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Abstract: Background: A rapidly growing number of publications cite “cytokine storm” as a con-
tributing factor in coronavirus disease 2019 (COVID-19) pathology. However, a few recent reports led
to questioning of “cytokine storm” theory in COVID-19. This study’s primary goal is to determine if
exaggerated cytokine response in the range of a “cytokine storm” develops during the initial weeks
of hospitalization in COVID-19 patients. Methods: Five proinflammatory cytokines reported to be
involved in “cytokine storm” and elevated in COVID-19 (IL-6, IL-8, TNF-α, MCP-1, and IP-10) were
analyzed in COVID-19, influenza (with “cytokine storm”: CS), and burn injury patients. The effect of
dexamethasone use on cytokine response in COVID-19 was also analyzed. Results: None of the five
cytokines in COVID-19 patients reached the lower threshold (95% CI) of the influenza (CS) group
at any point during the study period. Furthermore, mean concentrations of all five cytokines in
the influenza (CS) group and IL-6, IL-8, TNF-α in the burn group were significantly greater than in
COVID-19 patients (p < 0.01). Dexamethasone treatment did not significantly alter the concentrations
of any of the cytokines analyzed. Conclusions: Exaggerated cytokine response similar to “cytokine
storm” was not observed in COVID-19 patients during two weeks of hospitalization.

Keywords: coronavirus; immunosuppressant; dexamethasone; interleukin; COVID-19; cytokine

1. Introduction

Coronavirus disease 2019 (COVID-19), which was declared a pandemic by the World
Health Organization, is caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). Pharmacotherapeutic choices for COVID-19 depend on the severity of symptoms,
time after infection, patient characteristics and comorbidities [1,2]. Although no specific
cure is available at present, interventions commonly being used include antiviral, anticoag-
ulant and immunosuppressant drugs. The therapeutic standard of care has evolved along
with our understanding of the pathophysiology of COVID-19 over the past year.

The rationale for using antiviral drugs is obvious, and remdesivir is the first COVID-
19 treatment to be approved by the FDA in October 2020 [3]. Intracellular replication of
SARS-CoV-2 depends on RNA-dependent RNA polymerase, and remdesivir can decrease
the viral load by inhibiting this enzyme. The presence of disseminated intravascular coagu-
lation and venous thromboembolism justified anticoagulant use in COVID-19 patients [4].
COVID-19 patients were reported to have hyperimmune reactions based on elevated cir-
culating cytokine concentrations and altered lymphocyte profile. Indeed, one of the first
characterizations of COVID-19 clinical phenotype reported elevated concentrations of
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inflammatory cytokines [5]. Furthermore, some cytokines’ plasma concentrations were
associated with disease progression and severity [6–8]. These studies led to the widely
publicized theory of “cytokine storm” in COVID-19 and even drew parallels with cytokine
release syndrome and secondary hemophagocytic lymphohistiocytosis [9,10].

However, critical quantitative analysis of COVID-19 cytokine data than hyperinflam-
matory conditions led to questioning of the “cytokine storm” theory of COVID-19 [11]. A
recent study showed that plasma concentrations of three proinflammatory cytokines are not
as elevated in COVID-19 as in sepsis with acute respiratory distress syndrome [12]. Almost
all of the studies evaluated cytokine profiles in hospitalized COVID-19 patients within 48 h
of admission. A cytokine storm, particularly in the context of an active infection, may take
several days to manifest [13]. Thus, this study’s primary goal is to test the hypothesis that
an exaggerated cytokine response may develop during the initial weeks of hospitalization
in COVID-19 patients. In addition, we tested the effect of dexamethasone treatment on
cytokine concentrations and analyzed if its use is responsible for masking the presence of a
“cytokine storm”.

2. Methods

All study procedures were performed in compliance with Eisenhower Army Medical
Center institutional review board. Daily blood samples were collected from COVID-19
PCR-positive patients admitted to the hospital between March and October 2020. Leftover
serum or plasma samples after clinical pathology tests were stored at −80 ◦C. Cytokine
concentrations were measured using a 46-plex magnetic bead assay according to the
manufacturer’s instructions (EMD-Millipore, Burlington, MA, USA). Samples in our tissue
bank from influenza, burn or control patients (obtained before 2020) were also analyzed
in the same assays. Although there is no established quantitative criterion for “cytokine
storm”, several proinflammatory cytokines are increased by orders of magnitude during
cytokine release syndrome with IL-6 concentrations in the range of 10 ng/mL [14]. We had
previously measured IL-6 in several respiratory infections and used a cohort of influenza
with pneumonia (ICD J11.0) as an appropriate positive control for “cytokine storm” in a
viral infection. IL-6 concentration greater than 1 ng/mL was used to identify influenza
(CS) samples. Samples from patients with greater than 40% total body surface area burns
and control patients were used as additional references representing trauma-induced and
normal cytokine concentrations, respectively. Relative abundance of antibodies against the
receptor-binding domain (RBD) of COVID-19 spike protein was also measured using a
SARS-CoV-2 multi-antigen IgG assay kit (Luminex, Austin, TX, USA).

Clinical parameters, including dexamethasone use and patient characteristics, were
obtained from retrospective chart reviews. Cytokine concentrations of COVID-19 patients
were analyzed in samples collected on alternate days, beginning with the day of hospi-
talization. Analysis was performed in samples up to 2 weeks in patients that received
dexamethasone (6 mg/day for 10 days) and up to 1 week in those that did not. Sample
inclusion depended on their availability and length of the patient’s hospital stay. One
patient in the dexamethasone group received tocilizumab on day 4 after hospitalization.
All post-tocilizumab samples in this patient were excluded from analysis because of a
drug-induced increase in IL-6.

Five of the 46 cytokines measured were included in the data analyses. Interleukin-6
(IL-6), IL-8, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-
1), interferon γ-induced protein-10 (IP-10) are typical proinflammatory cytokines whose
concentrations were reported to be elevated in cytokine release syndrome and in COVID-
19 [5,6,14]. In addition, IL-6, IL-8 and IP-10 concentrations were correlated with COVID-19
progression and severity [6,7]. All data points for each COVID-19 patient across the moni-
toring period were averaged. Geometric means of COVID-19 patients with dexamethasone
treatment (DEX) and those with no-dexamethasone treatment (no-DEX) were compared
to influenza (CS), burn and control groups. Log-transformed data were analyzed with
ANOVA followed by Tukey’s multiple comparisons test. To further assess dexamethasone’s
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effects, the data points while a patient is on dexamethasone treatment were compared to
those before and after the treatment using paired t-tests. Paired t-tests on log-transformed
values were used to assess changes in cytokine concentrations throughout hospitalization.
Age and BMI comparisons were made with t-test, while Fisher’s exact test was used for
all other patient characteristics. A p value of < 0.01 was used to define significance in all
statistical comparisons.

3. Results

Clinical data of hospitalized COVID-19 patients with or without dexamethasone
treatment are shown in Table 1. The two groups had comparable patient characteristics
except hypertension incidence rates.

Table 1. Patient characteristics.

Parameter No -DEX DEX p Value

Sex, N (%)
Male 12 (71) 14 (74) >0.99

Female 5 (29) 5 (26)
Age, mean (SD) 62.1 (21.6) 71.8 (10.8) 0.091
BMI, mean (SD) 29.1 (7.3) 33.4 (6.9) 0.083

Comorbidities, N (%)
Diabetes 9 (53) 10 (53) >0.99

Hypertension 9 (53) 18 (95) 0.006
Obesity 6 (38) 13 (68) 0.095

Coinfections, N (%)
Bacterial pneumonia 2 (12) 6 (32) 0.236
Fungal pneumonia 0 (0) 1 (5) >0.99

Bacteremia 2 (12) 6 (32) 0.236
Urinary tract infection 2 (12) 2 (11) >0.99

Intubation, N (%) 4 (24) 11 (58) 0.049
ARDS, N (%) 6 (35.3) 14 (73.7) 0.043
Death, N (%) 2 (12) 10 (53) 0.014

Circulating cytokine concentrations on alternate days after hospitalization in each
patient are shown in Figure 1. None of the five cytokine values reached the lower thresh-
old (95% CI) of the influenza (CS) group at any point during the study period in DEX
or no-DEX group. Furthermore, mean concentrations of all five cytokines in COVID-19
were significantly lower than in the influenza (CS) group (Table 2). IL-6, IL-8 and TNF-α
concentrations were significantly lower in COVID-19 groups compared to burn patients.
TNF-α, MCP-1 and IP-10 (but not IL-6 or IL-8) were significantly higher in both COVID-19
groups than the control group. However, the magnitude of differences for these three
cytokines between normal and COVID-19 groups was substantially lower than the differ-
ences between COVID-19 and influenza (CS) groups. Concentrations of all five cytokines
were similar in DEX and no-DEX groups (p > 0.01). Several other cytokines and chemokines
showed similar circulating concentrations in COVID-19 patients. Either modest (but not
in the “cytokine storm” range) or no increase in concentrations compared to the control
group were observed (Supplemental Table S1).



Infect. Dis. Rep. 2021, 13 380
Infect. Dis. Rep. 2021, 13,  4 
 

 

 
Figure 1. Cytokine concentrations in COVID-19 patients after hospitalization. Circulating cytokine concentrations for each 
patient are shown on a logarithmic scale. The left panel shows patients in the no-dexamethasone treatment (DEX) group. 
In the DEX group, data points and lines when the patient is on dexamethasone are shown in blue, while those before and 
after treatment are shown in black. Four patients were on dexamethasone treatment throughout the observation period, 
and their data points are connected with a solid blue line. The red dashed line shows the lower 95% confidence limit of 
influenza (CS) patient values, while the dotted line represents the lower limit for burn injury patients. Upper and lower 
confidence limits for the control group are shown in turquoise shaded areas. 

Figure 1. Cytokine concentrations in COVID-19 patients after hospitalization. Circulating cytokine
concentrations for each patient are shown on a logarithmic scale. The left panel shows patients in the
no-dexamethasone treatment (DEX) group. In the DEX group, data points and lines when the patient is
on dexamethasone are shown in blue, while those before and after treatment are shown in black. Four
patients were on dexamethasone treatment throughout the observation period, and their data points are
connected with a solid blue line. The red dashed line shows the lower 95% confidence limit of influenza
(CS) patient values, while the dotted line represents the lower limit for burn injury patients. Upper and
lower confidence limits for the control group are shown in turquoise shaded areas.
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Table 2. Cytokine concentrations in COVID-19, influenza (CS), burn and control patients.

Cytokine Influenza (CS) Burn No-DEX DEX Control

IL-6 5076
(2899, 8888)

3697
(1462, 9348)

52 a,b

(13, 87)
63 a,b

(33, 119)
24

(12, 48)

IL-8 557
(233, 1333)

199
(113, 349)

22 a,b

(17, 27)
20 a,b

(15, 26)
10

(7, 15)

TNF-α 414
(254, 672)

228
(171, 305)

52 a,b,c

(35, 77)
68 a,b,c

(52, 88)
26

(21, 34)

MCP-1 9732
(6728, 14,078)

2094
(1437, 3052)

971 a,c

(745, 1265)
976 a,c

(763, 1249)
306

(226, 416)

IP-10 124,434
(109 K, 140 K)

17,866
(13 K, 23 K)

2239 a,b,c

(1014, 4947)
5885 a,c

(3803, 9109)
238

(145, 389)

Geometric means of concentrations are shown in pg/mL with lower and upper 95% confidence limits in parenthesis. None of the cytokine
concentrations were statistically different between the DEX and no-DEX groups (p > 0.01). N values are 17, 19, 9, 6 and 26 for the no-DEX,
DEX, influenza (CS), burn and control groups, respectively. K represents ×1000. a p < 0.01 compared to influenza (CS) group. b p < 0.01
compared to burn group. c p < 0.01 compared to control group.

To further assess dexamethasone’s effect on cytokine concentrations, a pair-wise
comparison was done within each subject before, during and after treatment. Figure 2
shows that none of the cytokine concentrations were statistically different between before
and during treatment periods (p > 0.01). Similarly, no statistically significant differences
were observed between during and after treatment periods.
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Figure 2. Effect of dexamethasone on cytokine concentrations in COVID-19 patients. Average cytokine values before, dur-
ing and after dexamethasone treatment are shown as mean with standard deviation. Paired t-tests showed no statistical 
difference between before and during dexamethasone treatment for any of the cytokines (p > 0.01, n = 10). Similarly, no 
significant difference was observed between during and after periods (p > 0.01, n = 8). 

We next analyzed the effect of time after hospitalization on cytokine concentrations. 
For this and all subsequent analyses, data from the DEX and no-DEX groups were com-
bined, as there was no effect of dexamethasone treatment on cytokine concentrations. Fig-
ure 3 shows that TNF-α and IP-10 concentrations decreased significantly after 7 days of 
hospitalization. These data suggest that modest increases in cytokine concentrations are 
likely to decrease within two weeks, and the stage of infection is critical in the interpreta-
tion of cytokine responses. 

Figure 2. Effect of dexamethasone on cytokine concentrations in COVID-19 patients. Average cytokine values before,
during and after dexamethasone treatment are shown as mean with standard deviation. Paired t-tests showed no statistical
difference between before and during dexamethasone treatment for any of the cytokines (p > 0.01, n = 10). Similarly, no
significant difference was observed between during and after periods (p > 0.01, n = 8).

We next analyzed the effect of time after hospitalization on cytokine concentrations.
For this and all subsequent analyses, data from the DEX and no-DEX groups were com-
bined, as there was no effect of dexamethasone treatment on cytokine concentrations.
Figure 3 shows that TNF-α and IP-10 concentrations decreased significantly after 7 days of
hospitalization. These data suggest that modest increases in cytokine concentrations are
likely to decrease within two weeks, and the stage of infection is critical in the interpretation
of cytokine responses.
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Figure 3. Time-course of cytokine response in COVID-19 patients after hospitalization. Cytokine concentrations of all pa-
tients in the study are shown as geometric mean with 95% CI. * indicates significant difference from day 1 values using 
paired t-test (p < 0.01). 

Figure 3. Time-course of cytokine response in COVID-19 patients after hospitalization. Cytokine
concentrations of all patients in the study are shown as geometric mean with 95% CI. * indicates
significant difference from day 1 values using paired t-test (p < 0.01).
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To better assess the state of infection and to confirm appropriate adaptive immune
response in our cohort, we measured the relative abundance of RBD antibodies in the
same samples used for cytokine analysis. All patients developed robust RBD antibody
responses by the seventh day of hospitalization regardless of dexamethasone treatment
(Supplemental Figure S1). However, some patients showed maximal antibody response on
the first day of hospitalization. Thus, we divided the patients into early and late infection
groups based on RBD antibody abundance on the first day of hospitalization (Figure 4).
Indeed, the average concentrations of TNF-α and IP-10 were significantly different between
early and late infection groups (Figure 5). In addition, the concentrations of these two
cytokines decreased with time, especially in the early infection group (Supplemental
Figure S2). These data further illustrate that the modest increase in cytokines observed
early during COVID-19 decreases within two weeks to baseline values.
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Figure 5. Effect of stage of infection on cytokine concentrations. Average cytokine values in early and late infection groups 
are shown as geometric mean with 95% CI. * represents a significant difference from the early group (p < 0.01). For mono-
cyte chemoattractant protein-1 (MCP-1), the p value was 0.011. 

4. Discussion 
Exaggerated cytokine response, especially of the magnitude and pattern typically as-

sociated with “cytokine storm”, was not observed in COVID-19 patients during two 
weeks of hospitalization. Data presented above are the first direct comparison of cytokine 
concentrations in COVID-19 patients with “cytokine storm” samples using the same anal-
ysis platform. Furthermore, we addressed several confounding factors, such as assessing 
immunosuppressant use, stage of infection, time-dependent effects and used appropriate 

Figure 4. Receptor-binding domain (RBD) antibody response in COVID-19 patients. Relative RBD IgG concentrations
in early and late infection groups are shown over the course of hospitalization. RBD value of 1100 on the first day of
hospitalization was used to distinguish early and late stages of infections. N = 20 for early and 16 for late groups.
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Figure 5. Effect of stage of infection on cytokine concentrations. Average cytokine values in early and late infection groups
are shown as geometric mean with 95% CI. * represents a significant difference from the early group (p < 0.01). For monocyte
chemoattractant protein-1 (MCP-1), the p value was 0.011.

4. Discussion

Exaggerated cytokine response, especially of the magnitude and pattern typically
associated with “cytokine storm”, was not observed in COVID-19 patients during two
weeks of hospitalization. Data presented above are the first direct comparison of cytokine
concentrations in COVID-19 patients with “cytokine storm” samples using the same analy-
sis platform. Furthermore, we addressed several confounding factors, such as assessing
immunosuppressant use, stage of infection, time-dependent effects and used appropriate
positive and negative controls. Dexamethasone treatment did not significantly alter concen-
trations of the cytokines analyzed in COVID-19 patients. Very modest increases in cytokine
concentrations were observed even in early infection when antibody response was not
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well-developed. It is possible that hospitalized COVID-19 patients may be immunocom-
promised and are unable to mount a cytokine response. However, our antibody data shows
that all patients developed robust antibody responses within a week of hospitalization and
at least the adaptive immune system is adequately functioning. These findings, together
with the use of appropriate control samples in the same analysis platform, enable us to
conclude that “cytokine storm” is absent in hospitalized COVID-19 patients.

Elevated plasma cytokine concentrations have also been reported in SARS-1 and
MERS patients [15,16]. Indeed, the magnitude and pattern of cytokine response to these
earlier variants of coronavirus infections are similar to that in COVID-19. For example,
maximum concentrations in pg/mL of IL-6 (<175), IL-8 (30), TNF-α (<20), MCP-1 (<300),
IP-10 (<10,000) observed in SARS-1 [16] are similar to those measured in this study and
are substantially lower than expected in a “cytokine storm”. Furthermore, these cytokines’
concentrations decreased over a 25-day post-SARS-1 infection period in patients with or
without methylprednisolone treatment.

Given the similarities of cytokine concentrations reported among published reports
on COVID-19, it is puzzling that “cytokine storm” theory has gained as much traction
in scientific and medical communities. Several factors may have contributed to this mis-
characterization. First, a statistically significant increase in cytokine concentrations was
misconstrued as an exaggerated response without considering the relative magnitude of
cytokine response [11]. Surrogate clinical (H-score, acute respiratory distress syndrome)
and circulating biomarkers (Ferritin, CRP) were used as evidence for cytokine storm rather
than a quantitative assessment of cytokines [9,17–19]. Finally, the rapid pace of research
and publication process in this global pandemic may not have been conducive to critical
data evaluation.

Immune response to viral infection serves the useful purpose of controlling the
pathogen. However, exaggerated cytokine response observed during sepsis, chimeric
antigen receptor-T cell therapy (CAR-T) or certain antibody therapies can cause undesir-
able adverse effects, including organ failure [20,21]. While the exact pattern and magnitude
of exaggerated cytokine responses are not defined, common use of “cytokine storm” refers
to observable clinical symptoms that can be ascribed to elevated cytokine concentrations.
For example, elevated IL-6 concentrations are responsible for fever, hypotension, and
neutropenia observed after CAR-T cell administration [22]. Biological effects of IL-6 are
mediated by classical and trans-receptor signaling pathways, with the latter pathway
primarily responsible for adverse effects of this cytokine. Trans signaling by soluble IL-6
receptors can only be achieved at very high circulating concentrations of IL-6 (ng/mL
range) observed in septicemia and cytokine release syndromes [23]. The ability of IL-6
receptor antibodies (tocilizumab) to decrease fever and circulating concentrations of other
proinflammatory cytokines demonstrates that elevated IL-6 in the ng/mL range is respon-
sible for the adverse effects of “cytokine storm” [14,22]. IL-6 concentrations observed in
COVID-19 patients are well below the levels expected to cause trans-signaling and are un-
likely to contribute to any remote organ pathology. This information will help interpret the
outcomes of ongoing clinical trials with tocilizumab in COVID-19 patients [24]. Two recent
randomized, double-blind, placebo-controlled studies did not find the clinical benefit of
tocilizumab [25,26] and reported IL-6 concentration was around 24 pg/mL in moderately
ill COVID-19 patients [26]. A few studies that reported IL-6 values in the ng/mL range
in some COVID-19 patients used different analysis platforms [27,28], underscoring the
importance of using appropriate control groups and analytical techniques.

Dexamethasone decreased mortality and improved clinical outcomes in COVID-19
patients on mechanical ventilation or receiving supplemental oxygen [29]. On the contrary,
a retrospective study did not find any benefit of using corticosteroids in critically ill COVID-
19 patients [30]. In light of our findings, systemic immunosuppression can be ruled out as
a contributing factor for dexamethasone’s utility. Local hyperimmune response in lung
tissue may be relevant in dexamethasone’s efficacy. However, a recent study showed
that cytokine response to viral infection in human lung tissue is lower in SARS-COV-2
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infection than SARS-CoV [31]. Alternative criteria, such as poor oxygen saturation levels,
are also used as a rationale for dexamethasone use. Some evidence supports improvement
in oxygen saturation by dexamethasone in COVID-19 patients [32]. Given the pleiotropic
effects of steroids, yet unidentified mechanisms independent of immunosuppression or
oxygen saturation may be responsible for the beneficial effects of dexamethasone.

Limitations of this study include retrospective experimental design, relatively low
sample size and single-institution setting. In addition, our study population is limited to
hospitalized patients. An inherent limitation of studying pathophysiological responses
to human infection is that the accurate infection stage is difficult to assess, even with
the date of positive laboratory findings. We used quantitative antibody responses to
overcome this limitation. Cytokine concentrations were relatively stable throughout the
two-week observation period and were similar to those reported in SARS-1. Suppression
of exaggerated cytokine response by dexamethasone use was not observed, and only a
very modest cytokine increase was observed even during the early stages of COVID-19
infection. It is reasonable to conclude that elevated cytokine responses in the “cytokine
storm” range do not occur in COVID-19 patients. Thus, dexamethasone use appears to be
neither required nor effective to control exaggerated systemic inflammation in COVID-19.
This information can help make rational therapeutic choices and establish future guidelines
for tocilizumab and dexamethasone use in COVID-19 patients.
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