. At this time, the
values of PIs change according to calib_param. Therefore, by performing global optimiza-
tion using these PIdist(calib_param) and PIrot(calib_param) as cost functions, calib_param∗

that minimizes the cost function can be derived.

min
calib_param∗

PIdist(calib_param) (A1)

min
calib_param∗

PIrot(calib_param) (A2)
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