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Abstract
Objective
We sought to determine whether genetic risk modifies the effect of environmental risk factors
for multiple sclerosis (MS). To test this hypothesis, we tested for statistical interaction between
polygenic risk scores (PRS) capturing genetic susceptibility to MS and environmental risk
factors for MS in UK Biobank.

Methods
People with MS were identified within UK Biobank using ICD-10–coded MS or self-report.
Associations between environmental risk factors and MS risk were quantified with a case-
control design using multivariable logistic regression. PRS were derived using the clumping-
and-thresholding approach with external weights from the largest genome-wide association
study of MS. Separate scores were created including major histocompatibility complex (MHC)
(PRSMHC) and excluding (PRSnon-MHC) the MHC locus. The best-performing PRS were
identified in 30% of the cohort and validated in the remaining 70%. Interaction between
environmental and genetic risk factors was quantified using the attributable proportion due to
interaction (AP) and multiplicative interaction.

Results
Data were available for 2,250 people with MS and 486,000 controls. Childhood obesity, earlier
age at menarche, and smoking were associated with MS. The optimal PRS were strongly
associated with MS in the validation cohort (PRSMHC: Nagelkerke’s pseudo-R

2 0.033, p = 3.92
× 10−111; PRSnon-MHC: Nagelkerke’s pseudo-R

2 0.013, p = 3.73 × 10−43). There was strong
evidence of interaction between polygenic risk for MS and childhood obesity (PRSMHC: AP =
0.17, 95% CI 0.06–0.25, p = 0.004; PRSnon-MHC: AP = 0.17, 95% CI 0.06–0.27, p = 0.006).

Conclusions
This study provides novel evidence for an interaction between childhood obesity and a high
burden of autosomal genetic risk. These findings may have significant implications for our
understanding of MS biology and inform targeted prevention strategies.
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Susceptibility to multiple sclerosis (MS) is multifactorial with
genetic and environmental determinants.1-3 Environmental
exposures associated with MS risk include smoking, solvent
exposure, childhood obesity, vitamin D deficiency, increasing
latitude, and infectious mononucleosis (IM).2,3 The largest
genome-wide association study (GWAS) meta-analysis of MS
risk performed by the International Multiple Sclerosis Ge-
netics Consortium (IMSGC) revealed 233 independent sig-
nals that account for ;48% of the estimated heritability of
MS.1 Attempts to model MS risk using polygenic risk scores
(PRS) have had some success,4-6 supporting the view that MS
susceptibility is influenced by common variants across the
genome, in addition to the contribution from the major his-
tocompatibility complex (MHC).

A large proportion of MS risk remains unexplained despite
the well-described genetic architecture.1 One potential ex-
planation for this “missing risk” is the presence of gene-
environment interactions, whereby the effect of certain genes
or variants may depend on exposure to environmental risk
factors.

Evidence from Scandinavian and North American cohorts
suggests that environmental influences on MS risk can be
modified by the HLA genotype. The deleterious effects of
childhood obesity, smoking, IM, and solvent exposure on MS
risk are potentiated among carriers of the HLA DRB1*15
allele and those lacking the protective HLA A*02 genotype.7-
10 It is not currently known whether gene-environment in-
teractions in MS extend beyond the HLA locus.11,12

In this work, we harnessed the power of UK Biobank to
extend our understanding of how common genetic variation
interacts with environmental factors associated with MS de-
velopment. We achieved this by first performing a large case-
control study to confirm the role of established risk factors in
this cohort and by developing and validating PRS for MS,
which both included and excluded the MHC. Finally, we used
these data to look for potential interactions between poly-
genic risk and environmental factors associated with MS.

Methods
Data Sources
UK Biobank is a longitudinal cohort study described in detail
elsewhere.13 In brief, participants between the ages of 40 and
69 years were recruited between 2006 and 2010 from across
the United Kingdom. Participants underwent genotyping,
donated body fluid samples, and answered a range of

questions about lifestyle, environmental, and demographic
factors. Health records were linked to participants using
Hospital Episode Statistics (HES), primary care data, and the
death register. Phenotype data are composed of survey data,
linked health care records, anthropometric measurements,
and a variety of other biochemical and imaging data (which
were not used in this study).

Identification of Cases and Controls
Cases were defined by ICD-coded diagnoses (ICD-10-G35;
ICD-9-3409), self-reported MS diagnosis, and a GP-coded
diagnosis, or through death registration. Age at diagnosis was
determined using the first recorded MS diagnostic code (see
supplementary methods for further details, links.lww.com/
NXI/A488). Controls were unmatched UK Biobank partici-
pants without a coded diagnosis of MS. Individuals diagnosed
with MS before age 20 years were excluded because of diffi-
culties establishing the timing of exposures relative to MS
onset. Furthermore, the age of 20 years has been used in
previous studies and excludes a minimal number of MS cases,
and this is safely outside of the range of normal pubertal
timing. Participant flow through the study is depicted in figure
e-1, links.lww.com/NXI/A487; diagnostic codes used are
provided in supplementary data (table e-1, links.lww.com/
NXI/A488). To ensure that our results were robust to the
definition of MS, we conducted a sensitivity analysis
restricting the analysis to participants whose MS diagnosis
was corroborated by at least 2 sources (out of self-report, HES
code, GP report, and death register; see table e-2, links.lww.
com/NXI/A488).

Genotype Data
Genotyping and quality control protocols are described in
detail elsewhere.14 Imputed HLA alleles were provided by UK
Biobank. HLA alleles were imputed to four-digit resolution
using the HLA*IMP:02 software with a multipopulation ref-
erence panel (see biobank.ctsu.ox.ac.uk/crystal/crystal/docs/
HLA_imputation.pdf). We extracted each participant’s allelic
dosage for the MS risk allele HLA-DRB1*15:01 and the
protective allele HLA-A*02:01 by thresholding posterior al-
lele probabilities at 0.7 as suggested by UK Biobank. These 2
HLA alleles were used because they have the largest effect
sizes across multiple studies.2 Genetic principal components
(PCs) were supplied by UK Biobank (field ID 22009).

Definition of Exposures
Exposures were selected if they pertained to early life/
adolescence (to mitigate the risk of reverse causation) and
were previously associated with MS in at least one other ob-
servational cohort. Selected exposures were captured from

Glossary
AP = attributable proportion; GWAS = genome-wide association study; HES = Hospital Episode Statistics; IM = infectious
mononucleosis; IMSGC = International Multiple Sclerosis Genetics Consortium;MHC = major histocompatibility complex;
MS = multiple sclerosis; PC = principal component; PRS = polygenic risk score.
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baseline data recorded in UKB, along with age, ethnicity, sex,
birth latitude, and Townsend deprivation index at recruitment
(table e-1, links.lww.com/NXI/A488).

We examined the following 10 early life/environmental ex-
posures: month of birth, having been breastfed as a child,
childhood body size at age 10 years (a proxy for childhood
obesity15,16), exposure to maternal smoking around the time
of birth, age at menarche (females), age at voice breaking
(males), age at first sexual intercourse, smoking status before
age 20 years, birth weight, and infectious mononucleosis be-
fore age 20 years. Where multiple data points were available
for a participant, the first recorded reading was used.

Childhood body size was dichotomized, and participants were
classified as “not overweight” if they answered “thinner” or
“average” and “overweight” if they answered “plumper.”
Smoking status was characterized as “ever” or “never”
smoking. Age at menarche was treated as a continuous vari-
able, and analyses regarding menarche were restricted to
women. IM status before age 20 years was defined using the
source of first report fields. Participants whose IM diagnosis
was reported after age 20 years were coded as having not had
IM. Vitamin D status was not included, as vitamin D levels are
only available from the initial visit (i.e., at study recruitment),
which in most cases was subsequent to diagnosis.

Case-Control Study
For each risk factor, we built a multivariable logistic regression
model modeling MS status as the outcome, with age, sex,
ethnicity, current deprivation status, and birth latitude as
potential confounding covariates.17

The strength of evidence for association with MS was de-
termining using the model likelihood ratio, comparing the full
model with a null model comprising only the confounding
covariates. Strong evidence for association was defined using a
Bonferroni-adjusted p-value threshold to maintain an alpha of
0.05 (pthreshold = 0.05/10 = 0.005). Risk factors robustly as-
sociated with MS at alpha < 0.05 were then combined in a
multivariable model including the most potent genetic risk
factors, HLA DRB1*15:01 and HLA A*02:01, to assess
whether their effects showed evidence of independent asso-
ciation with MS.

Development of PRS for MS
A variety of PRS were created using the clumping-and-
thresholding approach with external weights derived from the
IMSGC discovery stage meta-analysis (supplementary
methods, links.lww.com/NXI/A488). We created scores both
including the MHC region (PRSMHC) and excluding this
region (PRSnon-MHC). To validate the PRS, the data set was
divided randomly into a training set (30%, nMS = 589, ncontrol
= 112,724) and a testing set (70%, nMS = 1,237, ncontrol =
263,159, figure e-1, links.lww.com/NXI/A487). To de-
termine the optimal PRS, we constructed multivariable lo-
gistic regression models for each PRS with MS status as the

outcome with age, sex, Townsend deprivation index, and the
first 4 genetic PCs as confounding covariates. For the sensi-
tivity analysis excluding MS cases with only one source of
diagnostic code report, MS case numbers were 395 (training
set) and 871 (testing set).

PRS performance was evaluated using Nagelkerke’s pseudo-
R2 metric, which is analogous to the R2 derived from linear
regression models. Nagelkerke’s pseudo-R2 was calculated
comparing the full model including the PRS with a null model
comprising the confounding covariates alone. This procedure
was repeated for all 64 scores (table e-3, links.lww.com/NXI/
A488). Altering the number of PCs adjusted for did not
substantially alter the results (figures e-2 and e-3, links.lww.
com/NXI/A487). Further validation is described in the sup-
plementary methods, links.lww.com/NXI/A488.

PRS × Environment Interactions
The optimal PRSMHC and PRSnon-MHC were used to look for
evidence of genome-wide gene-environment interactions us-
ing exposures identified as significantly associated with MS in
the case-control study. All interaction analyses were con-
ducted in the testing set to avoid PRS overfitting. Interaction
was assessed on the additive and multiplicative scales (sup-
plementary methods for full details, links.lww.com/NXI/
A488). Multiplicative interaction was quantified using the
interaction term beta from logistic models, and additive in-
teraction was quantified using the attributable proportion due
to interaction (AP).

HLA × PRS Interactions
To determine whether non-MHC genetic risk of MS modu-
lates the effects of the most potentMHC risk allele, DRB1*15:
01, we calculated additive and multiplicative interaction sta-
tistics using the methods described previously, considering
both the DRB 1*15:01 genotype (dominant-coding) and the
non-MHC PRS as independent covariates.

Association of PRS With Disease Measures
To determine whether theMS-PRS was associated with age at
first report and claiming of disability benefits, we constructed
regression models in the testing set. For age at first MS di-
agnostic code report, values were normalized using the
inverse-rank normalization. Linear regression models were
constructed, using age, sex, Townsend score, and the first 4
PCs as covariates. Claiming of disability benefits was assessed
using the UKB field “Attendance/disability/mobility allow-
ance” (field 6,146) and recoded this as a binary variable
(i.e., participants were coded as “1” if they claimed any of the
blue badge, attendance allowance, or disability living allow-
ance and as “0” if not). Logistic regression models were then
constructed using the same covariates as above (age, sex,
Townsend score, and first 4 genetic PCs).

Ethical Approval
This work was performed using data from UK Biobank (REC
approval 11/NW/0382). All participants gave informed
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Table 1 Demographic Characteristics of Included Participants and Results From the Case-Control Study

Trait Controls (N = 486,000) Cases (N = 2,250) OR (95% CI) Wald test p value Likelihood ratio p value

Sex

Female 263,058 (54.13%) 1,635 (72.67%)

Male 222,942 (45.87%) 615 (27.33%)

Age 56.54 (8.09) 55.17 (7.66)

Birth latitude 360,093.76 (162,174.29) 361,960.6 (168,566.29)

Age completed full-time education 16.72 (2.33) 16.96 (2.49)

Townsend deprivation index −1.31 (3.09) −1.38 (3.06)

Ethnic background

White 457,927 (94.69%) 2,193 (98.08%)

Non-White 25,664 (5.31%) 43 (1.92%)

HLA A*02:01 alleles

0 264,736 (54.47%) 1,431 (63.6%)

1 186,009 (38.27%) 704 (31.29%)

2 35,255 (7.25%) 115 (5.11%)

HLA DRB1*15:01 alleles

0 360,423 (74.16%) 1,144 (50.84%)

1 115,763 (23.82%) 948 (42.13%)

2 9,814 (2.02%) 158 (7.02%)

Country of birth

UK 446,343 (92.09%) 2,151 (95.81%)

Non-UK 38,314 (7.91%) 94 (4.19%)

Age had sexual intercourse 19.11 (3.89) 18.72 (3.81) 0.98 (0.97–1) 0.015709 0.013768

Age at menarche 12.97 (1.62) 12.8 (1.66) 0.94 (0.91–0.97) 0.000116 0.00011

Birth weight (kg) 3.32 (0.67) 3.28 (0.68) 0.98 (0.9–1.07) 0.603,259 0.603,452

Month of birth 0.931,194

April 41,716 (8.58%) 188 (8.36%) REF REF
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Table 1 Demographic Characteristics of Included Participants and Results From the Case-Control Study (continued)

Trait Controls (N = 486,000) Cases (N = 2,250) OR (95% CI) Wald test p value Likelihood ratio p value

August 40,064 (8.24%) 194 (8.62%) 1.06 (0.86–1.3) 0.610,756

December 39,042 (8.03%) 168 (7.47%) 0.94 (0.76–1.17) 0.59689

February 38,673 (7.96%) 178 (7.91%) 0.98 (0.8–1.22) 0.888,063

January 41,051 (8.45%) 175 (7.78%) 0.92 (0.75–1.14) 0.460,529

July 41,190 (8.48%) 190 (8.44%) 0.97 (0.79–1.2) 0.812,077

June 40,979 (8.43%) 185 (8.22%) 0.95 (0.77–1.18) 0.666,742

March 43,654 (8.98%) 203 (9.02%) 1.02 (0.83–1.25) 0.883,078

May 43,657 (8.98%) 204 (9.07%) 0.99 (0.81–1.22) 0.928,091

November 37,124 (7.64%) 178 (7.91%) 1.03 (0.83–1.27) 0.800,849

October 39,247 (8.08%) 201 (8.93%) 1.11 (0.9–1.36) 0.327,942

September 39,603 (8.15%) 186 (8.27%) 1.04 (0.85–1.29) 0.681,762

Breastfed as a baby 0.731,403

No 102,506 (27.61%) 565 (30.86%) REF REF

Yes 268,781 (72.39%) 1,266 (69.14%) 0.98 (0.88–1.09) 0.731,136

Comparative body size aged 10 years 7.02E-06

Thinner 158,610 (42.72%) 609 (33.26%) REF REF

About average 241,759 (65.11%) 1,162 (63.46%) 1.19 (1.08–1.32) 0.000697

Plumper 75,366 (20.3%) 438 (23.92%) 1.36 (1.2–1.55) 2.21E-06

Exposed to maternal smoking 0.329,681

No 296,291 (70.73%) 1,368 (70.55%) REF REF

Yes 122,618 (29.27%) 571 (29.45%) 0.95 (0.86–1.05) 0.331,253

Relative age at voice breaking (males only) 0.132,642

About average age 182,848 (89.71%) 504 (87.96%) REF REF

Younger than average 8,924 (4.38%) 35 (6.11%) 1.44 (1.02–2.03) 0.038506

Older than average 12,043 (5.91%) 34 (5.93%) 0.95 (0.66–1.37) 0.776,222

Smoking status before age 20 years 0.000915
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consent on Biobank registration and are free to withdraw from
the study at any point, at which point their data are censored
and cannot be included in further analyses.

Computing
This research was supported by the High-Performance
Cluster computing network hosted by Queen Mary Univer-
sity of London.18 Statistical analyses were performed in R
version 3.6.1. Extraction of European individuals from the
1,000 genomes reference genome was conducted using
vcftools. Construction of the PRS, application of the PRS to
individuals, and quality control were performed in PLINK 1.9
and PLINK2.

Data Availability
UK Biobank data are available on request from biobank.ctsu.
ox.ac.uk/crystal/. MS IMSGC GWAS data are available on
request from imsgc.net/?page_id=31. All codes used in this
study are available on GitHub (@benjacobs123456).

Results
Population Demographics
Phenotype and genotype data were available for 488,276 UK
Biobank participants comprising 2,276 people with MS and
486,000 unmatched controls. The median age at first MS report
was 43.5 years (IQR16.1, figure e-4, links.lww.com/NXI/A487).
Demographic characteristics are shown in table 1. Characteristics
of individuals with MS were consistent with published obser-
vational data (72.7% female, 98.1% White British). One thou-
sand six hundred fifty-five individuals were included in the
sensitivity analysis (table e-2, links.lww.com/NXI/A488).

Exposures Associated With MS in UK Biobank
There was strong evidence for association between 3 of the 10
risk factors examined andMS (pBonf < 0.05): higher childhood
body size at age 10 years (“plumper than average” vs “thinner
than average”: OR 1.36, 95% CI 1.20–1.55), smoking before
age 20 years (OR 1.21, 95% CI 1.08–1.34), and earlier
menarche (OR 0.94, 95% CI 0.91–0.97, figure 1, table 1). The
effects of these 3 risk factors remained similar in a combined
model incorporating HLA DRB1*15:01 and HLA A*02:01
genotype (table e-4, links.lww.com/NXI/A488).

Development and Validation of PRS for MS
The optimal PRSMHC and PRSnon-MHC explained 3.5% and
1.3% of MS risk in the training set, respectively (figure 2a,
table e-3, links.lww.com/NXI/A488, figures e-2 and e-3, links.
lww.com/NXI/A487). Both scores were strongly associated
with MS in the testing set (PRSMHC: Nagelkerke’s pseudo-R

2

0.033, p = 3.92 × 10−111; PRSnon-MHC: Nagelkerke’s pseudo-
R2 0.013, p = 3.73 × 10−43, figure 2, table e-5, links.lww.com/
NXI/A488). Both scores were reasonably well calibrated
(figure 3A) with good discriminative performance (AUCMHC

0.71, AUCnon-MHC 0.67, AUCnull 0.63; figure 3B). There was
no evidence of association between the PRSMHC or PRSnon-
MHC and either age at MS report (figure 3, C and D) orTa
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claiming of disability benefits (pMHC = 0.44, pnon-MHC = 0.96,
figure e-5, links.lww.com/NXI/A487).

PRS Interactions With Environmental Risk
Factors and DRB1*15:01
We found strong evidence of interaction on the additive scale
between the PRSMHC and PRSnon-MHC and childhood body
size (PRSMHC: AP = 0.17, 95% CI 0.06–0.25, p = 0.004;
PRSnon-MHC: AP = 0.17, 95% CI 0.06–0.27, p = 0.006). We
foundweaker evidence for interaction on this scale between age
at menarche and the PRSMHC (AP = −0.05, 95% CI −0.10 to
0.00, p = 0.033; figure 4A, table 2), consistent with a previous
report,19 but this estimate did not surpass the multiple testing
threshold (table 2). There was a lack of strong evidence for
other pairwise additive interactions (figure 4) or for multipli-
cative interactions (figure e-6, links.lww.com/NXI/A487, table
e-6, links.lww.com/NXI/A488). There was evidence of addi-
tive interaction between the PRSnon-MHC and HLA DRB1*15:
01 carriage (AP 0.24, 95% CI 0.17–0.30, p = 0.0002, figure 4B)
but no evidence of multiplicative interaction (beta 0.060, p =
0.30). We found similar results with a more stringent case
definition (only counting individuals as having MS if their di-
agnosis was supported by more than 1 source of report; table
e-7, links.lww.com/NXI/A488, figures e-7, e-8, e-9, links.lww.
com/NXI/A487). All CIs for the estimates overlapped be-
tween the primary and sensitivity analysis.

Discussion
In this study, we harnessed the scale and breadth of UK Biobank
to study >2000 MS cases and >480,000 controls, providing the
first evidence that the effect of an established risk factor for MS

(childhood obesity) may be potentiated by an individual’s
genome-wide genetic risk for MS. We show that this effect
persists even when theMHC locus is excluded from the PRS. By
using data from the largest GWAS of MS susceptibility to derive
and validate PRS for MS, both incorporating and excluding the
MHC region, we demonstrate supportive evidence for a gene-
gene interaction. This work shows that the effect of DRB1*15:01
onMS susceptibility may be potentiated among individuals with
a high background genetic risk for MS in this cohort. To our
knowledge, our study is the first to demonstrate that the poly-
genic risk of an individual for MS may alter the effect of estab-
lished environmental risk factors on their risk of MS.3 These
findings are especially interesting in the context of evidence from
mendelian randomization studies supporting a causal role for
childhood obesity in the pathogenesis of MS.20,21

Previous studies of gene-environment interactions in MS have
focused on interactions between HLA alleles and environmental
risk factors. Specifically, evidence suggests that carriage of high-
risk HLA haplotypes containing DRB1*15:01 and lacking A*02:
01 enhances the deleterious association of childhood obesity,
smoking, infectious mononucleosis, and solvent exposure with
MS risk.2,7-9 The intuitive biological explanation for such inter-
actions is that high-risk HLA alleles may promote presentation of
epitopes, e.g., from cigarette smoke or within adipose tissue, in
such a way that mimics myelin peptides and triggers CNS-
directed autoimmunity. Beyond the MHC, there has been rela-
tively limited study of how genetic variation modulates the effect
of environmental risk factors for MS,11,12 probably in large part
because of the relatively small number of data sets with sufficient
power, deep phenotyping, and high-quality genetic data required
for such analyses.

Figure 1 ORs and 95% CIs for the Association of Each Exposure With MS

ORs and CIs are from the output of a multivariable logistic regression with the following covariates: age, sex, ethnicity, birth latitude, current deprivation
status, and the exposure in question. For menarche (females only) and voice breaking (males only), sex was not included as a covariate.
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In this study, we created 64 individual PRS, both including
and excluding the MHC locus on chromosome 6, which is the
strongest single genetic determinant of MS risk and accounts
for;20% of the SNP heritability of MS in Europeans.1 Both
the non-MHC and MHC PRS were strongly associated with
MS risk in both training and testing sets. The non-MHC PRS
in this study captured a small proportion of overall MS liability
but was robustly associated with MS. Previous efforts using
the PRS from the IMSGC explained up to;3% of variance.5

The best-performing non-MHC PRS in this study explained
;1% of MS variance. This discrepancy could be explained by
several factors, including the relatively low number of cases in
UK Biobank, the possibility of missed cases, the possibility of
controls misclassified as cases, differences in population
structure, restriction according to self-declared ethnicity with
an additional genetic PC analysis, and some SNPs not being
available and/or failing QC checks in Biobank. Nevertheless,
despite low overall variance, the validity of the PRS is

Figure 2 (A) Nagelkerke’s Pseudo-R2 Metric for Each of the Individual PRS Used

The R2 was calculated by comparing the model fit (age, sex, Townsend deprivation index, the first 4 genetic PCs, and PRS) vs the null model (age, sex,
Townsenddeprivation index, and the first 4 genetic PCs). A variety of p value thresholds and clumping parameterswere used to create different PRS. Note that
the clumping R2 refers to the linkage disequilibrium threshold within which variants were “clumped” and is a different quantity from the Nagelkerke pseudo-
R2. PRS are shown both including and excluding the major histocompatibility complex region. (B) ORs and 95% CIs for MS for individuals in each PRS decile
(reference: lowest decile). ORs were calculated from logistic regression models with the following covariates: age, sex, first 4 genetic PCs, and PRS. (C)
Histogram showing PRS distributions amongMS cases and controls. MHC =major histocompatibility complex; PC = principal component; PRS = polygenic risk
score.
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underscored by the monotonic relationship between the PRS
and OR of MS, the robust model fit when using the PRS to
model MS risk, reasonable discriminative capacity, and good
calibration.

There are several important caveats to this work. Most im-
portantly, although we are able to observe and measure sta-
tistical interaction—that is, deviation from a model whereby
the effects of genetic and environmental risk factors are
combined additively (in the case of the AP) or multiplicatively
(in the case of multiplicative interaction—statistical in-
teraction does not straightforwardly imply biological

interaction, nor does it necessarily imply interaction that is
meaningful in terms of real-life disease prediction or pre-
vention). We were unable to demonstrate replication in a
truly independent cohort (dividing the cohort into training
and testing sets does not yield a genuinely independent co-
hort). Our findings have limited generalizability for non-
European groups because UK Biobank participants are pre-
dominantlyWhite. MS diagnosis in this cohort is derived from
linked health care records or self-report and so do not carry
the same degree of certainty as criteria-defined MS. Equally, it
is conceivable that there are “missed” cases in the data set, that
is, individuals with MS who do not have a coded diagnosis

Figure 3 (A) Calibration Plot Showing Absolute MS Disease Probabilities Within Each PRS Decile (of the Non-MHC PRS)

Other lines represent the mean fitted disease probabilities for models incorporating the MHC PRS, the non-MHC PRS, and null covariates alone (age, sex,
deprivation, and genetic PCs). (B) Receiver operating characteristic (ROC) curves demonstrating the discriminative performance (i.e., ability to distinguish MS
cases from controls) of each PRS. The null model, MHC PRS, and non-MHC PRS are shown. (C) Scatter plots showing no relationship between MHC PRS and
normalized age at MS report. (D) Scatter plots showing no relationship between non-MHC PRS and normalized age at MS report. HLA = human leukocyte
antigen; MHC = major histocompatibility complex; PC = principal component; PRS = polygenic risk score.
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available through linked health care records. However, MS
prevalence in UK Biobank approaches the expected UK
prevalence,22 suggesting that the overwhelming majority of
individuals with MS are correctly identified. The UKB cohort

is highly selected, and is enriched for individuals living near
assessment centers, frommore affluent socioeconomic groups
than the general population, for White British individuals, and
(intentionally) for individuals older than 40 years (the

Figure 4 (A) Forest Plot Demonstrating Attributable Proportion due to Interaction (AP) and 95% CIs for Interactions
Between Environmental Exposures and Genetic Risk Factors for MS

If there is no interaction, the AP is 0. AP > 1 indi-
cates positive interaction (combined effects ex-
ceed the sum of the individual effects) and vice
versa. CIs are derived from taking the 2.5th and
97.5th percentiles of 10,000 bootstrap replicates.
(B) Forest plot demonstrating ORs and 95% CIs for
participants in the top and bottom polygenic risk
score deciles. The outcome in each case is MS
status, and the exposures of interest are child-
hood body size, age at menarche, smoking before
age 20 years, and carriage of the HLA DRB1*15:01
allele. ORs are from the output of the logistic re-
gression model of the form MS risk ; age + sex +
first 4 genetic PCs. Models were built separately
for individuals with the highest 10% of genetic risk
scores and the lowest 10% of genetic risk scores
(“top” and “bottom” decile, respectively). MHC =
major histocompatibility complex; PC = principal
component; PRS = polygenic risk score.
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minimum age at recruitment). These factors carry a risk of
introducing various biases, for example, through collider bias,
which may induce spurious associations and destroy true as-
sociations. We emphasize that these findings require replica-
tion in other independent cohorts. Our findings concerning
gene-gene interactions could be replicated in “genetics-only”
cohorts such as the IMSGC, and we would encourage others
to attempt to replicate this finding in large GWAS cohorts
(with many more cases than the ;2000 in UKB), so we can
ascertain whether it is robust.

Our failure to replicate the previously reported interactions
between HLA genotypes, smoking, and childhood body
size2,7-9 could be explained by methodologic differences
between our study and the published literature: this cohort
is likely to differ in key respects from the Kaiser Perma-
nente and EIMS cohorts in that UK Biobank participants
are predominantly White, from relatively affluent parts of
the United Kingdom, are self-selecting, and are middle-
aged (recruitment from 40 to 69 years); we control for
different covariates in our interaction analyses (using PCs
to account for ancestry), and we used imputed HLA alleles
to four-digit resolution; UK Biobank survey data are also
prone to recall bias as it is retrospective. We would in-
terpret the lack of HLA-environment interactions in our
study with caution as an absence of evidence rather than
evidence of absence.

The key variables used in this study are retrospective or
cross-sectional (e.g., MS diagnosis, self-reported body size in
childhood, and self-reported smoking status). Not only are
these subject to recall bias, but more importantly our results
are not revealing about predicting an individual’s risk of
developing MS. To demonstrate predictive power, these re-
sults need to be replicated in a longitudinal cohort. In ad-
dition, the metric we focus on, “comparative body size at age
10 years,” is clearly not a perfect proxy for childhood obesity.
Furthermore, childhood obesity itself is not equivalent with
obesity during earlier life or sustained throughout adoles-
cence. The extent and timing of obesity during childhood

and adolescence determine the importance of BMI for MS
risk, and clearly, a snapshot of body size at age 10 years does
not reflect the complexity of BMI changes during the first 20
years of life.9,20,21 Other limitations to this study include the
limited overall variance explained by optimal PRS, the rela-
tively small absolute number of people with MS, and the
imperfect nature of self-reported phenotypes. Furthermore,
some exposures known to be strongly associated with MS
were either unavailable (e.g., vitamin D status before di-
agnosis) or so underreported as to be unreliable (e.g., in-
fectious mononucleosis).

Despite these limitations, our study also has some strengths.
We use the UK Biobank data set, which provides a unique
opportunity to study gene-environment interactions on a
large scale. The vast number of controls in UKB adds sub-
stantial power. We tune and test the PRS in separate samples,
which is important to prevent overfitting of the PRS to the
data. We use an agnostic approach to develop the PRS, using a
range of clumping-and-thresholding parameters to discover
the optimal structure of the PRS, allowing us to discover a
significant improvement in predictive power from using a
large number of variants weakly associated withMS over using
strictly “GWAS-significant” hits (p < 5e-8). These optimal
parameters also reiterate the polygenic architecture of MS.

We evaluate interactions on both the multiplicative and
additive scales, as has become standard practice to avoid
missing biologically significant interactions.2 We addi-
tionally evaluate the relationship between the PRS and
proxies for clinical characteristics of MS, including age at
diagnosis and claiming of disability benefits. We evaluated
whether the effect of DRB1*15:01 is modulated by poly-
genic risk, as has been demonstrated for high-effect variants
in the LDL-R (causing familial hypercholesterolemia) and
BRCA (causing breast cancer),23 and find evidence in
support of this hypothesis. Clearly, this finding is easily
replicated in the IMSGC cohort, and we would urge cau-
tion in overinterpreting the finding without confirmation in
this far larger cohort of cases.

Table 2 AP due to Interaction, 95% CIs, and 2-Sided p Values for Each of the PRS × E Interactions Examined

Interaction AP Lower CI Upper CI p value

MHC PRS × childhood body size 0.167,074 0.062196 0.254,741 0.0042

Non-MHC PRS × childhood body size 0.173,705 0.055642 0.27455 0.005599

MHC PRS × smoking 0.0768 −0.05055 0.177,474 0.214,179

Non-MHC PRS × smoking 0.122,975 −0.00556 0.228,431 0.058794

MHC PRS × age at menarche −0.05206 −0.0968 −0.00478 0.033197

Non-MHC PRS × age at menarche 0.021061 −0.04119 0.111,064 0.551,145

Abbreviations: AP =attributable proportion; MHC = major histocompatibility complex; PRS = polygenic risk score.
CIs represent the 2.5th and 97.5th centile from 10,000 bootstrap replicates. Two-sided p values represent absolute p values with a continuity correction, that
is, for a positive AP, the p value is given as: (number of iterations <0 + 1)/(total number of iterations + 1)*2.
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This study thus provides novel evidence that childhood body
size interacts with non-HLA MS genetic risk. Demonstrating
benefit for preventive measures in rare, complex diseases such
as MS is a challenge because of the low population incidence
and the small effects of individual interventions. Power can
be enhanced by enriching for high-risk individuals and by
selecting individuals who are likely to experience the greatest
benefit from the intervention. As the effect of childhood
body size on MS risk appears greater among individuals with
a high genome-wide genetic risk, trials attempting to dem-
onstrate the benefit of targeting childhood obesity may
benefit from risk-stratifying individuals using this approach.
Further efforts are required to localize the variants and genes
that account for the observed interaction effects, which
should help to shed further light on the biology of these risk
factors and improve efforts to individualize MS risk pre-
diction algorithms in the future.
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