
Journal of Neuromuscular Diseases 2 (2015) S59–S71
DOI 10.3233/JND-150088
IOS Press

S59

Research Report

Myotonic Dystrophy Type 2: An Update
on Clinical Aspects, Genetic and
Pathomolecular Mechanism

Giovanni Meolaa,b,∗ and Rosanna Cardanib
aDepartment of Biomedical Sciences for Health, IRCCS Policlinico San Donato, University of Milan,
San Donato Milanese, Milan, Italy
bLaboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato,
San Donato Milanese, Milan, Italy

Abstract.
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive

myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified.
Myotonic dystrophy type 1 (DM1, Steinert’s disease) is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy
type 2 (DM2) is caused by a (CCTG)n expansion in CNBP. Despite clinical and genetic similarities, DM1 and DM2 are distinct
disorders. The pathogenesis of DM is explained by a common RNA gain-of-function mechanism in which the CUG and CCUG
repeats alter cellular function, including alternative splicing of various genes. However additional pathogenic mechanism like
changes in gene expression, modifier genes, protein translation and micro-RNA metabolism may also contribute to disease
pathology and to clarify the phenotypic differences between these two types of myotonic dystrophies.

This review is an update on the latest findings specific to DM2, including explanations for the differences in clinical
manifestations and pathophysiology between the two forms of myotonic dystrophies.

Keywords: Myotonic dystrophy type 1, myotonic dystrophy type 2, clinical findings, muscle biopsy, molecular mechanism,
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INTRODUCTION

Myotonic dystrophies (DMs) represent a group
of dominantly inherited, multisystemic diseases
that share the core features of myotonia, muscle
weakness, muscular dystrophy, early-onset cataracts
(younger than 50 years), cardiac conduction defects
and endocrine disorders [1]. Clinicians considered
myotonic dystrophy to be a single disease until 1909
when Steinert and colleagues first clearly described
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the “classic” form of myotonic dystrophy which was
called Steinert’s disease (OMIM 160900) [1]. The gene
defect responsible for myotonic dystrophy of Stein-
ert was discovered in 1992 and found to be caused
by expansion of a CTG repeat in the 3’ untrans-
lated region of myotonic dystrophy protein kinase gene
(DMPK; OMIM 605377), a gene located on chro-
mosome 19q13.3 encoding a protein kinase [2–4].
After the discovery of this gene defect, DNA test-
ing identified a group of patients previously diagnosed
as having myotonic dystrophy with dominantly inher-
ited myotonia, proximal greater than distal weakness,
and cataracts but lacking the gene defect responsible
for myotonic dystrophy of Steinert [5–8]. In Europe,
the disease was termed proximal myotonic myopathy
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(PROMM, OMIM 602668) [5, 6] or proximal
myotonic dystrophy (PDM) [8] while in the United
States was termed myotonic dystrophy with no CTG
repeat expansion or myotonic dystrophy type 2 (DM2)
[7]. Later studies demonstrated that many of the fam-
ilies identified as having DM2, PROMM or PDM had
the same disease, a disorder that results from an unsta-
ble tetranucleotide CCTG repeat expansion in intron 1
of the nucleic acid-binding protein (CNBP) gene (pre-
viously known as zinc finger 9 gene, ZNF9; OMIM
116955) on chromosome 3q21 [9, 10]. The existence
of two types of myotonic dystrophy has created a need
to develop a diagnostic classification. To address this
need, the International Myotonic Dystrophy Consor-
tium developed a new nomenclature and guidelines for
DNA testing [11]. Myotonic dystrophy of Steinert, the
classic form of myotonic dystrophy that results from
an unstable trinucleotide repeat expansion on chromo-
some 19, is now termed myotonic dystrophy type 1
(DM1). Patients with the clinical picture of myotonic
dystrophy type 2/proximal myotonic myopathy, who
have positive DNA testing for the unstable tetranu-
cleotide repeat expansion on chromosome 3, are now
classified as having myotonic dystrophy type 2 (DM2)
[7, 12, 13].

Although DM1 and DM2 have similar symptoms,
there are also a number of dissimilar features making
them clearly separate diseases (Fig. 1). In this review,
we summarize the latest findings specific to DM2,
including explanations for the differences in clinical
manifestations and pathophysiology between the two
forms of myotonic dystrophies.

MYOTONIC DYSTROPHY TYPE 2

Clinical features

DM2/PROMM typically appears in adult life
and has variable manifestations, such as early-onset
cataracts (younger than 50 years), varying grip myoto-
nia, thigh muscle stiffness, and muscle pain, as well
as weakness [5–7, 12–15]. Symptoms of DM2 usu-
ally begin in the second to sixth decade (median age
48 years) and patients as well as their care providers
ascribe them to overuse of muscles, “pinched nerves,”
“sciatica,” arthritis, fibromyalgia or statin use [16].
Younger patients may complain of stiffness or weak-
ness when running up steps. Early in the presentation
of DM2 there is only mild weakness of hip exten-
sion, thigh flexion, and finger flexion. Extensive pain
is frequently reported in DM2 and includes abdom-
inal, musculoskeletal, and exercise-related pain. The
pain tends to come and go without obvious cause and
usually fluctuates in intensity and distribution over the
limbs. It may share similar features with fibromyal-
gia and a prior diagnosis of fibromyalgia is relatively
common [17]. For many patients the first symptom
is grip myotonia. However, in others the myotonia is
not apparent and the presentation resembles an indo-
lent form of limbgirdle dystrophy. Direct percussion of
forearm extensor and thenar muscles is the most sen-
sitive clinical test for myotonia in DM2 but it may be
absent in several patients. Myotonia of grip is some-
times prominent and often has a jerky quality that
seems to differ from that in DM1 and the nondystrophic

Fig. 1. Myotonic dystrophies are multisystemic diseases with a core pattern of clinical presentation which also presents a number of dissimilar
features making them clearly separate diseases.
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myotonia. Myotonia is often less apparent in DM2
compared with patients with DM1. It is more difficult
to elicit myotonia on standard EMG testing in DM2
compared to DM1 except for proximal muscles such
as the tensor fascia lata and vastus lateralis muscles. In
cases of late-onset DM2, myotonia may only appear
on electromyographic testing after examination of sev-
eral muscles [13]. Facial weakness is mild in DM2 as is
muscle wasting in the face and limbs. Weakness of neck
flexors is frequent. Trouble arising from a squat is com-
mon, especially as the disease progresses. Calf muscle
hypertrophy occasionally is prominent [5, 7, 15].

Cataracts develop before 50 years of age and appear
as iridescent, posterior capsular opacities on slit-lamp
in patients with DM2. The cataracts in DM2 have an
appearance identical to that observed in DM1.

Cardiac problems appear to be less severe and fre-
quent in patients with DM2 than in patients with
DM1 [18–22]. Clinically significant cardiac features
in DM2 include arrhythmias, atrioventricular conduc-
tion defects, and even overt dilated cardiomyopathy
[23]. A high prevalence of atrial fibrillation and left
ventricular dysfunction have been reported in DM2
patients [24]. Recently, Sansone et al. [22] performed
an observational study in a relatively large cohort of
DM2 patients (n = 104) on the frequency, severity and
progression of cardiac involvement in this disease. The
obtained results demonstrate that the frequency and
severity of cardiac involvement are reduced in DM2
compared to DM1 and that progression is slower and
less severe. However, a careful cardiac evaluation is
recommended in DM2 patients to identify subjects at
risk for potential major cardiac arrhythmias [22]. The
overall risk of heart disease in DM2 patients was very
close to that of DM1 patients. Indeed, sudden death,
pacemaker implantation, and severe cardiac arrhyth-
mias have been described in small numbers of patients
[20–22, 24].

Contrary to DM1, in DM2 no ventilatory insuf-
ficiency has been reported. This preservation of
pulmonary function lessens the tendency for right heart
strain that occurs with pulmonary failure in DM1.

Central nervous system involvement represents
one of the major differences between DM1 and
DM2. Although retarded DM2 individuals have been
reported, these occurrences may be either accidental
or an infrequent disease consequence [13, 14]. The
type of cognitive impairment that occurs in DM2 is
similar to but less severe than that of DM1. Cognitive
abnormalities and a reduction in cerebral blood flow in
the frontal and temporal poles occur in patients with
DM2 and occasionally there are alterations in the white

matter of the brain [25]. In a study where DM2 patients
has been compared to age-matched DM1 patients, a
specific type of “avoidant” personality and a signif-
icant impairment in frontal lobe function (especially
limited ability to perform executive functions) have
been observed in both groups of patients although these
abnormalities were milder in DM2 patients [26]. Sim-
ilar observations have been reported in a more recent
study performed in a larger cohort of DM2 patients
who showed significant dysexecutive syndrome and
certain impairment of episodic verbal memory that
are reflective of frontal (especially frontostriatal) and
temporal lobe dysfunction [27]. At histopathological
level, the analysis of post mortem DM2 brain samples
showed the occurrence of a tau pathology similar to that
observed in DM1 patients characterized by the pres-
ence of neurofibrillary tangles and Marinesco bodies
in brain tissue [28, 29]. These intraneuronal aggre-
gates are found in brain areas of patients affected by
numerous different neurodegenerative disorders.

Other manifestations, such as hypogonadism, glu-
cose intolerance, excessive sweating and dysphagia
may also occur and worsen over time [7, 12, 13, 21, 22,
25, 26, 30–32]. DM2 affects the function of the testes
[12]. Primary hypogonadism is occasionally presents
in DM2 while appear to be more common in DM1
[7]. Similarly, the frequency of insulin resistance and
glucose intolerance seems lower in DM2 than in DM1
[30, 31]. Pregnancy and menses may also exacerbate
muscle pain, myotonia and muscle cramps in DM2
[32]. Premature labor and preterm deliveries appear
to be more frequent compared to normal in DM2 [33].
Recently Passeri et al. [34] studied vitamin D, parathy-
roid function, calcium, and phosphate in male DM1
and DM2 patients and reported that hyperparathy-
roidism occurred in almost one fifth of patients with
DM without any significant differences between DM1
and DM2 patients. Hyperparathyroidism in DM was
secondary to vitamin D deficiency. Indeed the level
of vitamin D (25-hydroxyvitamin D) was significantly
lower in all myotonic dystrophy patients compared to
healthy subjects with no difference between DM1 and
DM2 [34].

Muscle histopathology

The histological features of skeletal muscle biopsy
in DM1 and DM2 are very similar, and sufficiently
characteristic that a diagnosis of DM can be suggested
based on muscle biopsy alone [1, 13, 35]. In both
diseases, affected muscles show a high number of cen-
tral nuclei and a markedly increased variation in fiber
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diameter that commonly ranges from less than 10 �m
to greater than 100 �m. Basophilic regenerating fibers,
splitting fibers, fibrosis and adipose deposition occur
in both diseases to a variable degree depending on the
extent of muscle involvement. However the compar-
ison of muscle biopsy findings in classic DM1 with
those in DM2 has indicated that specific features are
present in DM2 muscle biopsy helping the diagno-
sis of DM2. Severely atrophic fibers with pyknotic
nuclear clumps similar in appearance to the severely
atrophic fibers in neurogenic atrophy are frequently
found in DM2 biopsy also before the occurrence of
muscle weakness. A predominant type 2 fiber atrophy
in contrast to the type 1 atrophy observed in DM1, has
been described in DM2 [35–38]. Moreover, in DM2
muscle biopsy central nucleation selectively affects
type 2 fibers and the atrophic nuclear clumps express
fast myosin isoform (type 2 fiber) indicating that DM2
is predominantly a disease of type 2 myofibers [37].
Recently, Cardani et al. [39] have studied the pro-
gression of the muscular involvement in relation to
the evolution of skeletal muscle histopathology and
biomolecular findings to better prognosticate patients
with DM2. Data confirm that disease progression in
DM2 is slow since histological and biomolecular alter-
ations observed in skeletal muscle are minimal even
after a 10-year interval. However, muscle morpholog-
ical alterations evolve more rapidly over time than the
molecular changes thus indicating that muscle biopsy
is a sensitive tool to assess disease progression at mus-
cular level [39].

Genetic

DM2 results from an unstable tetranucleotide
repeat expansion, CCTG, in intron 1 of the CNBP
gene on chromosome 3q21 [9, 10]. The (CCTG)n
repeat is a part of the complex repetitive motif
(TG)n(TCTG)n(CCTG)n. In contrast to the DM1 asso-
ciated (CTG)n repeat, the DM2 associated (CCTG)n
repeat tract is generally interrupted in healthy range
alleles by one or more GCTG, TCTG or ACTG motifs,
while it is typically uninterrupted in the expanded
alleles [10, 40, 41]. The size of the CCTG repeat
is below 30 repeats in normal individuals and up to
about 11,000 repeats in DM2 patients [10, 13]. The
smallest pathogenic size reported vary between 55–75
CCTG determined by Southern blot [10, 41]. The
cause for the unstable expansion is unknown, how-
ever several hypothesis have been proposed such as
Alu-mediated repeats development or unequal cross-
ing over [40, 42–44]. The size of the CCTG repeat

appears to increase over time in the same individual,
and, like DM1, it is a dynamic gene defect thus the
threshold size of the disease-causing mutation remains
to be determined [13]. The size of CCTG repeat expan-
sion in leukocyte DNA in DM2 seems to relate in large
part to the age of the patient and not necessarily to
the severity of symptoms or manifestations. Somatic
instability, present in both DM1 and DM2, gives rise to
intra-tissue, inter-tissue, and cell-type variability and
somatic mosaicism over a patient’s lifetime [10, 40,
45, 46]. In DM2 the mutation usually contracts in the
next generation being shorter in the children [13]. This
may explain some distinct features of DM2 such as
the missing of a congenital form, the lack of genetic
anticipation and the later onset [47].

Contrary to DM1, at present in DM2 there is no
clear evidence of the existence of a congenital form or
of anticipation [48, 49]. Anticipation, i.e. progressively
earlier and more severe manifestation of a disease in
a family, has been well-established in DM1 [1]. In
this disease, the biologic basis for anticipation is the
tendency of the CTG trinucleotide repeat expansion
to increase in length in successive generations, which
is correlated with earlier onset and increased disease
severity in the offspring. On the contrary, in DM2 antic-
ipation has been described only with clinical criteria in
few families [13, 48, 49], but no longer CCTG repeat
expansions in patients with earlier age at onset has been
observed.

Clinical features in DM2 are much more variable
than in adult onset DM1 [8, 50]. The core features of
the disease, muscle weakness, myotonia and cataracts,
may be absent, and signs such as myotonia may even
vary over time both when clinically assessed and when
recorded by electromyography (EMG) [47]. More-
over, no correlation of the size of the repeat expansion
with the clinical outcome has been shown in DM2
[13].This variability in phenotype may be explained
by the existence of molecular modifiers or of addi-
tional mechanisms. Myotonia is generally mild and
inconsistent in DM2 and it has been correlated with
the disruption of the alternative splicing of the muscle
chloride channel CLCN1 gene, encoding for a skeletal
muscle chloride channel. However recent studies indi-
cate that, unlike DM1, co-segregation of heterozygous
recessive CLCN1 mutations in DM2 patients is more
frequent than in healthy subjects and modifies the DM2
phenotype [51, 52]. CLCN1 gene maps to chromosome
7q35 and when mutated causes myotonia congenita
(recessive Becker disease OMIM no. 255700; domi-
nant Thomsen disease OMIM no. 160800) [53]. DM2
patients with co-segregating recessive CLCN1 muta-
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tions showed more severe muscle stiffness and more
severe clinical and EMG myotonia than those hav-
ing exclusively the CCUG expansion. Nevertheless,
recently it has been observed that CLCN1 is not the
only gene that alters the myotonic phenotype in DM2
patients. Bugiardini et al. [54] have described a DM2
patient with severe and early onset myotonia with-
out mutation in CLCN1 gene. However the screening
of SCN4A gene revealed a novel mutation c.215C>T
(p.Pro72Leu) localized in the cytoplasmic N-terminus.
This novel missense mutation P72L is remarkable
because it represents the first mutation described in the
cytoplasmic N terminus of Nav1.4 [54]. SCN4A codes
for Nav1.4 a voltage gate sodium channel expressed
in skeletal muscle and is another gene implicated in
myotonic disorders (Myotonia, Potassium-aggravated
OMIM 608390) [55]. The study of the biophysical
alteration of P72L by whole-cell voltage clamping in
a heterologous expression system showed the Nav1.4
mutant gain of function effect suggesting that the
mutation described may act as a modulating factor
increasing the severity of myotonia [54]. Investigation
of other DM2 patients presenting atypical phenotype
with no mutation on CLCN1 gene, leaded Meola and
collaborators to identify a DM2 patient who presented
an early severe myotonia since he was 12 years old
and mexiletine treatment resulted ineffective in reduc-
ing myotonia. Genetic analysis of SCN4A gene showed
a G2717C base exchange in exon 14 predicting an
S906T substitution. This variant is considered a benign
polymorphism however electrophysiological studies
revealed that it affects the fast and slow gating pro-
cesses [56]. Thus it is possible that the additive effect of
the DM2 mutations and the S906T polymorphism may
have created the atypical severe phenotype observed
in this patient (Meola et al., unpublished data). These

observations suggest that CLCN1 or SCN4A mutations
may contribute to exaggerate the DM2 phenotype in
these patients who could be more easily identified
and diagnosed than DM2 patients without the modifier
gene. Consequently, due to less apparent symptoms or
with absent or minimal myotonic discharged, a large
number of DM2 patients may remain undiagnosed
even in clinical centers with considerable experience
with DM2 [57].

There are few epidemiologic studies of DM2. The
exact prevalence of DM2 is not known. DM1 affects at
least 1 in 8,000 people worldwide but the prevalence
of the two types of myotonic dystrophy varies among
different geographic and ethnic populations. In most
populations DM1 appears to be more common than
DM2, however recent studies suggest that DM2 may
be as common as DM1 among people in Germany,
Poland and Finland [47, 58].

To date, DM2 mutations have been identified pre-
dominantly in European Caucasians and most patients
are of northern and eastern European descent [40, 59].
Single kindred of Afghan [49, 59] and Japanese [60]
origin have been identified. In the United States, clini-
cal experience suggests that DM2 is roughly 5-fold less
common than DM1. Haplotype analysis indicates that
the European DM2 mutations originate from a single
founder, between approximately 4,000–11,000 years
ago [40].

Pathophysiology

Although genetically distinct, DM1 and DM2 share
a common pathogenic mechanism (Fig. 2). Experimen-
tal evidence supports an RNA gain-of-function mech-
anism in which expanded CUG/CCUG-containing
transcripts accumulate in the cell nuclei as foci

Fig. 2. Common and specific postulated pathological mechanisms underlying myotonic dystrophy type 1 and type 2.
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which are responsible for the pathologic features
common to both disorders. The mutant RNAs form
imperfect double-stranded structure leading to dereg-
ulation of several RNA binding factors, including the
muscleblind-like proteins (MBNLs) and RNA-binding
protein 1 (CUGBP1) which are antagonist regulators
of alternative splicing [61–65]. The functional loss
of MBNL1, due to its sequestration in mutant RNA
foci, or the upregulation of CUGBP1 result in abnor-
mal expression of embryonic isoforms in adult tissues.
The alteration of pre-mRNA processing strengthens
the hypothesis of a spliceopathy which leads to an
expression of isoforms inadequate for a particular tis-
sue or developmental stage [66]. For example, among
the symptoms of DM2, myotonia and insulin resis-
tance are correlated with the disruption of the muscle
chloride channel ClC-1 and the insulin receptor (IR)
alternative splicing, respectively [30, 31, 67, 68].

An open question in the field of DM is to clarify
the pathomechanism underlying the phenotypic
differences between DM1 and DM2. Clinical signs
in DM1 and DM2 are similar, but there are some
distinguishing features. This suggests that other
cellular and molecular pathways are involved besides
the shared toxic-RNA gain of function hypothesized.
Disease-specific manifestations may result from
differences in spatial and temporal expression patterns
of DMPK and CNBP genes. Similarly, changes in
the expression of neighbouring genes may define
disease-specific manifestations. While it is clear
that MBNL1 is depleted from nucleoplasm through
recruitment into ribonuclear inclusions both in DM1
and DM2 even when clinical symptoms and muscle
alterations are very mild, CUGBP1 overexpression
has been clearly demonstrated in DM1 but not in DM2
muscle biopsies [69–73]. Thus, the role of CUGBP1
in DM2 is particularly intriguing with contradictory
results being reported [39, 69, 71, 74, 75]. CUGBP1
may have a role in the pathogenesis of splicing
abnormalities because it has been demonstrated that
is overexpressed in DM1 myoblasts, skeletal muscle
and heart tissues [30, 71, 72] due to PKC-mediated
hyperphosphorylation and subsequent protein stabil-
isation and upregulation [73]. However, in a recent
work on the expression of CUGBP1 in human skeletal
muscle from DM1 and DM2 patients, Cardani et al.
[69] demonstrate that this protein is overexpressed in
muscle biopsies from patients affected by the adult
classical form of DM1 but not in muscle from DM2
patients suggesting that sequestration of MBNL1
evidently has a central role in splicing misregulation in
both types of DM while in DM1 CUGBP1 overexpres-

sion might be an additional pathogenic mechanism not
shared by DM2.

Another possible explanation for the clinical dif-
ferences between the two DM types is the reduction
of DMPK or CNBP protein levels in DM1 and DM2
respectively [3, 69, 76–79]. The transcripts from the
mutant DMPK allele are retained in the nucleus and
therefore are not efficiently translated leading to a par-
tial (around 50%) reduction of DMPK protein [77,
79]. However, while Dmpk knockout young mice
do not develop a multisystemic phenotype mimick-
ing myotonic dystrophy [80–82], reduction of CNBP
levels is sufficient to produce multiorgan symptoms
resembling those of DM as observed in heterozygous
Cnbp+/− knockout mice [83]. Some studies also sug-
gest that CCTG expansions cause reduction of CNBP
protein in DM2 patients, but there are conflicting data
on this point [39, 69, 75, 76, 78]. Reduction of CNBP
expression has been reported in skeletal muscle tissue
and cells from DM2 patients compared with those from
non-DM2 subjects, including patients with DM1, thus
explaining some of the phenotypic disparities between
the two types of DM [69, 75, 78]. Although these
effects may contribute to pathogenesis at some level,
they do not appear to be the major determinants of
disease.

Spliceopathy is a fundamental molecular feature of
myotonic dystrophies shared by both DM1 and DM2,
and a recent global analysis of alternative splicing in
DM muscle biopsy specimens demonstrate a similar
pattern of altered gene expression in DM2 as in DM1
[84]. More recently, Perfetti et al. [85] validates many
known DM2-affected splice events and further expands
its number identifying new aberrant splicing events
in DM2 skeletal muscle. Moreover, this study also
demonstrated that the affected genes are involved in
numerous pathways and networks important for mus-
cle physio-pathology, suggesting that the identified
variants may contribute to DM2 pathogenesis [85]. In
DM2 patients, symptoms such as muscle weakness and
myotonia undergo progressive worsening with increas-
ing age, however, this aggravation is not accompanied
by a worsening of alternative splicing of several genes
[39].

Recent data demonstrate that MBNL1-containing
foci in DM2 cells also colocalize with snRNPs and
hnRNPs, splicing factors involved in the early phases
of transcript processing [86]. Moreover, in a study
in situ by immunoelectron microscopy on muscle
biopsies from DM and healthy subjects, an accumu-
lation of splicing and cleavage factors in myonuclei of
both DM1 and DM2 patients has been demonstrated
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suggesting an impairment of post-transcriptional pre-
mRNA pathways which could lead to the multiple
pathological dysfunctions observed in dystrophic
patients [87].

In addition to splicing defects, deregulation of
miRNA may be an important marker or additional
mechanism of pathophysiology in myotonic dystro-
phies. Indeed, it has been demonstrated that miRNA
expression and intracellular distribution is deregulated
in many human diseases [88–93] and the highly reg-
ulated pathways of miRNA has been demonstrated to
be altered in skeletal muscle in both DM1 and DM2
[90–92]. However, the miRNA profiling appears to be
different in these two diseases potentially contribut-
ing to the differences observable between these two
DM types. A subset of 11 miRNAs that are specifi-
cally deregulated in skeletal muscle of DM2 patients
has been identified, however, only miR-193b-3p, miR-
208a and miR-381 were similarly modulated in DM1
patients [92].

Recently a novel molecular mechanism that may
contribute to the pathogenesis of several microsatellite
expansion disorders, including myotonic dystrophies,
has been described by Zu and collaborators [94]. RNA
transcripts containing expanded CAG or CUG repeats
can be translated in absence of a starting ATG and
this non–canonical translation, called Repeat Associ-
ated Non-ATG translation (RAN-translation) occurs
across expanded repeats in all reading frames to pro-
duce potentially toxic homopolymeric proteins [94,
95]. In DM1 RAN translation results in the accumula-
tion of polyglutamine expansion proteins in previously
established DM1 mouse models and human tissue
[94]. Antibodies developed specifically against DM1
polyGln proteins, detect polyGln nuclear aggregates
in DM1 mouse tissues and DM1 patient cardiac
myocytes, leukocytes, and myoblasts not detectable
in control tissues. RAN-translation products appear to
be toxic to cells and may contribute to DM1 pathol-
ogy. More recently RAN translation has been found to
occur across intronic DM2 CCUG transcripts produc-
ing a tetra-repeat expansion protein with a repeating
Leu-Pro-Ala-Cys (LPAC) motif. Moreover an LPAC
antibody shows strong immunostaining in human DM2
autopsy brain but not in controls. Immunostaining has
been observed in neurons, astrocytes and glia in frontal
cortex, hippocampus and basal ganglia. These data
suggest that RAN translation may be common to both
DM1 and DM2 and that RAN proteins may be respon-
sible for some of the CNS features of DM [96].

Another open question in the field of DM is the cause
for the muscle weakness and wasting. Patients with

DM2, in contrast to patients with classic DM1, usu-
ally have only mild muscle wasting. However, there
is an uncommon, adult-onset variant of DM2, termed
proximal myotonic dystrophy [8] that causes severe
wasting of proximal arm and thigh muscles as the ill-
ness progresses. Recently, muscle weakness has been
associated with bridging integrator 1 (BIN1) miss-
plicing both in in DM1 and DM2 [97]. BIN1 is a
lipid-binding protein that is involved in the biogenesis
of the T tubule network in muscle and in the regula-
tion of the excitation–contraction coupling. Moreover,
to date there are no definitive explanation for the
histopathological alterations observed in DM skele-
tal muscle which include fiber atrophy-hypertrophy,
increased number of central nuclei, and presence of
fibers with nuclear clumps. A possible explanation
is the combined effects of misregulated splicing of
several genes involved in calcium regulation and EC
coupling, such as RyR1, SERCA and CaV1.1, which
may contribute to the muscle degeneration in DM
[98–100]. In a recent study Vihola and collaborators
[101] have investigated the molecular basis of muscle
weakness and wasting and the differences in muscle
histopathology between DM1 and DM2. They identi-
fied differences in muscle-gene expression and splicing
between DM1 and DM2 patients. In particular, the
aberrant splicing isoform of TNNT3 is twice as fre-
quent in DM2 compared to DM1. Moreover, in DM1
and DM2 a different protein expression pattern has
been found in the highly atrophic fibers [101].

The presence of very atrophic fibers in DM skele-
tal muscle has been attributed to defects in myoblast
fusion or differentiation and premature senescence.
However, in vitro primary myoblasts obtained from
muscle of adult DM patients do not show evident mor-
phological abnormalities and are capable of normally
differentiating [74, 102, 103]. Conversely, recent data
demonstrated that DM2 myoblasts are characterized
by senescence related features mainly consisting in the
early appearance of cytological alterations and impair-
ment of the pre-mRNA maturation pathways [104].
Moreover, Renna et al. [105] reported that DM1 and
DM2 myoblasts are characterized by a premature pro-
liferative growth arrest compared to healthy myoblasts
through a mechanism similar to senescence since both
DM1 and DM2 cells expressed biomarkers usually
observed in senescent cells. These data suggest that the
in vivo regenerative capacity of satellite cells in DM1
and DM2 muscle might be constitutively impaired
[105]. Furthermore, contrary to DM1, the p16 path-
way is not responsible for the premature growth arrest
observed in DM2 myoblasts which stop dividing with
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telomeres shorter than controls suggesting that CCTG
expansion might interfere with the telomere homeosta-
sis in DM2 cells [105–108]. Hence, it appears that
CTG and CCTG expansions trigger in vitro a mech-
anism of myoblast premature senescence through two
different pathways, which could explain the different
histological alterations observed between DM1 and
DM2 skeletal muscle as for example the selective type
2 fibre atrophy present in DM2 muscle.

Diagnosis

The wide clinical spectrum phenotype makes the
DM2 clinical diagnosis very difficult. Moreover, con-
trary to DM1, conventional PCR and Southern blot
analysis are not adequate for a definitive molecular
diagnosis in DM2 due to the extremely large size and
somatic instability of the expansion mutation [10, 40].
The copy number of DM2 CCTG is below 30 in pheno-
typically normal individuals and up 11.000 in patients
[109]. A complex genotyping diagnostic procedure is
commonly used consisting of a three step molecular
protocol [13, 47]. A conventional PCR assay across
the mutation locus using probes binding to mutation
flanking sequences, called short-range PCR, can be
used for mutation exclusion. In all DM2 patients, a sin-
gle PCR product representing the normal allele can be
identified because the DNA polymerase fail to amplify
the mutant allele due to length and stable secondary
structure. All individuals showing two alleles for the
marker are excluded from having the DM2 mutation,
however, identical allele size on two normal alleles
occurs in 12% of the population. All patients appear-
ing to have one allele need further molecular analysis to
determine whether or not they carry a DM2 expansion.
Because of the incomplete sensitivity of Southern anal-
ysis, a long-range PCR method amplifying the CCTG
repeat by PCR and probing the resultant product with
an internal probe to assure specificity can be used [13,
110]. This protocol is time-consuming and requires
careful evaluation of results, due to somatic length
mosaicism that can give very weak and smeared sig-
nals, thus limiting the sensibility of the technique with
the possibility of false negative results. Several alterna-
tive and highly sensitive methods have been developed
for DM2 mutation verification including a tetraplet-
primed PCR [111]. A modified Southern method using
field–inversion electrophoresis (FIGE) is particularly
efficient in determining the mutation length [40]. How-
ever, these methods are still too long and complicated
to be part of routine laboratory diagnostics. Recently, a
new genetic test “Myotonic Dystrophy type 2 kit-FL”,

based on the combination of Long-PCR and South-
ern Blot Analysis, has been developed and validated to
identify the DM2 disease. The advantage of this assay
is that all reagents are pre-packaged and ready to use.
The analytical results, evaluated on a total of 106 DNA
samples, in terms of sensitivity, specificity and accu-
racy were very high (Meola et al, unpublished data).
Nevertheless, ribonuclear foci and splicing changes are
present before any histological abnormality manifes-
tations [31, 52, 112]. This could be important for an
early diagnosis before the spectrum of clinical signs
of muscle disease appears. So a more practical tool
to obtain a definitive DM2 diagnosis in few hours is
represented by in situ hybridization (ISH) which is
a method that allows the direct visualization of the
mutant RNA on muscle biopsy [113, 114]. By using
specific probes for CCUG expansions, it permits a dif-
ferential diagnosis between DM2 and DM1. Therefore
it may be a simple approach for DM2 diagnosis, which
can be performed in a rapid and sensitive manner in any
pathology laboratory. ISH with CAGG probe should be
considered as a routine laboratory procedure to confirm
or refute the clinical suspicion of DM2. It should also
be applied routinely to screen patients with myotonic
disorders [113, 114]. Since ISH technique has a lim-
ited sensitivity towards short pathogenic repeats, the
diagnostic methods based on genomic DNA have the
first priority and the muscle biopsy is performed only
in special cases as a complimentary tool for a defini-
tive biomolecular diagnosis of DM2 [115]. Moreover,
since MBNL1 is sequestered by mutant RNA foci, it
is possible to visualize the nuclear accumulation of
MBNL1 by immunofluorescence on muscle sections.
However, although MBNL1 represents a histopatho-
logical marker both of DM1 and DM2, it does not allow
to distinguish between these two pathologies [116].

Management

No treatments are currently available that funda-
mentally alter the course of myotonic dystrophies. The
management of DM is based on genetic counselling,
preserving function and independence, preventing
cardiopulmonary complications and providing symp-
tomatic treatment of myotonia, hypersomnolence, and
pain. In general the management of DM2 is similar
to that of DM1, but there is less need for support-
ive care, such as bracing, scooters, or wheelchairs.
Cataracts require monitoring, and serial monitoring
with an electrocardiogram is necessary to check for
covert dysrhythmia. Disturbances in cardiac rhythm
are less frequent in DM2, but abnormalities do occur
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[13, 19–21]. Hypogonadism and insulin resistance
need monitoring as in DM1. Myotonia tends to be less
marked and less troublesome in DM2, but in specific
circumstances antimyotonia therapy is helpful, espe-
cially if muscle stiffness is frequent and persistent or if
pain is prominent. Cognitive difficulties also occur in
DM2 as in DM1 but become manifest in adult life and
appear to be associated with decreased cerebral blood
flow to frontal and anterior temporal lobes [25, 117]
and decreased brain volume [118, 119]. The changes
are less severe than in DM1. Their etiology is unknown
but may relate to the toxic effect of intranuclear accu-
mulations of abnormally expanded RNA. Management
of these brain symptoms is similar to that for DM1.

A frequent and difficult problem in DM2 is the
peculiar muscle pain described earlier [16, 17]. The
exact mechanism underlying the pain is unknown,
and there is no well-established, effective treatment.
Carbamazepine or mexiletine along with nonsteroidal
anti-inflammatory medications or tylenol ameliorate
this pain in some patients.
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