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Abstract: Eicosanoids are key mediators and regulators of inflammation and oxidative stress that are
often used as biomarkers for severity and therapeutic responses in various diseases. We here report a
highly sensitive LC-MS/MS method for the simultaneous quantification of at least 66 key eicosanoids
in a widely used murine model of colitis. Chromatographic separation was achieved with Shim-Pack
XR-ODSIII, 150 × 2.00 mm, 2.2 µm. The mobile phase was operated in gradient conditions and
consisted of acetonitrile and 0.1% acetic acid in water with a total flow of 0.37 mL/min. This method
is sensitive, with a limit of quantification ranging from 0.01 to 1 ng/mL for the various analytes, has
a large dynamic range (200 ng/mL), and a total run time of 25 min. The inter- and intraday accuracy
(85–115%), precision (≥85%), and recovery (40–90%) met the acceptance criteria per the US Food
and Drug Administration guidelines. This method was successfully applied to evaluate eicosanoid
metabolites in mice subjected to colitis versus untreated, healthy control mice. In summary, we
developed a highly sensitive and fast LC−MS/MS method that can be used to identify biomarkers
for inflammation and potentially help in prognosis of the disease in inflammatory bowel disease
(IBD) patients, including the response to therapy.

Keywords: eicosanoids; LC–MS/MS; inflammatory bowel disease (IBD); biomarker; prostaglandins;
colitis

1. Introduction

Eicosanoids are major bioactive signaling mediators and regulators of inflammation
and oxidative stress [1]. They are potential biomarkers for various disease states and
pathological conditions, including inflammatory bowel disease (IBD) [2,3]. Eicosanoids are
derived from dihomo-linolenic acid (DGLA), arachidonic acid (AA), and eicosapentaenoic
acid (EPA) and formed via cyclooxygenase enzymes (COX), lipoxygenase enzymes (LOX),
and cytochrome P450, as well as nonenzymatic oxidation [4,5]. Eicosanoids comprise over
100 lipid mediators, including prostaglandins (PG), thromboxanes (TX), leukotrienes (LT),
hydroxyeicosatetraenoic acids (HETEs), dihydroxyeicosatetraenoic acids (DHETs), hydrox-
yeicosapentaenoic acids (HEPEs), lipoxins (LXs), resolvins (RvEs), and epoxyeicosatrienoic
acids (EET) [3,6].

Eicosanoids play an important role in various physiological functions in the body [1].
Prostaglandin E2 (PGE2) regulates tumor angiogenesis in prostate cancer [7], whereas
leukotrienes and lipoxins regulate vasoconstriction and vascular permeability [8,9]. Ad-
ditionally, 20-hydroxyeicosatetraenoic acid (20-HETE) causes cerebral micro-vessel con-
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striction [10], plays a role in cerebral blood flow autoregulation [11,12], and regulates
new blood vessel growth [13]. Conversely, epoxyeicosanoid (EET) metabolites produce
microvascular dilation [14,15], increase cerebral blood flow [16], and protect neurons and
astrocytes from ischemic cell death in vitro [17,18]. Alterations in eicosanoid-generating
enzymes have been identified during disease progression, including cardiovascular disease,
stroke, myocardial infarction, asthma, Crohn’s disease, hypertension, gastric cancer, and
colorectal cancer [19–23]. Given the clinical interest in eicosanoids and the complexity
of their responses to biological stimuli, it is necessary to systematically evaluate their
tissue-specific alterations during different disease states, as it may help evaluate disease
progression and assess the benefit of specific therapeutic interventions.

A variety of analytical tools have been developed and validated for the separation,
detection, and quantification of eicosanoids, including high-performance liquid chromatog-
raphy (HPLC)-UV [24–26], enzyme immunoassays [27], LC–fluorescence detection [28],
electrophoresis [29,30], immuno-affinity chromatography (IAC) [31], gas chromatography–
mass spectrometry (GC-MS and GC–MS/MS) [32,33], and liquid chromatography–mass
spectrometry (LC–MS/MS) [34–39]. The HPLC-UV methods to quantitate eicosanoids have
limited sensitivity and typically require large sample volumes and long run times [24–26].
Immunoassays have been used for the quantification of eicosanoids; however, they are
limited by cross-reactivity and low sensitivity [27]. Derivatization of samples and an
analysis using LC–fluorescence improves on the sensitivity and specificity of UV detection;
however, the process is time-consuming and is associated with the need for additional sam-
ple preparation [28]. The GC-MS/MS analysis provides a high sensitivity and resolution of
the eicosanoids; however, the methods are associated with extensive sample preparation
and the need for a derivatization of the sample analytes [32,33].

The development of a relatively sensitive and selective LC-MS/MS assay can overcome
the above-mentioned limitations and offer a reliable method for the quantification of
eicosanoids in various biological matrices [38,40–43]. We developed and validated a
sensitive and selective LC–MS/MS method for the simultaneous quantification of 66
eicosanoids in colon samples derived from healthy mice and from mice with infectious
colitis as a model for IBD. Notably, IBD is the chronic, remittent inflammation of the
gastrointestinal tract (GIT) and, on a biochemical level, is characterized by the upregulation
of proinflammatory cytokines, eicosanoids, and the subsequent infiltration of immune cells
into the colonic tissue [44]. Additionally, targeting eicosanoid signaling has recently been
identified as a potential therapeutic intervention in IBD [45]. Taken together, the utilization
of a validated LC-MS/MS method to identify eicosanoid biomarkers for inflammation may
help facilitate our understanding of the mechanisms involved in IBD disease progression
and provide a quantitative method to assessing the impact of therapeutic intervention.

2. Results and Discussion
2.1. LC-MS/MS Method Development

A LC-MS/MS method for the quantitation of eicosanoids in mouse colons was de-
veloped and validated. All eicosanoids were analyzed in the negative-ionization mode,
and each eicosanoid standard was optimized for multiple reaction monitoring (MRM),
including the selection of MRM pairs for each eicosanoid (m/z values for precursor and
product ions, respectively) and collision energies (Table 1). Mass spectrometer parameters
were optimized during method development to the maximize sensitivity and selectivity.

A representative LC-MS/MS overlaying the chromatograms of all eicosanoid stan-
dards is shown in Figure 1. Individual chromatograms are shown in Supplementary
Materials Figure S1.

Eicosanoids represent a large family of endogenous compounds, and many members
of this family are isobaric with related physiochemical properties, including isomers and
stereoisomers. Many eicosanoids not only have the same mass but, also, have matching
fragmentation patterns, resulting in the same MRM transitions. Moreover, many eicosanoids
undergo insource fragmentation, which results in fragments with similar masses to other
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eicosanoids. In addition, interfering peaks may possibly arise from other unidentified en-
dogenous components of the matrix. Therefore, MS/MS specificity by itself is not adequate
to separate all eicosanoids, and chromatographic resolution is needed for their separation.
For example, the isobaric compounds PGE2, PGD2, and 13,14-dihydro-15-k-PGE2 were
identified through the same 351.40 > 333.50 MRM transition but were separated chro-
matographically. Similarly, the isobaric compounds PGF2a, 11-b PGF2a, and 8-iso-PGF2a
were identified through the same 353.40 > 193.40 MRM transition but were separated
chromatographically (Figure 2).

Table 1. Summary of multiple reaction monitoring (MRM) (m/z), retention time (RT), Q1 pre-rod potential, collision energy
(CE), Q3 pre-rod potential, and dynamic range of all 66 eicosanoids and internal standards (IS).

Analytes ID Analytes MRM (m/z) RT (Min.) Q1 Pre Vias (V) CE (V) Q3 Pre Vias (V) Dynamic Range
(ng/mL)

1 PGJ2 333.50 > 233.40 13.7 12 10 15 0.01–200

3 20-OH-PGE2 367.40 > 287.45 4.9 12 17 19 0.01–200

4 PGB2 333.50 > 235.45 13.9 11 19 15 0.01–200

6 PGD2 351.50 > 271.50 12.0 12 17 17 0.01–200

7 PGE2 351.50 > 271.50 11.6 12 17 17 0.01–200

8 AA 303.50 > 259.50 20.6 22 14 11 1–200

9 15-HETE 319.50 > 219.45 17.3 11 14 13 0.01–200

10 12-HETE 319.50 > 179.35 17.7 11 15 10 0.01–200

11 11-HETE 319.50 > 167.45 17.5 11 16 10 0.01–200

12 8-HETE 319.50 > 155.35 17.7 16 14 24 0.01–200

13 5-HETE 319.50 > 115.35 18.0 11 14 16 0.01–200

14 LTE4 438.40 > 235.45 12.8 10 23 14 1–200

15 LTD4 495.50 > 177.35 11.0 11 20 10 1–200

16 LTC4 624.50 > 272.40 12.0 22 24 12 1–200

17 LTB4 335.50 > 195.40 14.7 12 16 11 0.01–200

18 13,14-DiOH-15-Keto-PGE2 351.40 > 333.50 12.9 11 12 10 0.01–200

19 11-B-PGF2 353.40 > 193.40 10.1 12 24 12 0.01–200

20 8-iso-PGF2 353.40 > 193.40 9.8 12 24 12 0.01–200

21 PGF2 353.40 > 193.40 10.9 12 24 12 0.01–200

22 15-Keto-PGE2 349.30 > 235.40 12.3 18 15 15 0.01–200

23 6-Keto-PGF1 369.40 > 245.45 7.7 12 25 15 0.01–200

24 TXB2 369.50 > 169.40 10.0 13 18 10 0.01–200

29 13,14-DiOH-PGF2 355.40 > 311.50 12.0 11 25 14 0.01–200

30 PGF1 355.40 > 311.50 11.0 11 25 14 0.01–200

31 13,14-DiOH-15-Keto-PGF2 353.50 > 113.40 12.7 12 25 11 0.01–200

32 13,14-DiOH-15-Keto-PGE1 353.40 > 335.50 13.2 12 13 22 0.01–200

33 PGD1 353.50 > 317.50 12.1 12 17 15 0.01–200

34 13,14-DiOH-PGE1 355.30 > 337.55 12.4 11 16 11 0.01–200

35 TXB3 367.50 > 169.35 8.6 10 17 10 0.01–200

36 15-deoxy-delta 12,14 PGJ2 315.50 > 271.50 13.8 12 14 17 0.01–200

37 PGE1 353.50 > 317.50 11.8 12 17 15 0.01–200

38 PGE3 349.50 > 269.50 10.2 12 16 17 0.01–200

39 PGD3 349.50 > 269.50 10.7 12 16 17 0.01–200

40 PGF3 351.50 > 307.50 9.5 12 18 14 0.1–200

41 14,15-LTC4 624.50 > 272.40 13.0 22 23 18 1–200

42 Tetranor-PGEM 327.40 > 309.45 2.2 11 12 21 0.1–200
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Table 1. Cont.

Analytes ID Analytes MRM (m/z) RT (Min.) Q1 Pre Vias (V) CE (V) Q3 Pre Vias (V) Dynamic Range
(ng/mL)

43 Tetranor-PGFM 329.40 > 311.50 1.8 16 14 10 0.1–200

44 11-De TXB3 365.40 > 303.50 10.4 13 16 20 0.01–200

45 2,3 Dinor 8-iso PGF2 325.50 > 237.50 7.2 12 13 15 0.01–200

53 Docosahexaenoic Acid 327.50 > 283.55 20.3 11 12 18 1–200

54 9(10)-DiHOME 313.50 > 201.40 15.2 11 22 12 0.01–200

55 12(13)-DiHOME 313.50 > 183.40 15.1 11 22 11 0.01–200

56 4-HDHA 343.50 > 101.30 18.1 11 14 29 0.01–200

57 7-HDHA 343.50 > 141.30 17.7 12 13 23 0.01–200

58 8-HDHA 343.50 > 109.30 17.8 11 20 30 0.01–200

59 10-HDHA 343.50 > 153.40 17.5 12 15 25 0.01–200

60 11-HDHA 343.50 > 121.35 17.7 12 15 18 0.01–200

61 11-HEDE 323.40 > 199.45 18.5 11 21 12 0.01–200

62 15-HEDE 323.40 > 223.50 18.6 11 20 14 0.01–200

63 5-HEPE 317.50 > 115.30 17.0 12 15 18 0.01–200

64 8-HEPE 317.50 > 155.35 16.7 10 14 26 0.01–200

65 11-HEPE 317.50 > 167.45 16.6 11 15 10 0.01–200

66 12-HEPE 317.50 > 179.40 16.8 12 14 10 0.01–200

67 15-HEPE 317.50 > 219.45 16.7 12 13 13 0.01–200

68 9(S)-HOTrE 293.50 > 171.35 16.2 12 15 10 0.01–200

69 13(S)-HOTrE 293.50 > 224.45 16.3 11 14 13 0.01–200

70 5-OxoETE 317.50 > 203.40 18.6 10 18 12 0.01–200

71 12-OxoETE 317.50 > 153.40 18.0 16 16 25 0.01–200

72 15-OxoETE or 15-KETE 317.50 > 113.35 17.7 12 20 18 0.01–200

73 9-OxoODE or 9-KEDE 293.50 > 185.40 17.8 11 21 11 0.01–200

74 15-OxoEDE or 15-KEDE 321.50 > 223.45 19.1 11 23 14 0.01–200

76 Tetranor-PGDM 327.40 > 309.45 2.8 11 13 20 0.1–200

77 Tetranor-PGJM 309.30 > 155.35 4.2 12 22 24 0.01–200

78 Resolvin D1 375.60 > 141.30 12.9 10 15 23 1–200

79 Resolvin D2 375.60 > 175.35 12.2 10 23 10 0.1–200

80 Resolvin D3 375.60 > 147.40 12.0 10 22 23 0.1–200

25 TXB2-d4 373.50 > 173.40 10.0 13 19 10 NA

26 PGE2-d4 355.50 > 275.55 11.5 13 17 18 NA

27 AA-d8 311.40 > 267.55 20.6 10 13 17 NA

46 15 -HETE-d8 327.50 > 226.50 17.2 16 13 14 NA

47 LTB4-d4 339.50 > 197.45 14.7 10 16 12 NA

81 Resolvin D1-d5 380.50 > 141.30 12.8 13 16 22 NA

NA: Not Applicable.

In addition to chromatographic resolution, isobaric compounds such as HETEs,
HEPEs, HEDEs, and HADAs, with similar MRMs, can be distinguished if they produce
specific MRMs. For example, isobaric HETEs such as 5-HETE, 8-HETE, 11-HETE, 12-HETE,
and 15-HETE were partially resolved chromatographically, but every isomer produced
unique fragments, namely 319.50 > 115.35, 319.50 > 155.35, 319.50 > 167.45, 319.50 > 1179.35,
and 319.50 > 219.45, respectively [46–48]. However, these specific MRMs were less sensitive
than common MRMs such as 319.50 > 301.35. Similarly, the isobaric compounds such as
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5-HEPE, 8-HEPE, 11-HEPE, 12-HEPE, and 15-HEPE produced unique fragments that were
not produced by the other isomers (Figure 3).

Figure 1. Representative overlaying chromatograms of all eicosanoid standards at 50 ng/mL under final chromatogra-
phy and detection conditions. Thromboxane (TXB), hydroxy eicosapentaenoic acid (HEPEs), hydroxyeicosatetraenoic
acid (HETEs), hydroxy docosahexaenoic Acid (HADAs), hydroxy eicosadienoic acid (HEDEs), oxo-eicosatetraenoic acid
(OxoETE), Arachidonic acid (AA) and docosahexaenoic Acid (DA).

Figure 2. Representative overlaying multiple reaction monitoring (MRM) ion-chromatograms of isobaric eicosanoids that
also share fragmentation patterns but were separated chromatographically: (a–c) blank charcoal-stripped surrogate matrix
of selected analytes, (d–f) spiked in charcoal-stripped surrogate matrix of selected analytes (0.5 g/mL), and (g–i) healthy
colon sample of selected analytes.
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Figure 3. Representative overlay MRM ion-chromatograms of isobaric eicosanoids that share some fragments, as well as
retention times, were distinguished via specific MRMs: (a–c) blank charcoal-stripped surrogate matrix of selected analytes,
(d–f) spiked in charcoal-stripped surrogate matrix of selected analytes (0.5 g/mL), and (g–i) healthy colon sample of
selected analytes.

The LC conditions were optimized to separate all eicosanoids of interest with a desired
peak shape and signal intensity using a Shim-Pack XR-ODSIII, 150× 2.00 mm, 2.2 µm column.
The less hydrophobic eicosanoids, including PGs, TXS, and LTs eluted earlier, were not
sensitive to changes in the mobile phase pH. In contrast, acidic mobile phases resulted in a
better peak shape and longer retention of the more hydrophobic eicosanoids, including
HETEs, HEPEs, HEDEs, HADAs, AA, and DA. Therefore, acetic acid was used as an
aqueous and organic mobile phase modifier. Under our final LC-MS/MS conditions, all
selected eicosanoids were resolved from each other in less than 25 min, and all standards
produced single peaks. The exceptions were TXB2 and TXB3 and their d4-labeled ISs, each
of which produced two peaks (completely chromatographically resolved) that belonged
to their anomers. The anomers for both compounds were detected in standard, as well
biological, samples.

In LC-MS analyses, it is critical to prepare calibration curves in similar or equivalent
matrices to study samples due to matrix effects on the ionization of the analytes. This
becomes problematic for endogenous analytes, including eicosanoids, where analyte-free
blank matrices are not available to spike with analyte standards of known concentrations
for the construction of calibration curves. Various approaches are followed to solve the
endogenous background problem in blank matrices for the construction of calibration
curves, including background subtraction [38,49], the standard addition method [50,51],
matrix stripping with charcoal [52], and the use of surrogate matrices or stable isotope-
labeled standards [53–63].

As discussed above, every method for the quantification of endogenous compounds
has advantages and disadvantages. Therefore, we applied and compared the various
approaches for the quantification of eicosanoids in a colon homogenate and found that
the charcoal-stripped surrogate matrix was the most accurate and suitable method for
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this application. Most eicosanoids were completely depleted, but some eicosanoids with
high endogenous levels had trace residual peaks in the homogenate after stripping with
charcoal. For these eicosanoids, the background peak area of the remaining trace levels
was subtracted from the peak area of the calibration curve standards, which allowed the
construction of calibration curves with high accuracy and precision. Using analyte/IS peak
area ratios, rather than absolute analyte peak areas, the recoveries of the eicosanoids in
the charcoal-stripped matrix were similar to those in the unstripped homogenate (data
not shown), which indicates that the matrix effect was the same for the study samples
(unstripped colon homogenate) and calibration curve surrogate matrix.

Three calibration curves (CC) were used to cover all analytes in a colon homogenate
at the relevant physiological concentrations, namely 0.01–200 ng/mL, 0.05–200 ng/mL,
and 1–200 ng/mL. Different dynamic ranges were used, because the various eicosanoids
had different sensitivity, endogenous concentrations, and/or signal linearity. For example,
the lower limit of quantification (LLOQ) of AA and DA were 1 ng/mL in CC, not due to
limitations in the detection sensitivity (limit of detection 0.01 ng/mL) but, rather, due to
the relatively high background of these eicosanoids in the blank matrix used to construct
the calibration curve, which did not allow a consistent subtraction from the peak areas of
spiked standards below 1 ng/mL. We developed a specific, highly sensitive LC-MS/MS
method and further validated its application for the simultaneous quantification of 66
eicosanoids in colon tissues. A summary of the current methods related to eicosanoids
quantification in biomatrices by LC-MS/MS are shown in Supplementary Table S1. By
comparison, our method resulted in an improved sensitivity and was linear over a large
concentration range, required a small sample volume, and allowed the quantitation of
66 eicosanoids in 25 min. The addition of a solid phase extraction (SPE) resulted in an
acceptable recovery and no matrix effect. Our validated method was accurate, precise, and
sensitive, allowing for the routine analysis of eicosanoids in preclinical and clinical samples.

2.2. Method Validation

The method was validated for each analyte using calibration curves (n = 3) prepared
on three consecutive days. Three dynamic ranges were used to cover all analytes at the
relevant physiological concentrations, namely 0.01–200 ng/mL, 0.05–200 ng/mL, and
1–200 ng/mL. The method of charcoal stripping was used to prepare the calibration curve
and quality control (QC) samples. A linear plot of the relation between the concentration
and peak area ratio was fitted using weighted (1/C2) linear regression. Therefore, the
differences in the lower limit of quantification of the various eicosanoids are not necessarily
due to differences in the sensitivity of the analytes but, rather, due to the differences in
the endogenous background levels in the blanks used for building the calibration curves.
There were no endogenous interfering peaks identified at the retention times of the analytes
of interest. The correlation coefficient was higher than 0.998 for all eicosanoids in the
surrogate matrices, confirming the linearity of the assay in the selected calibration ranges.
The analytes and IS peak retention time were stable, with a relative standard deviation
(%RSD) within the acceptable limit of ±5%. There was no significant peak (>20% of the
LLOQ) in zero samples injected after the high-quality control (HQC) samples, indicating
no carryover effect.

Intraday and inter-day accuracy and precision were determined to evaluate the re-
liability and reproducibility of this method. The inter-day accuracy and precision of the
standards prepared in the colon homogenate are shown in Table 2. The accuracy was
≤80% at the LLOQ and ≤85% at the other four QC concentrations for all eicosanoids in the
surrogate matrix. The precision (%RSD) was ≤20% at the LLOQ and ≤15% at the other
four QC. These data confirm that the method described has a satisfactory accuracy and
precision for the quantitation of all the analytes of interest.
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Table 2. Accuracy and precision of eicosanoids in the charcoalated surrogate matrix.

Analytes ID

LLOQ
(0.01 ng/mL)

LQC
(0.05 ng/mL)

MQC
(40 ng/mL)

HQC
(150 ng/mL)

Accuracy %RSD Accuracy %RSD Accuracy %RSD Accuracy %RSD

1 PGJ2 108.9 14.3 106.6 2.6 103.7 4.0 86.9 3.9

3 20-OH-PGE2 112.6 5.1 92.4 5.5 104.0 6.2 108.9 0.5

4 PGB2 114.9 4.9 99.7 9.1 101.7 4.9 86.8 1.9

6 PGD2 103.9 11.2 108.7 3.2 92.5 2.8 90.6 4.9

7 PGE2 99.2 10.0 98.1 1.8 97.8 5.6 87.3 3.7

9 15-HETE 100.7 17.3 112.7 3.8 96.7 6.0 85.3 1.3

10 12-HETE 104.6 5.4 108.4 4.8 96.9 1.4 87.5 3.7

11 11-HETE 104.5 5.6 114.5 3.2 87.1 1.4 91.1 3.3

12 8-HETE 190.5 14.8 114.7 4.3 92.1 5.5 84.7 5.8

13 5-HETE 109.9 14.3 110.4 3.4 103.1 2.9 87.0 0.9

17 LTB4 112.5 18.4 110.1 6.6 92.0 5.9 103.8 6.1

18 13,14-DiOH-15-Keto-PGE2 102.3 11.2 107.2 3.2 97.8 2.5 90.2 2.2

19 11-B-PGF2 107.9 18.2 106.7 1.4 105.8 4.3 87.3 0.8

20 8-iso-PGF2 112.2 9.1 103.3 4.5 103.9 5.6 88.3 2.3

21 PGF2 110.2 9.1 104.0 4.5 100.6 4.3 88.0 2.1

22 15-Keto-PGE2 101.3 11.2 107.5 2.7 101.9 2.5 91.0 2.8

23 6-Keto-PGF1 90.9 19.2 92.0 6.1 107.6 5.1 107.7 1.6

24 TXB2 109.6 15.7 108.0 4.6 90.1 5.1 86.5 2.5

29 13,14-DiOH-PGF2 107.3 5.4 109.9 8.9 104.7 4.3 107.8 1.7

30 PGF1 90.1 19.2 106.1 8.9 101.5 3.1 89.1 2.9

31 13,14-DiOH-15-Keto-PGF2 116.6 10.2 105.7 5.1 101.4 4.2 88.7 3.4

32 13,14-DiOH-15-Keto-PGE1 110.8 9.1 99.9 5.5 102.5 3.8 95.7 3.7

33 PGD1 101.2 10.0 115.1 3.2 92.2 4.1 88.1 3.2

34 13,14-DiOH-PGE1 107.7 5.4 109.6 4.7 100.5 4.4 90.9 3.0

35 TXB3 91.3 11.1 98.6 3.7 93.2 3.0 105.5 3.8

36 15-deoxy-delta 12,14 PGJ2 98.4 15.8 85.6 16.1 100.9 2.8 88.0 3.1

37 PGE1 86.0 18.3 104.8 3.9 100.2 3.8 87.2 3.2

38 PGE3 99.0 6.0 105.8 6.7 99.4 2.5 85.6 1.6

39 PGD3 90.4 3.1 99.8 2.3 97.3 0.2 93.0 2.2

44 11-De TXB3 85.6 6.9 104.2 9.8 96.7 2.6 91.3 1.1

45 2,3 Dinor 8-iso PGF2 107.4 9.1 95.1 2.5 102.8 6.6 102.3 2.1

54 9(10)-DiHOME 109.6 9.1 113.2 2.6 90.7 4.7 86.8 1.4

55 12(13)-DiHOME 112.1 18.4 112.3 2.2 100.6 2.0 91.7 5.7

56 4-HDHA 119.4 4.7 104.2 7.4 105.2 6.1 86.9 1.0

57 7-HDHA 112.9 15.7 107.3 16.5 85.1 9.6 86.0 4.8

58 8-HDHA 118.1 16.4 104.9 7.3 103.8 5.4 94.9 3.2
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Table 2. Cont.

Analytes ID

LLOQ
(0.01 ng/mL)

LQC
(0.05 ng/mL)

MQC
(40 ng/mL)

HQC
(150 ng/mL)

Accuracy %RSD Accuracy %RSD Accuracy %RSD Accuracy %RSD

59 10-HDHA 118.4 18.9 112.0 3.6 89.3 4.1 85.9 5.5

60 11-HDHA 109.3 21.7 104.5 5.9 103.7 5.6 91.1 1.6

61 11-HEDE 107.1 14.8 109.5 9.1 87.3 3.0 84.2 8.0

62 15-HEDE 114.6 5.1 109.2 3.3 92.0 5.4 86.6 5.3

63 5-HEPE 107.2 19.5 107.5 5.7 110.8 3.0 88.6 1.2

64 8-HEPE 100.2 20.0 114.9 4.0 101.6 11.5 91.7 2.1

65 11-HEPE 118.1 4.9 106.3 9.4 89.1 3.3 87.4 5.6

66 12-HEPE 119.1 4.7 107.9 4.0 105.7 3.4 88.0 3.2

67 15-HEPE 109.1 15.7 111.0 4.1 92.2 5.9 85.6 2.6

68 9(S)-HOTrE 110.3 18.2 109.4 7.2 111.6 7.4 85.9 1.1

69 13(S)-HOTrE 105.4 19.5 111.1 1.4 108.2 4.5 86.7 3.8

70 5-OxoETE 99.2 5.6 98.8 4.5 105.8 8.1 90.1 1.4

71 12-OxoETE 104.2 20.2 107.4 9.1 88.7 4.3 86.0 18.8

72 15-OxoETE or 15-KETE 120.0 8.3 114.7 8.7 96.5 3.7 85.3 4.7

73 9-OxoODE or 9-KEDE 122.2 4.7 112.9 2.5 104.5 5.0 89.3 4.6

74 15-OxoEDE or 15-KEDE 103.8 20.1 104.8 3.1 100.3 3.1 89.7 3.8

77 Tetranor-PGJM 83.9 6.7 103.0 4.2 113.3 6.2 114.9 3.2

78 Resolvin D1 108.7 19.5 103.7 14.0 104.6 3.5 89.7 2.6

LLOQ (0.05 ng/mL) LQC (2 ng/mL) MQC (40 ng/mL) HQC (150 ng/mL)

40 PGF3 99.2 14.1 99.6 6.6 103.7 6.6 102.4 1.7

42 Tetranor-PGEM 120.4 1.0 111.7 14.2 89.5 12.3 96.7 2.4

43 Tetranor-PGFM 109.8 20.1 85.9 4.2 99.3 3.5 100.5 6.3

76 Tetranor-PGDM 98.5 6.3 86.4 5.0 113.8 8.0 114.7 2.7

79 Resolvin D2 105.5 15.4 102.6 12.3 96.0 6.7 89.1 0.3

80 Resolvin D3 106.7 11.4 85.7 3.5 91.1 9.0 86.3 12.6

LLOQ (1 ng/mL) LQC (2 ng/mL) MQC (40 ng/mL) HQC (150 ng/mL)

8 AA 83.7 4.1 106.0 15.0 103.2 15.2 89.2 3.2

53 Docosahexaenoic Acid 114.2 5.6 111.5 12.2 94.5 12.2 85.0 10.8

14 LTE4 109.7 8.4 112.9 1.7 90.1 1.7 92.9 2.5

15 LTD4 112.2 9.9 85.2 1.7 93.1 1.7 112.0 1.8

16 LTC4 114.6 11.4 91.5 4.9 93.4 4.9 114.3 0.2

41 14,15-LTC4 98.8 9.1 86.4 5.0 90.2 5.0 112.6 3.1

The precision for the dilution integrity of 1:5 and 1:10 dilutions was within the
acceptable limits for all analytes, which are within the acceptance limits of ±15% for
precision (CV) and 85–115% for accuracy. The results suggested that plasma samples
with concentrations above the upper limit of quantitation can be determined by the
appropriate dilution.
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2.3. Recovery and Matrix Effect

Several protein precipitations and SPE methods were investigated to increase the
extraction recovery and decrease matrix effect. The large variations in the physicochemical
properties between the different classes of eicosanoids resulted in different extraction
recoveries of these compounds. The average extraction recovery of all the analytes ranged
from 40% to 90% in the surrogate matrix (data not shown). Moreover, the extraction
recoveries of six ISs were constant, ranging from 40% to 90%, with a CV% of <10% in both
the surrogate matrix and colon homogenate (Supplementary Table S2). Although a higher
recovery is better for most analytes, this simple SPE could completely satisfy the accurate
quantitation for all the eicosanoids (Table 2). We found similar recoveries in the surrogate
matrix and colon homogenate (data not shown).

Furthermore, the matrix effect was negligible and well within the acceptable range
(±15%) in both the surrogate and colon homogenate (Supplementary Table S2). Addition-
ally, the SPE treatment removed most of interfering proteins, which also contributed to the
minimal matrix effect (ME) observed.

2.4. Stability Studies

The stability of eicosanoids in the stocks and colon homogenate were studied under
various conditions, as outlined in Section 3.7. Instability was defined as a 20% or more
decrease in the peak area compared to freshly prepared QCs under different conditions
(Supplementary Materials Table S3). All eicosanoids were stable in the stock solutions
and the colon homogenate at 4 ◦C up to 24 h in the auto-sampler, except for compounds
AA, AA-d8, and 12-OxoETE. The eicosanoids were also stable in the colon homogenate at
room temperature on the bench up to two hours, except for LTD4, LTC4 and 14,15-LTC4,
11-De TXB3, and 12-OxoETE. In addition, after four hours, a few more compounds were
found to be unstable at room temperature (Supplementary Table S3). To avoid this, sample
processing was always performed on wet ice. All eicosanoids were stable under these
processing conditions. After 30 days of long-term storage, all eicosanoids were stable in the
surrogate matrix, except for LTD4, LTC4, PGE3, 14,15-LTC4, 11-De TXB3, and 12-OxoETE.

2.5. Application to Metabolomics of Data Profiling

Out of the 66 evaluated eicosanoids, 62 eicosanoids and their metabolites were de-
tected above the LLOQ in all samples (Supplementary Table S4). The metabolite concentra-
tions were divided into colitis (IBD) and healthy control (HC) groups, and a multivariate
supervised Partial Least Squares-Discriminate Analysis (PLS-DA) was used on the trans-
formed metabolomic dataset to identify the overall differences between the groups. First,
the PLS-DA was applied to compare the metabolic concentrations in the HC with those of
the IBD colon samples. As shown in the score plot (Figure 4a), the samples from the HCs
were largely separated from the colitis group. The differences between the groups were
greater than the differences within the groups. The variable importance in the projections
(VIPs) of all the peaks from the PLS-DA models were taken as the coefficients for the
metabolite selection, and the variables with VIP values >1 were considered to be contrib-
utors to the group discrimination [41]. The metabolites with the highest VIP scores and
their respective concentrations in the colon samples are shown in Figure 4b. A hierarchical
clustering analysis (heatmap) was generated to visualize the relative abundance of the
serum eicosanoids in the healthy control (red) and IBD groups (green) (Figure 4c). Overall,
clear differences were observed between the HC and IBD for 30 eicosanoids, allowing for
discrimination between the two groups.
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Figure 4. Multivariate Partial Least Squares-Discriminate Analysis (PLS-DA) analyses of the healthy control (HC) and
inflammatory bowel disease (IBD) colon samples. (a) Two-dimensional PLS-DA score plot of the HC (green) and IBD (red)
are separated from the other groups, indicating very distinct lipid metabolite compositions. Component 1 indicates the
degree of variation between the groups based on their total metabolite contents, and component 2 indicates the differences
within the groups. It can be noted that the component 1 value is three-fold greater than component 2, indicating that
the differences between the groups are greater than within the groups. (b) Important features identified by the variable
importance in the projections (VIP) scores; metabolites (20) with a VIP >1 have an above-average influence. (c) Hierarchical
clustering analysis (heatmap) for the 30 most-altered metabolites. Each column in the heatmap represents a replicate, and
each row represents a metabolite. The red and blue colors indicate the relative abundance intensity of each metabolite
within a sample.

The COX and LOX pathways predominantly metabolize AA. The COX pathway re-
sults in the formation of stable PGs, TXs, and prostacyclin, while the LOX pathway leads
to HPETEs, HETEs, and LTs [64,65]. PGs and TXs are very potent mediators of inflam-
mation and play a very important role in proinflammatory, as well as anti-inflammatory,
processes [66]. Several reports have shown an upregulation in the levels of PGs and TXs in
IBD, especially during relapse [67,68]. In agreement with these previous reports, our study
revealed an upregulation in the levels of several prostaglandins (PGs). Prostaglandin E
family (PGEs) and prostaglandin F family (PGFs) (commonly known as the primary PGs)
were the first two active PGs that were first identified for their roles in inflammation [69].
We observed an approximately two-fold increase in the colonic levels of PGE2 and its
various metabolites (Figure 5). Concentrations of 13,14-DiOH-15-Keto-PGE2 and 15-Keto-
PGE2 were increased two-fold in IBD mice compared to HC. Few studies have indicated
the therapeutic benefits of targeting 15-Keto-PGE2 to treat sepsis, which is a systemic
inflammation [70]. PGE2 is one of the most abundantly produced PGs across species. It
plays an important role in the maintenance of many biological functions, including immune
regulation, blood pressure regulation, and GI barrier integrity. It is especially of interest in
inflammation, as it is involved in modulating processes resulting in defining the signs of
inflammation, including redness, swelling, and pain [1]. It is also involved in the activation
of pain neurons and the resulting responses. A knockout mouse model of mPGES-1 has
been extensively used to study the role of PGE2 in inflammation [71]. Another role of
PGE2 is the production of interleukin 17 (IL-17), which has been shown to be involved in
the development and progression of IBD [72]. Targeting PGE2 by gene knockout studies
has been proposed as an anti-inflammatory strategy in order to circumvent nonsteroidal
anti-inflammatory drug (NSAID) associated toxicity. As a result, PGE2 antagonists are
being evaluated for anti-inflammatory therapies [73,74]. Elevations in the levels of PGF2α
and its metabolites have also been reported in patients with arthritis [75].
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Figure 5. Eicosanoid concentrations in healthy controls (HC) and IBD colon samples. Significance was assessed with the
t-test, and all p-values were <0.05 (mean ± SD, n = 5).

We also found elevated concentrations of PGF2α and its metabolite 8-iso-PGF2α in
colitis-affected mice, which is in accordance with previous reports [76,77]. The levels of
11-β PGF2 (PGD2 metabolite) were increased 2.2-fold in IBD mice. PGD2 metabolites
have been associated with mast cell activation, and it has been reported as a marker in
allergen-induced asthma [78,79] It has also been reported to be an anti-inflammatory signal
in lung inflammation and arthritis [78]. Further, an increase by ~1.5-fold in the TXB2
and TXB3 levels has also been observed in IBD group as compared to HC. TXs have
been shown to be upregulated in the IBD [80]. Thromboxane synthase is the enzyme
responsible for the generation of thromboxanes. The colonic immunohistochemistry of
colon specimens obtained from IBD patients revealed that a higher percentage of cells in the
lamina propria showed staining for thromboxane synthase, indicating its possible role in
mucosal inflammation [81]. Ridrogel and R68070 are thromboxane synthase inhibitors that
have been implicated to show therapeutic benefits in the treatment of IBD [82]. An increase
in the PG and TX levels has been shown to have a direct relationship with inflammatory
disease activity [83]. Looking at the byproducts of the lipoxygenase pathway, we found
a two-fold increase in the level of LTE4. LTE4 has been implicated to play a role in many
inflammatory conditions [84,85], including IBD. There are multiple reports supporting
the quantification of urinary LTE4 as a noninvasive biomarker for the assessment of IBD
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activity [86,87]. The LTB4 and 5-HETE colonic levels have been shown to be increased in
human IBD; however, we did not observe any significant changes in the concentrations of
either eicosanoids. Collectively, the concentrations of PGs and TXs exhibited the greatest
differences between HC and mice with IBD. The developed LC-MS/MS method was used
to quantify the colonic and plasma concentrations of eicosanoids in HC and IBD mice. The
development of sensitive and specific methods to evaluate the differences in inflammatory
biomarkers in a disease can aid in identifying the disease severity and impact of a therapy
on the disease progression.

3. Materials and Methods
3.1. Chemicals and Reagents

All unlabeled chemical standards (Supplementary Table S5) and stable deuterated
isotope-labeled internal standards (IS), including PGE2 -d4, TXB2-d4, AA-d8, 15-HETE-d8,
LTB4-d8, and Resolvin D1-d5, were purchased from Cayman Chemicals (Ann Arbor, MI,
USA). LC-MS grade methanol (MeOH), acetonitrile (ACN), formic acid, and acetic acid
were obtained from Fisher Scientific (Fair Lawn, NJ, USA). Oasis HLB SPE cartridges
(60 mg/3 mL) were from Waters Corporation (Milford, MA, USA). Centrifuge tube filters
were from Corning Co. (Corning, NY, USA). Ultrapure water was obtained from a water
purification system (ThermoFisher Scientific, NJ). All other chemical reagents from Sigma
(St. Louis, MO, USA).

3.2. Liquid Chromatographic and Mass Spectrometric Conditions

A Shimadzu Nexera UPLC system equipped with two pumps (LC-30 AD) and a
column oven (CTO-30AS), along with an auto-sampler (SIL-30AC), were used (Shimadzu
Scientific Instruments, Columbia, MD). Mass spectrometric detection was performed on an
LC-MS/MS 8060 system (Shimadzu Scientific Instruments, Columbia, MD, USA) equipped
with a DUIS source operated in negative-electrospray ionization mode. The MS/MS system
was operated at unit resolution in the multiple reaction monitoring (MRM) mode. All
chromatographic separations were performed with a Shim-Pack XR-ODSIII, 150× 2.00 mm,
2.2 µm as the analytical columns equipped with a Shim-Pack C18 guard column (Shimadzu
Scientific Instruments, Columbia, MD, USA).

The mobile phase comprised of 0.1% acetic acid in water (mobile phase A) and
acetonitrile (ACN) (mobile phase B) at total flow rate of 0.37 mL/min. The chromatographic
separation was achieved using 25-min gradient elution (Table 3). The injection volume was
kept at 20 µL of all samples.

Table 3. Linear gradient chromatographic method.

Time (Min) % of Aqueous Phase (A) % of Organic Phase (B) Flow Rate (mL/Min)

0 80 20 0.37
10 60 40 0.37
20 0 100 0.37
23 0 100 0.37

23.1 80 20 0.37
25 80 20 0.37

The compound-dependent mass spectrometer parameters, such as temperature, volt-
age, gas pressure, etc., were optimized by auto-method optimization via a precursor
ion search for each analyte and the internal standard (IS) using a 1-µg/mL solution in
methanol. All eicosanoids were detected in the negative-ionization mode with the follow-
ing instrument-dependent mass spectrometer parameters, such as nebulizer gas: 2.2 L/min,
heating gas: 10 L/min, drying gas: 10 L/min, interface temperature: 300 ◦C, desolvation
line temperature: 250 ◦C, heat block temperature: 400 ◦C, and interface temperature: 300 ◦C.
The multiple reaction monitoring (MRM) transitions for each analyte and IS, as well as
their respective optimum MS parameters, such as the declustering potential (DP) and
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collision energy (CE), are shown in Table 1. The UPLC and MS systems were controlled by
LabSolutions LCMS Ver.5.6 software (Shimadzu Scientific Inc., Columbia, MD, USA).

3.3. Preparation of Stock, Calibration Standard, and Quality Control Sample Preparation

Aliquots from the original stock solutions (each analyte) were mixed to prepare a
spiking solution and stored at −70 ◦C until use. The calibration curves of the various
eicosanoids were divided into three ranges based on the sensitivity or endogenous con-
centrations expected and included the following: 0.01–200 ng/mL, 0.05–200 ng/mL, and
1–200 ng/mL (Table 1). The charcoal-stripped blank surrogate matrix (200 µL) was spiked
with mixed spiking analyte (10×) solutions to get a final standard concentration, 20 µL each,
and vortexed for 30 s. Samples were then extracted as described below. Six stable-labeled
eicosanoids were used as the IS (20 µL) at a final concentration of 50 ng/mL. Quality control
(QCs) samples were prepared in five replicates at four different concentrations: the lower
limit of quantification (LLOQ), low-quality control (LQC), middle-quality control (MQC),
and high-quality control (HQC) (Table 2), independent of the calibration standards.

3.4. Sample Preparation

All analytes were extracted from CC and QC samples in the surrogate matrix [88] and
colon samples by the solid phase extraction (SPE) method using Oasis® HLB 3 cc/60-mg
SPE cartridges (Waters Corporation, Milford, MA, USA). Each colon sample was accurately
weighed and then homogenized with triple-distilled deionized water at a 7-fold dilution
factor using a TissueLyserII (Qiagen Science Germantown, MD, USA). A colon homogenate
sample (200 µL) was spiked with IS (20 µL) and diluted with 5% acetic acid in water
(1500 µL), vortexed for 30 s, and then loaded onto SPE cartridges preconditioned with
MeOH (2 mL), followed by 0.1% acetic acid in water (2 mL). Loaded cartridges were washed
with 5% MeOH (2 mL) and eluted with 100% MeOH (2 mL). Eluates for all standards and
samples were evaporated under vacuum at room temperature and reconstituted with 50%
ACN in water (100 µL).

3.5. Method Validation

The developed LC-MS/MS method for eicosanoid quantitation was validated accord-
ing to the US Food and Drug Administration (FDA) guidelines for industry bioanalytical
method validation [89]. The sensitivity of the method was ascertained from the signal-
to-noise ratio (S/N) of the response of the analyte in the calibration standards and was
required to be greater than 3 for the limit of detection (LOD) and greater than 10 for the
LLOQ. The calibration curves were plotted between the peak area ratio (analyte/IS) and
concentration for all analytes.

Intra- and inter-day accuracy and precision were evaluated from replicate analyses
(n = 5) of QC samples containing analytes at variable concentrations (LLOQ, LQC, MQC,
and HQC). The precision was calculated in terms of the % of the relative standard deviation
(%RSD). The accuracy was expressed as % Bias (Equation (1)). The acceptance criteria
of the data included accuracy within ± 15% standard deviations (SD) from the nominal
values and precision within ± 15% RSD, except for the LLOQ, which was within ± 20%
for accuracy and precision.

% Bias = (observed concentration − nominal concentration) × 100/nominal concentration (1)

The carryover was checked by injecting two zero samples straight after a HQC sam-
ple. The first zero sample response was required to be <20% of the processed LLOQ
sample response.

A dilution effect was investigated to ensure that the sample could be diluted with
water without affecting the concentration. Analyte-spiked surrogate matrices prepared
at 2000-ng/mL concentrations were diluted with stripped surrogate matrices at dilution
factors of 5 and 10 in five replicates and analyzed. As part of the validation, five replicates
had to meet both a precision of ≤15% and accuracy of 100% ± 15% criteria.
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3.6. Extraction Recovery and Matrix Effect

Recoveries of analytes and labeled ISs from a charcoal-stripped surrogate matrix
were determined by dividing the peak area ratio of the analyte to IS (after subtracting the
endogenous background, if any) from before the extraction spiked blank samples to those
from neat unextracted standards for both the low and high QCs (n = 3), along with the.
recovery of stable isotope ISs into a colon homogenate, spiking ISs before and after the
extraction, respectively, and comparing the resultant peak areas.

The matrix effect (ME) was evaluated by spiking stable isotope ISs (40 and 150 ng/mL)
into the surrogate matrix and colon homogenate and comparing the peak areas with
spiked reconstitution solvent samples in five replicates. The corresponding peak areas
of the ISs in both spiked post-extractions (A) were then compared with those of the
reconstitution solvent samples (B) at equivalent concentrations. The ratio (A/B × 100)
was defined as the ME. The matrix effects in these two matrices were considered similar if
the corresponding peak areas in the surrogate matrix and untreated homogenate did not
deviate more than 20%.

3.7. Stability Studies

Stability experiments were carried out to examine the analyte stability in stock so-
lutions and colon homogenate at different storage conditions. Stability studies included
auto-sampler stability (at 4 ◦C for 24 h), bench-top stability (at room temperature for 6 h),
freeze-thaw stability (three freeze-thaw cycles), and long-term stability (at −80 ◦C for
30 days) for both the low and high QCs (n = 3).

3.8. Animal Handling, Disease Induction, and Tissue Collection

C57BL/6 mice (6–8 weeks old) were obtained from Charles River Laboratories (Wilm-
ington, MA, USA). All animal experiments were conducted using the protocol approved by
the University of Nebraska Medical Center Institutional Animal Care and Use Committee.
The Citrobacter rodentium (C. rodentium)-induced model of colitis was used to induce chronic
colonic inflammation in mice, as previously described [90,91]. In brief, the microbial cul-
ture of C. rodentium was delivered to mice (n = 5/group; oral gavage) in a 100-µL volume
containing 5 × 108 colony-forming units of bacteria. The healthy control (HC) group (n = 5)
was administered 100-µL Luria broth. Fourteen days after the bacterial gavage, mice were
sacrificed. The colon was harvested from both the HC and IBD groups, cleaned of fecal
contents, frozen, and stored at −80 ◦C for further analysis.

3.9. Metabolomics Data Processing

The raw data obtained were converted to concentration data (ng/gL) using Lab Solu-
tion software, version 5.8 (Shimadzu Scientific, Inc., Columbia, MD, USA). Metabolomic
data analysis was performed using the MetaboAnalyst 4.0 platform [92]. Data process-
ing started with a data integrity check, missing or zero values, filtering, normalization,
and then generalized log transformation. Data analysis included a fold change, t-test,
heatmap, and multivariate analyses, including the Principal Component Analysis (PCA)
and Partial Least Squares-Discriminate Analysis (PLS-DA). Data divided several variables
of the metabolomic profile into compounds for data reduction using the PCA; this aimed
at summarizing the data into much fewer variables called scores, which were weighted
averages of the original variables. PLS-D allowed the selection of molecules with a VIP
index higher than 1.0 as potential biomarkers.

4. Conclusions

In summary, we developed a highly sensitive and specific LC-MS/MS method and fur-
ther validated its application for the simultaneous quantification of 66 eicosanoids in colon
tissues. This analytical method is sensitive, selective, and accurate for the characterization
of detailed eicosanoids profiles in colonic tissues and plasma from mice with intestinal
inflammation. The LLOQ of this LC-MS/MS method was sufficient to accurately deter-
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mine the low-abundance eicosanoid metabolites. This method was successfully applied to
evaluate the eicosanoid metabolites in mice subjected to colitis versus untreated healthy
control mice. The mouse model used in this study, C. rodentium, has been widely used for
colitis studies and shown to induce reproducible and robust inflammatory responses. The
described LC-MS/MS method in this study will facilitate a better understanding of the
eicosanoid pathological and physiological roles and further help to design future studies
to assess biomarkers to predict efficacy, toxicity, and clinical outcomes in the therapeutic
regimen/strategy to treat IBD.

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-198
9/11/2/106/s1: Figure S1: Representative individual MRM ion-chromatograms of all eicosanoid
standards at 50 ng/mL in charcoalated human plasma under final chromatography and detection
conditions. The target compound is noted by an asterisk (*). Table S1: A list of all compounds
and their chemical name, abbreviation, and CAS number. Table S2: Mean extraction recoveries
and matrix effect of the ISs in the surrogate matrix and colon homogenate. Table S3: Eicosanoid
stability in plasma under various storage conditions (Instability was defined as a 20% or more
decrease in the peak under different storage conditions compared to freshly prepared QCs.). Table S4:
Eicosanoid concentrations (ng/g) in the colons of healthy, as well as mice with C. rodentium-induced
inflammation (mean ± SD, n = 5). Table S5: Summary of the comparison of this method with
previously reported LC-MS/MS methods related to eicosanoid quantification in rat/mice plasmas
and tissues.
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