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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions
of people worldwide. Currently, many clinical trials in search of effective COVID-19
drugs are underway. Viral RNA-dependent RNA polymerase (RdRp) remains the target
of choice for prophylactic or curative treatment of COVID-19. Nucleoside analogs are
the most promising RdRp inhibitors and have shown effectiveness in vitro, as well as in
clinical settings. One limitation of such RdRp inhibitors is the removal of incorporated
nucleoside analogs by SARS-CoV-2 exonuclease (ExoN). Thus, ExoN proofreading
activity accomplishes resistance to many of the RdRp inhibitors. We hypothesize that in
the absence of highly efficient antivirals to treat COVID-19, combinatorial drug therapy
with RdRp and ExoN inhibitors will be a promising strategy to combat the disease.
To repurpose drugs for COVID-19 treatment, 10,397 conformers of 2,240 approved
drugs were screened against the ExoN domain of nsp14 using AutoDock VINA. The
molecular docking approach and detailed study of interactions helped us to identify
dexamethasone metasulfobenzoate, conivaptan, hesperidin, and glycyrrhizic acid as
potential inhibitors of ExoN activity. The results were further confirmed using molecular
dynamics (MD) simulations and molecular mechanics combined with generalized Born
model and solvent accessibility method (MM-GBSA) calculations. Furthermore, the
binding free energy of conivaptan and hesperidin, estimated using MM-GBSA, was
−85.86 ± 0.68 and 119.07 ± 0.69 kcal/mol, respectively. Based on docking, MD
simulations and known antiviral activities, and conivaptan and hesperidin were identified
as potential SARS-CoV-2 ExoN inhibitors. We recommend further investigation of this
combinational therapy using RdRp inhibitors with a repurposed ExoN inhibitor as a
potential COVID-19 treatment.

Keywords: SARS-CoV-2, drug repurposing, exonuclease inhibitor, nucleoside analog, molecular docking and MD
simulation, combinatorial therapy
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INTRODUCTION

On December 31, 2019, the World Health Organization (WHO)
office in China was informed that cases of pneumonia of an
unknown cause were detected in Wuhan City, in the Hubei
Province of China. The Chinese authorities identified this to be a
previously unknown type of coronavirus, severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), and causing the disease
COVID-19. Since the outbreak, the number of confirmed cases
of COVID-19 increased rapidly, resulting in WHO declaring the
disease a pandemic on March 11, 2020 (Cucinotta and Vanelli,
2020). Almost all countries are affected by this pandemic with
millions of confirmed cases and more than a million deaths
worldwide. Currently, there are no approved drugs. However,
there is an urgent need to have a repertoire of repurposed drugs
to improve the efficacy and in addition be prepared for drug
resistance. Synergistic action of a combination of drugs against
SARS-CoV-2 can enhance the effectiveness of existing drugs that
have shown partial success in clinical trials. The class of antivirals
that are RNA-dependent RNA polymerase (RdRp) inhibitors,
such as favipiravir, remdesivir, ribavirin, and galidesivir, has been
on high priority since the beginning of COVID-19 trials. Trials
have been completed or are in progress in many countries.
Among these, remdesivir and favipiravir have shown promise
in different countries. These drugs being nucleoside analogs act
either by introducing mutations in the viral RNA or by chain
termination during replication. The action of these drugs on
viruses that do not have proofreading enzymes is good (Warren
et al., 2016). However, SARS-CoV-2 possesses a nonstructural
protein nsp14, with amino-terminal domain coding for a
proofreading exonuclease (ExoN) (Bouvet et al., 2012). ExoN
is capable of excising incorporated nucleoside analogs by virtue
of its 3′–5′ exonuclease proofreading activity. This results in
negating the action of these drugs, to varying extents, and
depending on the type of nucleoside analog chemistry [ribavirin,
5-fluorouracil (5FU), and remdesivir] (Figure 1; Smith et al.,
2013; Ferron et al., 2018). Hence, in the case of repurposed
drugs for COVID-19, a limitation of efficacy exists. The new-
generation RdRp inhibitors, such as remdesivir, are more effective
than ribavirin and 5FU, and as excision of these nucleosides
by viruses harboring exoribonuclease is weaker than ribavirin
and 5FU (Ogando et al., 2019). The delicate balance between
incorporation and excision properties of nucleoside analogs by
RdRp and ExoN respectively, decides the fate of the action of
RdRp-based antivirals.

Exonuclease inactivation was found to confer a “mutator
phenotype,” as was evident from a 15- to 21-fold increase
in mutation frequency—relative to the wild-type control—
during replication and passaging in cell culture (Eckerle
et al., 2007, 2010). In ExoN mutant background, remdesivir
has 4.5-fold (Shannon et al., 2020), and ribavirin has 200-
fold higher efficacy (Ferron et al., 2018), compared to a
wild-type ExoN viral genome. The mutagenesis results are
supported by sequencing analyses too (Eckerle et al., 2010).
This provides a clear rationale to use a combination of
antivirals favipiravir/remdesivir/ribavirin/galidesivir and SARS-
CoV-2 ExoN inhibitors. Currently, there is no drug available to

inhibit ExoN. Detailed molecular docking studies to find small
molecules/peptides/natural molecules that have the potential
to inhibit ExoN are urgently required (Senanayake, 2020). It
is interesting to note that coronaviruses lacking ExoN are
susceptible to lethal mutagenesis (Smith et al., 2013). The crystal
structure of SARS-CoV nsp14-nsp10 (Ma et al., 2015) provides
opportunities for molecular docking of the ExoN domain of
nsp14 to different available drugs.

In this study, we propose that combinatorial therapy with
one drug from favipiravir/remdesivir/ribavirin/galidesivir and an
inhibitor of ExoN would be effective in increasing the efficacy
of the RdRp inhibitors (Figure 1). To repurpose drugs for
COVID-19 treatments, we performed molecular docking of
10,397 approved drug conformers on the ExoN domain of SARS-
CoV-2 nsp14. Three known antivirals conivaptan, hesperidin,
and glycyrrhizic acid show promise based on the docking results
and their known inhibitory effects on β-coronaviruses in vitro
(De Clercq, 2006) and in patients (Hoever et al., 2005; Ledford,
2020). Further docked complexes of conivaptan, hesperidin,
glycyrrhizic acid, and astemizole were refined using 200-ns-long
MD simulations. Binding energy estimation using molecular
mechanics combined with generalized Born model and solvent
accessibility method (MM-GBSA) studies estimated binding free
energies of conivaptan and hesperidin as −85.86 ± 0.68 and
119.07 ± 0.69 kcal/mol, respectively. Therefore, repurposing
hesperidin and conivaptan as potential inhibitors of proofreading
ExoN and using them in conjunction with RdRp inhibitors could
lead to a potentially high level of antiviral activity and promising
therapy for COVID-19.

RESULTS

SARS-CoV-2 ExoN Domain
SARS-CoV-2 nsp14 is a multidomain protein. The N-terminal
domain functions as proofreading exoribonuclease, and the
C-terminal is a methyltransferase. SARS-CoV-2 nsp14 shares
95.07% amino acid sequence identity (over complete protein
length) with SARS-CoV nsp14 (Supplementary Figure 1). ExoN
domain of SARS-CoV nsp14 resembles DEDD-type ExoNs (Ma
et al., 2015). The DEDD superfamily members are defined by
the presence of three canonical motifs—DXE (motif I), W(X)4EL
(motif II), and DAIMTR (motif III) (Shannon et al., 2020). The
presence of DEED instead of DEDD and an additional H makes
the SARS-CoV ExoN a DEEDh-type ExoN (Ogando et al., 2019).
In SARS-CoV-2, the catalytic residues—Asp90, Glu92, Glu191,
His268, and Asp273, and the canonical motifs are conserved
(Supplementary Figure 1). A 3-dimensional (3D) model of
SARS-CoV-2 nsp14 was built using SARS-CoV nsp14 (PDB ID:
5C8S) as a template. A grid comprising the three conserved
motifs was used for docking.

Molecular Docking
Ten thousand three hundred ninety-seven conformers generated
from 2,240 approved small molecule drugs were screened using
AutoDock VINA. Based on binding free energy, the top 20
binding poses were selected for further analysis (Figure 2
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FIGURE 1 | Schematic describing ExoN proofreading activity and mode of action of inhibitors. (Left) Replication in viruses such as hepatitis C virus (HCV), with no
proofreading mechanism. Replication by low fidelity RNA-dependent RNA polymerase (RdRp) in absence of ExoN is error-prone. Incorporated nucleoside analogs
(NAs) are not excised, resulting in either premature replication termination or incorporation of mutation. (Middle) Replication in viruses such as SARS-CoV with
proofreading exonuclease (ExoN). Like HCV, in SARS-CoV-2 too, replication is by low-fidelity RdRp, but errors and NA are excised by proofreading ExoN, and
decreasing the efficacy of antivirals. (Right) Same as middle panel but in presence of ExoN inhibitor. In presence of ExoN inhibitor, NA might not be excised, and
resulting in premature replication termination.

and Table 1). All 20 poses interact with catalytic residues.
Dexamethasone metasulfobenzoate binds to the catalytic site of
ExoN with the binding energy of −8.7 kcal/mol. Conivaptan,
dutasteride, hesperidin, lumacaftor, and glycyrrhizic acid bind
ExoN active site with the slightly higher energy of−8.6 kcal/mol.
Interaction of ExoN domain with 12 unique drug molecules,
corresponding to top 20 poses, was studied and is depicted in
Table 2. Most of the analyzed poses interact with at least three
of the five catalytic residues (Figures 3, 4).

Hesperidin is the only drug that interacts with all five
catalytic residues. Hesperidin and glycyrrhizic acid have four
and three ExoN catalytic residues, respectively, within hydrogen-
bonding distance (Figure 4). The binding of these drugs to ExoN
catalytic residues might potentially cause obstruction of substrate
binding and catalysis.

Remdesivir, an investigational drug for the treatment of
Ebola, was shown to inhibit SARS-CoV-2 RdRp, and inhibiting
RNA synthesis (Gordon et al., 2020). As remdesivir is a drug
without anti-ExoN activity, it was used here as a negative
control. Remdesivir displayed a low binding affinity toward
ExoN (−6.0 kcal/mol) than the top 20 poses (<−8.4 kcal/mol).
The estimated binding energy of remdesivir with ExoN is -
6.0 kcal/mol, higher than the top 20 poses from the approved
drug category (Table 1).

Structural Stability of ExoN and
ExoN–Drug–Bound Complexes
Molecular dynamics simulation can provide atomistic insights
on structural stability and the dynamic of protein–ligand
interactions (Luthra et al., 2009; Prakash and Luthra, 2012; Wang
et al., 2013; Panda et al., 2020). Based on molecular docking,
interactions with active site ExoN residues and their antiviral
properties, conivaptan, hesperidin, and glycyrrhizic acid were
chosen for MD studies. As astemizole was shown to inhibit SARS-
CoV-2 in in vitro assays, it was included in the MD studies
(Riva et al., 2020).

The structural dynamics of glycyrrhizic acid, astemizole,
conivaptan, and hesperidin in complex with ExoN displays
maximum population density of stable conformation at ∼6.0,
6.5, 8, and 6 Å, respectively, relative to ExoN, which equilibrated
at around 9.75 Å. Hence, drug molecules induced substantial
rigidification in ExoN structure (Figure 5A). ExoN–glycyrrhizic
acid exhibited the least structural fluctuations, suggesting the
most stable protein–ligand complex. Although the complex of
ExoN–conivaptan achieved a maximum population density of
around 8 Å, the population density of conformational dynamics
ranges from∼4.0 to 9 Å. The ExoN–conivaptan complex shows a
slightly smaller peak at ∼6.0 Å too. It suggests conivaptan might
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FIGURE 2 | Twenty lowest-binding energy conformations from the molecular screen. (A) SARS-CoV-2 nsp14 is depicted as surface representation and the 20
lowest-binding energy poses are depicted as sticks. The ExoN domain is in green, and MTase domain is in blue. (B) Zoomed-in version depicting bound conformers
of drug molecules.

TABLE 1 | Screening results of top twenty conformers with lowest-binding energies.

Drug bank ID Conf ID Name Binding free energy (kcal/mol)

DB14703 1 Dexamethasone metasulfobenzoate −8.7

DB00872 3 Conivaptan −8.6

DB01126 1 Dutasteride −8.6

DB01126 3 Dutasteride −8.6

DB04703 1 Hesperidin −8.6

DB09280 1 Lumacaftor −8.6

DB13751 3 Glycyrrhizic acid −8.6

DB14703 0 Dexamethasone metasulfobenzoate −8.6

DB14703 2 Dexamethasone metasulfobenzoate −8.6

DB14703 3 Dexamethasone metasulfobenzoate −8.6

DB14703 4 Dexamethasone metasulfobenzoate −8.6

DB00696 2 Ergotamine −8.5

DB01126 0 Dutasteride −8.5

DB03147 3 Flavin adenine dinucleotide (FAD) −8.5

DB06210 1 Eltrombopag −8.5

DB00637 3 Astemizole −8.4

DB00696 1 Ergotamine −8.4

DB00696 3 Ergotamine −8.4

DB00878 0 Chlorhexidine −8.4

DB01251 1 Gliquidone −8.4

move between two conformations. The structure of ExoN and
ExoN–glycyrrhizic acid, astemizole, conivaptan, and hesperidin
had a maximum population density of radius of gyration (RoG)
around 33, 33.5, 31.5, 32.2, and 32.2 Å, respectively (Figure 5B).
During the simulation period of 200 ns, all five systems were
stable around the solvent-accessible surface area (SASA) values
of 2,700 to 2,900 Å2. RoG and SASA results suggest marginal
or no structural compactness change of ExoN and ExoN–drug
complexes (Figure 5C).

To understand the drifts in root mean square deviation
(RMSD) plots (Figure 5 and Supplementary Figure 2A), the
average distance of the four drug molecules from the center

of the ExoN active site was measured. The time evolution
distance plots show that the average distance of hesperidin and
conivaptan remained consistent between 3.5 and 4.5 Å from the
active site of ExoN (Supplementary Figure 3). Glycyrrhizic acid
and astemizole move out from the binding pocket around ∼50
and ∼100 ns of simulation, respectively. The conformational
adaptability of hesperidin and conivaptan during the simulation
was explored by performing root mean square fluctuation
(RMSF) analyses. The average RMSF peaks of all the amino
acids of ExoN-hesperidin and ExoN–conivaptan complex are
less than ExoN (Supplementary Figure 2 and Supplementary
Methods). The RMSF values provide structural evidence of stable
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TABLE 2 | Residues involved in hydrogen bond and hydrophobic interaction.

Drug bank ID Name H-bond contacts* Hydrophobic contacts

DB14703 Dexamethasone
metasulfobenzoate

D90, N104, N252, and L253 V91, E92, G93, Q145, F146, W186, F190, Q254, N266,
H268, and D273

DB00872 Conivaptan M58, D90, V91, E92, G93, N104, F146, W186, A187,
F190, N252, L253, Q254, N266, H268, and D273

DB01126 Dutasteride G93, N104, and Q254 E92, F190, N252, N266, H268, and D273

DB04703 Hesperidin D90, V91, E92, Q145, E191, N252, and D273(3) H148, F146, W186, A187, F190, L253, N266, H268, and
A267

DB09280 Lumacaftor D90, G93(2), N104, N252, Q254, and N266 V91, P141, F146, W186, A187, F190, and H268

DB13751# Glycyrrhizic acid D90, E92, G93(2), N104, and E191 V91, Q145, F146, F190, N252, L253, Q254, H268, and
N266

DB00696 Ergotamine D90, V91, E92, G93, N104, P141, Q145, F146, W186,
F190, E191, N252, L253, Q254, N266, and D273

DB03147 Flavin adenine
dinucleotide

V91, N104, E191, N252, L253, and Q254 D90, G93, H95, P141, F146, A187, F190, and D273

DB06210 Eltrombopag D90, G93(2), and N104 H95, P141, F146, W186, A187, F190, E191, N252, Q254,
N266, H268, and D273

DB00637 Astemizole D90, N266 V91, E92, G93, N104, P141, F146, W186, A187, F190,
N252, Q254, L253, H268, and D273

DB00878 Chlorhexidine N266 W186, Q145, N252, L253, H268, and D273

DB01251 Gliquidone N252, N266 D90, E92, H95, N104, P141, Q145, F146, W186, A187,
F190, H268, and D273

Blue and bold font indicates catalytic residues.
*Numbers in parentheses indicate the number of hydrogen bonds formed with the particular amino acid.
#LigPlus did not work, manually done.

FIGURE 3 | Putative binding pockets of docked compounds. Interaction of ExoN residues (gray) with docked conformer of dexamethasone metasulfobenzoate
(yellow sticks) (A) and conivaptan (pink sticks) (B). H-bonded residues are depicted as sticks. Yellow dotted lines represent hydrogen bond, and the distance is in
angstroms (Å). Residues in hydrophobic contact are depicted as surface representation.

molecular interaction of hesperidin and conivaptan with ExoN.
The average distances between metal ions (Mg2+) remain around
3.6 Å (Supplementary Figures 3, 4).

Hydrogen Bond Analysis
The efficacy of a drug molecule is largely dependent on molecular
interactions at the active site (Schiebel et al., 2018; Mishra et al.,
2021), and the network of H-bonds plays a crucial role in this
interaction. Thus, H-bond interactions between ExoN and drug
molecules were calculated (Chen et al., 2016). Distance cutoff of
3.5 Å, and angle cutoff of 135◦ were used for the calculation of

H-bonds. Maximum occupancy of seven H-bonds between ExoN
and hesperidin was observed, of which five to six H-bonds were
observed consistently during the simulation (Supplementary
Figure 6). The molecular interaction of conivaptan with ExoN
shows the maximum possibility of two H-bonds. Out of that,
only one H-bond remains consistent throughout the simulation
time (0–200 ns).

Binding Free Energy Analysis MM-GBSA
To ascertain the molecular binding interaction of hesperidin and
conivaptan with ExoN, a quantitative assessment of binding free
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FIGURE 4 | Putative binding pockets of docked compounds. Interaction of ExoN residues (gray) with docked conformer of hesperidin (green sticks) (A) and
glycyrrhizic acid (purple sticks) (B). H-bonded residues are depicted as sticks. Yellow dotted lines represent hydrogen bond, and the distance is in angstroms (Å).
Residues in hydrophobic contact are depicted as surface representation.

FIGURE 5 | Probability distribution plots of structural order parameters. (A) Cα -backbone RMSD, (B) RoG, (C) SASA of ExoN, the docked complexes,
ExoN–astemizole and ExoN–conivaptan, ExoN–hesperidin, and ExoN–glycyrrhizic acid.

energy (1Gbinding) was carried out using MM-GBSA (Genheden
and Ryde, 2015) on the conformational ensemble of protein–
ligand complexes. Hesperidin shows more favorable binding free
energy, 1Gbinding = −119.07 ± 0.69 kcal/mol, as compared to
conivaptan (1Gbinding =−85.86± 0.68 kcal/mol) (Table 3).

Free energy decomposition per residue at ExoN active
site indicates energetically favorable molecular binding of
hesperidin and conivaptan, largely contributed by the residues
involved in van der Waals and electrostatic interactions
(Figure 6). Hesperidin shows energetically favorable binding
to catalytic residues Val91 and Hie268 and other active
site residues Trp186, Ala187, Asn252, Leu253, Gln254, and
Asn266. Interactions of these residues with hesperidin were
observed in the molecular docking studies too (Figure 4A).
Conivaptan interacts with catalytic residues Phe146, Phe190,
and Glu191 and active site residues Val91, Gln145, Phe146,
Trp186, Ala187, and Phe190. Like hesperidin, the interaction of
the aforementioned residues with conivaptan was observed in
molecular docking (Figure 4B).

DISCUSSION

COVID-19, an infectious respiratory illness, is caused by a
novel strain of coronavirus SARS-CoV-2. Currently, there are
no approved drugs. Drugs targeting RdRp such as favipiravir,
remdesivir, ribavirin, and galidesivir have shown promise in
SARS-CoV-2 and few other strains of coronavirus. Nucleoside
analogs—remdesivir and favipiravir—have been authorized for
emergency use in the treatment of COVID-19 in different
countries. These RdRp inhibitors act by competing with host
nucleoside substrates for incorporation in nascent RNA being
synthesized (Xu et al., 2003). The misincorporated analogs cause
either a premature chain termination or mutation in RNA
(Figure 1). ExoN domain of nsp14 in CoVs is known to excise
misincorporated analogs (Ferron et al., 2018). The excision action
of ExoN decreases the efficacy of nucleoside analog, such as
ribavirin, in vivo (Ferron et al., 2018). A decrease in efficacy
of remdesivir was speculated because of ExoN activity (Gordon
et al., 2020). A 100-fold increase in remdesivir efficacy was
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TABLE 3 | Binding free energy (kcal/mol) calculation of drug molecules against ExoN.

Compound 1Gbinding 1EvdW 1Eelectrostatic 1EGB 1ESURF 1Ggas 1Gsolv

Conivaptan −85.86 ± 0.68 −27.59 ± 0.31 −54.58 ± 0.67 0.56 ± 0.45 −4.25 ± 0.02 −82.17 ± 0.70 −3.69 ± 0.43

Hesperidin −119.07 ± 0.69 −48.21 ± 0.49 −102.29 ± 0.84 38.49 ± 0.59 −7.05 ± 0.02 −150.51 ± 0.83 31.43 ± 0.58

seen in ExoN mutant of murine hepatitis virus (MHV), a beta-
coronavirus (Agostini et al., 2018). It has been hypothesized that
simultaneous inhibition of RdRp and ExoN in CoVs could be an
effective therapeutic strategy (Pruijssers and Denison, 2019).

Hence, in silico drug screening method was used to
search for potential inhibitors of ExoN. Ten thousand three
hundred ninety-seven conformers from 2,240 approved drugs
were screened against SARS-CoV-2 nsp14 containing the
ExoN domain. AutoDock VINA screening results indicated
dexamethasone metasulfobenzoate to be the top binder and
conivaptan, dutasteride, hesperidin, lumacaftor, and glycyrrhizic
acid to be a close second. All six compounds showed extensive
interaction with nsp14 residues, especially the catalytic residues
of the ExoN domain (Table 2).

Interestingly, few of the approved drugs that bind with ExoN
catalytic site in silico– conivaptan, hesperidin, and glycyrrhizic
acid—have shown antiviral activity in earlier studies. Conivaptan,
a nonpeptide inhibitor of vasopressin, has shown in vitro
efficacy against feline infectious peritonitis coronavirus, human
coronavirus OC43 (HCoV-OC43), dengue, and Zika virus (Yang
et al., 2020). Inhibitory activity of hesperidin against influenza
a virus was reported by Dong et al. (2014). Its antivirus
response was linked to increases in cell-autonomous immune
responses (enhanced expression of primary and secondary
genes). In addition, hesperidin inhibited the export of viral
ribonucleoproteins. Hesperitin, an aglycone form of hesperidin,
was shown to inhibit the cleavage activity of SARS-CoV 3C–
like protease (Lin et al., 2005). Glycyrrhizic acid, an antitumoral,
anti-inflammatory drug, has in vitro inhibitory effects on a
broad range of viruses like flaviviruses (Crance et al., 2003),
herpesviruses, and human immunodeficiency virus (Lin, 2003).
Glycyrrhizic acid was used for the treatment of SARS-CoV
(Hoever et al., 2005) and chronic hepatitis virus in patients
(Miyake et al., 2002). Astemizole was reported to inhibit SARS-
CoV-2 in vitro assays (Riva et al., 2020). Based on molecular
docking results and varying degrees of evidence in support of
their antiviral use, conivaptan, hesperidin, glycyrrhizic acid, and
astemizole were selected for MD studies.

Dexamethasone, our top hit in docking screen, is a
glucocorticoid shown to reduce fatality by a third in critically
ill COVID-19 patients requiring ventilator support (Ledford,
2020). Glucocorticoids are known to cause adverse effects and
are not recommended for use in mild COVID-19 cases. Hence,
the use of dexamethasone as a potential ExoN inhibitor was not
pursued further.

In-depth MD studies revealed that spatial orientation of
hesperidin and conivaptan favors stable molecular interaction,
and they remain well occupied at the ExoN active site for the
entire duration of the simulation (Figure 5 and Supplementary
Figure 3). Binding free energy calculations using MM-GBSA

indicated a higher binding affinity of hesperidin compared
to conivaptan. Although the binding affinity of conivaptan
was lower than hesperidin, both the drugs are involved in
energetically favorable molecular interactions with catalytic and
active site residues (Figure 6 and Table 3). Hence, we hypothesize
that glycyrrhizic acid and conivaptan might occlude ExoN
catalytic site, thereby inhibiting the proofreading activity.

Our docking result, MD simulations combined with evidence
in support of antiviral use of glycyrrhizic acid and conivaptan,
and underscores their potential as SARS-CoV-2 ExoN inhibitor.
When used in combination with RdRp inhibitors, the higher
concentrations reported for the repurposed ExoN inhibitors to
exert antiviral activity could be minimized. In addition, the
higher concentrations required for RdRp inhibitors to exert their
action in the presence of ExoN activity such as in SARS-CoV-2
can also be reduced, as dual action of RdRp and ExoN inhibition
in parallel should require lower concentrations of the respective
drugs. A combination of RdRp and ExoN inhibitors, in addition
to the increased efficacy, would also possibly avert drug resistance
generated from mutations in ExoN to enhance the proofreading
of nucleoside analogs in RdRp inhibition.

MATERIALS AND METHODS

Homology Modeling of ExoN
The amino acid sequence of SARS-CoV-2 ExoN/nsp14
(P0DTD1) was used as a target sequence to build a 3D
model using the SWISS-MODEL web server (Schwede et al.,
2003). Nsp14 from SARS-CoV (PDB ID: 5C8S, chain B) had
a high sequence identity to target sequence—95.07%. This 3D
structure was used as a template for building the SARS-CoV-2
nsp14 model. The model quality was assessed using the QMEAN
score. The QMEAN score for the generated model was −3.14.
Scores greater than−4 indicate a good model.

Virtual Screening Using AutoDock VINA
Two-dImensional structures of approved small molecule drugs
were downloaded from DrugBank in sdf format (2,454
structures) (Wishart et al., 2006). The structures were converted
to 3D format using the OpenBabel –gen3d option (O’Boyle
et al., 2011; Yoshikawa and Hutchison, 2019). Few of the
drug molecule structures showed error at this stage. 3D
structures of these molecules were downloaded from other
sources (Supplementary Table 1). Multiple conformers for each
3D structure were generated using OpenBabel to increase the
conformational space sampling.

The docking grid was defined to encompass the conserved
motives of the ExoN domain (see section “SARS-CoV-2
ExoN Domain”). A total of 10,397 conformers from 2,240
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FIGURE 6 | Binding free energy decomposition plot. Decomposition plot of binding free energy over the interacting residues at the active site of ExoN.

compounds were subjected to virtual screening using the
AutoDock VINA tool on SARS-CoV-2 nsp14 (Trott and Olson,
2010). Twenty poses were generated for each compound.
Compound-nsp14 interactions were visualized using LigPlot+
v2.1 (Laskowski and Swindells, 2011).

Modeling of Mg2+ Ion in the Active Site
SARS-CoV-2 ExoN crystal structure (PDB ID: 7MC6, length 291
amino acids) became available after the completion of our work.
Pairwise structure comparison of SARS-CoV-2 ExoN crystal
structure and homology model (this study) was done using the
Dali web server (Holm, 2020). The comparison revealed the two
structures to be highly similar (DALI Z score 39.7; RMSD 0.8 over
285 aligned residues).

The SARS-CoV-2 structure contains one Mg2+ ion in the
catalytic site (Moeller et al., 2021). ExoN uses two metal ions to
remove misincorporated nucleotides. In the structures of SARS-
CoV-2 and SARS-CoV, ExoN coordinates of only one Mg2+ ion
are observed. Lassa virus NP ExoN, an ExoN of DEDDh-family,
contains two Mn2+ ions in its catalytic site. The two Mg2+ ions
were modeled in the docked complexes based on the Mn2+ ion
position in the Lassa NP ExoN-RNA complex (PDB ID: 4GV9).
Simulations were performed using the Mg2+ ions containing
docked structures.

MD Simulation
All-atoms MD simulation was performed using the Amber16
with force field ff14SB (Case et al., 2005; Maier et al., 2015) for the
metal ion–containing protein, ExoN, and the docked complexes
with drug molecules, astemizole, conivaptan, hesperidin, and
glycyrrhizic acid. Antechamber (Wang et al., 2006) is used to
parameterize all selected ligands using the GAFFs force field
(Wang et al., 2004). Divalent Mg++ interactions are modeled
using the 12-6-4 model compatible with the TIP3P water model.
For the ligand preparation, topology, and parameter files were
generated using the leap module of Amber (Maier et al., 2015).
Keeping the protein at the center, a cubic box is prepared with
10 Å, padding the explicit TIP3P water molecules in all directions
(Jorgensen et al., 1983), and the counter-ions (Na+Cl−) added

to neutralize the simulation box. Particle mesh Ewald approach
(Essmann et al., 1995) was used for electrostatic interaction
calculation and the SHAKE algorithm (Ryckaert et al., 1977) was
used to constrain H-bonds. Energy minimization of prepared
systems was performed in three stages, each of 10,000 steps
of steepest descent (SD) and conjugate gradient (CG) to relax
the system. Furthermore, each simulation system was gradually
heated from 50 to 300 K in six steps, followed by 10,000 steps of
SD and CG minimization, respectively. Under the NVT ensemble
condition, each system is equilibrated for 1 ns. Finally, all five
systems were submitted for the production run under NPT
ensemble condition for 200 ns with a time step of 2 fs.

MD Trajectory Analysis and MM-GBSA
Assay
The obtained MD trajectories were analyzed for the structural
stability of ExoN and binding with drug molecules through the
RMSD, RMSF, RoG, SASA, and H-bond interactions between
protein and ligands during the simulation. The Cα-backbone
RMSD is calculated with reference to the starting structure of the
protein. RMSF defines the average positional fluctuations of the
protein residues from their initial position, which is important
to determine the local dynamics of a protein. The binding
free energy for each complex drug molecule was estimated
using the molecular mechanics combined with the generalized
Born MM-GBSA along with the weighted interactions active-
site residues (Miller et al., 2012). The binding free energy
components can be represented according to the equations;

4Gbind = Gcomplex−(Greceptor+Gligand) (1)

4Gbind = 4H−T4S ~4EMM+4Gsol−T4S (2)

4EMM = 4Einter+4Eelectostatic+4Evdw (3)

4Esol = 4GGB+4GSA (4)
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where, 1EMM represents the enthalpic components, whereas
1Esol represents the polar and nonpolar electrostatic components
from solvation. Here, the polar electrostatic component
is calculated using the GB model, whereas the nonpolar
electrostatic contribution is calculated by SASA. The last 50-ns
simulation trajectory is used, which was sampled per 10-
ps interval.
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