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Abstract
Background: Pathogenic Yersinia species (Y. enterocolitica, Y. pestis, Y. pseudotuberculosis) share a
type three secretion system (TTSS) which allows translocation of effector proteins (called Yops)
into host cells. It is believed that proteins are delivered through a hollow needle with an inner
diameter of 2–3 nm. Thus transport seems to require substrates which are essentially unfolded.
Recent work from different groups suggests that the Yersinia TTSS cannot accommodate substrates
which are folded prior to secretion. It was suggested that folding is prevented either by co-
translational secretion or by the assistance of specific Yop chaperones (called Sycs).

Results: In this study we have fused YopE secretion signals of various length to the mouse
dihydrofolate reductase (DHFR) in order to analyse the DHFR folding state prior to secretion. We
could demonstrate that secretion-deficient as well as secretion-competent YopE-DHFR fusions
complexed to SycE can be efficiently purified from Yersinia cytosol by affinity chromatography using
methotrexate-agarose. This implies the folding of the DHFR fusion moiety despite SycE binding and
contradicts the previously presented model of folding inhibition by chaperone binding. Secretion-
deficient YopE-DHFR fusions caused severe jamming of the TTSS. This observation contradicts the
co-translational secretion model.

Conclusions: We present evidence that the Yersinia TTSS is familiar with the processing of
transport substrates which are folded prior to secretion. We therefore predict that an unfoldase
is involved in type III secretion.

Background
Pathogenic Yersinia species use a type III secretion system
(TTSS) encoded by the virulence plasmid to inject a
number of effector proteins (Yersinia outer proteins,
abbrev. Yops) into eucaryotic host cells [1-3]. The com-
plex transport machinery (also denoted as injectisome)

consists of some 25 components. A needle-like structure,
polymerized from YscF, with a hollow center of about 2–
3 nm seems to form a conduit for Yop transport into
eucaryotic host cells [4].
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The transport signal of Yops has been assigned to the first
10 to 17 codons of the respective gene [5-8]. Yet, what
makes the signal a signal is not clear. Anderson and
Schneewind [5] proposed a signal at the mRNA-level. This
mRNA element was suggested to couple translation and
secretion of Yops, implying a co-translational transport
mode [6]. Ramamurthi and Schneewind [9,10] recently
presented further evidence that the YopQ secretion signal
might not be proteinaceous. However, work from Lloyd et
al. [11,12] supports the idea of an N-terminal peptide
moiety with characteristics of an amphipathic sequence
acting as transport signal for YopE.

As controversial as the question of the signal's nature is
that of the mode of transport. The mRNA signal hypothe-
sis is linked to a co-translational secretion model [5,6],
whereas an N-terminal signal peptide is compatible with
both a co- or post-translational transport mechanism.
This issue is even more complicated by the fact that the
transport of several Yops is assisted by their specific Yop
chaperones (e.g. YopE is assisted by SycE) whereas others
such as YopQ – as far as known – are not assisted by chap-
erones. The minimal binding site of SycE has been
mapped to residues 23–50 of YopE [7,13,14]. This bind-
ing site in complex with a SycE dimer has been suggested
to constitute an additional, three-dimensional secretion
signal [14] introducing a hierarchy of effector targeting
[15]. SycE binding has been shown to be dispensable for
secretion of YopE to the culture supernatant but is
required for translocation into eucaryotic cells [11,16].
Additionally, YopE can be targeted to the type III machin-
ery and secreted to the supernatant, although less effi-
cient, without the first 15 N-terminal codons/aa residues
solely by means of SycE assistance [17]. Post-translational
secretion of YopE has been demonstrated [6,11,18].

With the evidence for a post-translational secretion mech-
anism the question arose whether Yop transport occurs in
a (partially) folded or unfolded form. Mouse dihydro-
folate reductase (DHFR; 21.6 kDa) has been successfully
applied as a reporter in eucaryotic systems to address the
question of the folding state of transported proteins [19-
22]. The stability of the folded DHFR domain can be
manipulated by treatment with specific ligands such as
methotrexate (MTX).

Recently, two studies were published applying the DHFR
tool to analyse the properties of the Yersinia TTSS. Lee and
Schneewind [23] reported on a YopE1–15-DHFR fusion
and a YopE1–220-DHFR fusion (full length of YopE) which
were not secreted by the TTSS of Yersinia enterocolitica. This
lack of secretion competence however did not interfere
with secretion of other Yops. Further, ubiquitin which
rapidly folds into a stable tertiary structure was fused to
YopQ and YopE signals of different length. Again, all

fusions were secretion-incompetent and did not interfere
with secretion of other Yops. Only when a folding-defi-
cient ubiquitin was fused to the YopE1–15 signal was effi-
cient secretion observed. Thus, it was concluded by Lee
and Schneewind [23] that folding of DHFR and ubiquitin
hindered secretion of the fusions. Further, the observation
that the secretion-incompetent proteins did not lead to an
occlusion of the TTSS prompted the authors to propose a
model supporting the mRNA signal hypothesis: After sig-
nal recognition a substrate that cannot be accommodated
would be rejected and – after separation from its mRNA –
could not be reinitiated into the secretion machinery.

A second report deals with the role of SycE in secretion of
YopE-DHFR fusions [24]. DHFR and folding deficient
mutants thereof were fused to YopE signals encompassing
the first 16, 52, 80 and all 219 amino acid (aa) residues.
The major outcome of this study was that wild-type DHFR
could only be secreted when fused to YopE1–52 and that
this secretion was strictly dependent on the presence of
SycE. All other fusions required mutations in DHFR in
order to allow secretion. Altogether, Feldman et al. [24]
concluded that folding of DHFR was not compatible with
its secretion competence and that SycE allowed secretion
of wild-type DHFR as part of the YopE1–52 fusion by pre-
venting its folding. In apparent contrast to Lee and
Schneewind [23], Feldman et al. [24] could demonstrate
the occlusion of the TTSS by several YopE-DHFR fusion
constructs.

In parallel to these groups we have also applied the DHFR
approach to the Yersinia enterocolitica TTSS. Contrary to
the studies mentioned above our conclusion is that the
Yersinia TTSS can deal with secretion substrates essentially
folded prior to secretion. Since the transport channel
seems to be too narrow to allow passage of such folded
domains we propose an unfoldase activity associated with
the TTSS.

Results and discussion
Initially, based on a previous study on YopE-GFP fusions
[25], we started to analyse secretion of wild-type DHFR
fused to YopE secretion signals (the first 18, 53 and 138 aa
residues). In accordance with Lee and Schneewind [23]
and Feldman et al. [24] we found that YopE1–18-DHFR
and YopE1–138-DHFR fusions were not secreted by the
Yersinia TTSS (details below). Our YopE1–53-DHFR fusion
was secreted in the presence of SycE as was the YopE1–52-
DHFR fusion described by Feldman et al. [24]. However,
our further analysis prompted us to conclude that the
DHFR moiety of YopE fusions was folded. This was based
on protease protection analyses (Fig. 1) and native gel
analyses (Fig. 2) of cytosolic fractions. In order to prove
entry of DHFR ligands such as methotrexate (MTX) or
aminopterin (APT) into the cytosol of yersiniae we have
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prepared spheroplasts from yersiniae pretreated with APT,
MTX or untreated. Spheroplasts were subsequently lysed
and binding of the ligands MTX and APT to cytosolic
YopE1–53-DHFR was then challenged by testing the resist-
ance against the protease thermolysin (Fig. 1). Surpris-
ingly, even concentrations as high as 1 mM of MTX or APT
present in the yersiniae cultures were insufficient to pro-
tect the DHFR moiety from proteolytic digestion. Hence,
we were not able to saturate the intracellular pool of
DHFR fusions with either of the ligands since control
experiments shown in Fig. 1 demonstrate that addition of
MTX or APT to cytosol of untreated yersiniae rendered the
DHFR moiety of the fusions resistant to protease attack.
Feldman et al. [24] anticipated that MTX could not be
used because E. coli is known to efficiently export MTX
[26]. In contrast, APT was expected to enter the Yersinia
cell because an apparent growth restriction could be
observed [24]. However, the entry of neither drug has
been proven directly.

We have noticed that for analysis of cytosolic fusions it
was crucial to prepare spheroplasts. Initially, we had lysed
complete yersiniae pretreated with these drugs and even
though we had extensively washed the bacteria prior to
lysis we found the complete pool of DHFR saturated with
the ligands. Thus, either the periplasmic space was loaded
with MTX/APT or the bacterial surface was coated so that
after cell lysis the released ligands could bind to DHFR
causing artificial protection towards thermolysin.

From the protease protection analyses of spheroplast
preparations we can conclude the following. First, neither
APT nor MTX efficiently enter the cytoplasm which limits
the potential of the DHFR tool in Yersinia. Second,
cytosolic YopE1–53-DHFR prepared from spheroplasts can
be stabilised by addition of MTX or APT suggesting that
the DHFR moiety is properly folded.

The latter conclusion was further confirmed by native gel
electrophoresis of cytosolic preparations as represented in
Fig. 2. We found that the electrophoretic mobility of
YopE1–53-DHFR was significantly increased in the pres-
ence of MTX. This might be explained by a more rigid con-
formation of the DHFR-ligand complex. This finding
shows that the complete pool of soluble YopE1–53-DHFR
is accessible to MTX binding which suggests the folding of
DHFR.

We could not rule out that the obvious discrepancy
between our observations and the well supported hypoth-
esis presented by Feldman et al. was due to the slight dif-
ference between our YopE1–53-DHFR construct and the
YopE1–52-DHFR fusion studied by Feldman et al. [24].
Thus, we mimicked their YopE1–52-DHFR construct to
analyse a fusion with the identical aa sequence.

Fig. 3A schematically depicts the YopE-DHFR constructs
studied. YopE-DHFR fusions were expressed in Yersinia
enterocolitica WA-314 [27] under the control of the yopE
wild-type promoter using the moderate-copy-number

Protease protection assay on cytosolic YopE1–53-DHFR pre-pared from spheroplastsFigure 1
Protease protection assay on cytosolic YopE1–53-DHFR pre-
pared from spheroplasts. Spheroplasts were prepared from 
yersiniae induced for Yop expression and treated with 1 mM 
methotrexate (MTX), 1 mM aminopterin (APT) or 
untreated, respectively. Spheroplasts were washed three 
times and subsequently lysed by osmotic shock, then soluble 
supernatants after centrifugation (cytosolic fractions) were 
treated with thermolysin (0, 1, 10 µg/ml). As "control", 
cytosol from untreated yersiniae was incubated with 1 mM 
MTX and 1 mM APT, respectively, prior to thermolysin 
exposition. After incubation at 20°C for 15 minutes samples 
were loaded on an SDS gel that was electroblotted. Immu-
nostaining was performed with anti-DHFR monoclonal 
antibodies.

YopE1-53-DHFR

DHFR

Thermolysin 0 1 10 0 1 10 0 1 10

APT MTX

0 1 10 0 1 10

Untreated

APT

Control

MTX
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Native gel electrophoresis reveals binding of methotrexate (MTX) to YopE1–53-DHFRFigure 2
Native gel electrophoresis reveals binding of methotrexate 
(MTX) to YopE1–53-DHFR. Cytosolic fractions from yersiniae 
expressing YopE1–53-DHFR were prepared as described in 
legend to Fig. 1. Cytosolic fraction was loaded directly on a 
HEPES-buffered native gel (lane 1) and after further incuba-
tion with 1 mM MTX (lane 2). After electrophoresis gel was 
electroblotted and DHFR-fusions were detected using anti-
DHFR antibodies.
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Page 3 of 9
(page number not for citation purposes)



BMC Microbiology 2004, 4:27 http://www.biomedcentral.com/1471-2180/4/27
Expression and secretion of YopE-DHFR fusionsFigure 3
Expression and secretion of YopE-DHFR fusions. (A) Scheme depicts plasmid constructs pE18-DHFR, pE52-DHFR, pE53-
DHFR and pE138-DHFR, allowing expression of YopE N-termini (the first 18, 52, 53 or 138 aa) fused to DHFR and concomi-
tant expression of YopE-chaperone SycE. (B) Yersiniae (Y. enterocolitica strain WA-314, abbrev. WT, and its secretion deficient 
yscV mutant (also termed lcrD)) expressing YopE-DHFR fusions were cultured for 2 h at 37°C in BHI medium. Then Yop secre-
tion was induced by Ca2+-depletion with EGTA. After 1.5 h of continued incubation bacteria were pelleted and whole cell 
lysates (P) and TCA-precipitated supernatants (S) were subjected to SDS-PAGE; ten times more supernatant than cell pellet 
was loaded. Subsequently, immunoblotting was performed with monoclonal anti-DHFR antibodies. (C) Coomassie-stained 
SDS-PAGE of supernatants from a secretion experiment as described above (Fig. 3B). The first two lanes show Yop secretion 
of the parental hosts. Arrows indicate secreted YopE1–52-DHFR and YopE1–53-DHFR.
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plasmid pACYC184 [28]. Fig. 3B illustrates Western blot
results from secretion studies. YopE1–18-DHFR and a
YopE1–138-DHFR fusion were not secreted by the Yersinia
TTSS whereas YopE1–52-DHFR and YopE1–53-DHFR were
secreted specifically as revealed by comparison with the
secretion deficient yscV (lcrD) mutant [29]. We deter-
mined that approximately 7% of all YopE1–52-DHFR and
6% of YopE1–53-DHFR was secreted whereas 38% of YopE
was secreted in the wild-type yersiniae. Analysis of these
secretion experiments on SDS-PAGE follwed by Coomas-
sie-staining is shown in Fig. 3C. Fusions YopE1–18-DHFR
and YopE1–138-DHFR, which proved to be incompetent
for secretion caused severe jamming whereas secretion of
YopE1–52-DHFR and YopE1–53-DHFR was accompanied by
less dramatic effects on Yop secretion. Noteworthy, the
jamming caused by YopE1–52-DHFR was more pro-
nounced than that observed in context of YopE1–53-DHFR
secretion. Feldman et al. when investigating YopE1–52-
DHFR in a multi-Yop mutant did not observe an effect on
secretion of YopD and YopN [24]. Likely, competition of
the effector Yops secreted in parallel in our experimental
setting can explain these differences. Lee and Schneewind

[23] predicted a mechanism allowing the rejection of
secretion-incompetent (e.g. folded) substrates and an
mRNA signal that selects against folded proteins dissoci-
ated from their mRNA. According to that model jamming
caused by engagement of folded substrates should not
occur. The jamming effects of DHFR fusions on Yop secre-
tion presented here and that reported by Feldman et al.
[24] for YopE1–80-DHFR and YopE1–219-DHFR fusions
contradict this model.

Feldman et al. have claimed that SycE binding to YopE1–

52-DHFR prevents DHFR folding [24]. However, this was
not proven directly. We challenged this hypothesis by
affinity purification of DHFR fusion proteins from yersin-
iae cytosol using MTX-agarose. Fig. 4 exemplifies this
approach. Yersiniae expressing the respective fusions were
induced for Yop secretion (similar results are obtained
when yersiniae were grown at 37°C in the presence of cal-
cium or when the secretion deficient yscV mutant was
used) and lysed by French press treatment (alternatively,
lysozyme treatment was possible). MTX-agarose was
added to the cleared supernatants after high speed

Affinity purification of YopE-DHFR fusions using MTX-agaroseFigure 4
Affinity purification of YopE-DHFR fusions using MTX-agarose. Yersiniae expressing DHFR fusions as indicated were lysed by 
French press treatment and soluble supernatants after centrifugation were incubated with MTX-agarose beads on ice for 30 
min. Beads were washed with PBS five times, subsequently resuspended in SDS loading buffer and subjected to SDS-PAGE. Left 
panel represents a Coomassie stained gel, right panel a Western blot analysed with monoclonal anti-DHFR antiserum and pol-
yclonal anti-SycE antiserum simultaneously. As control served Y. enterocolitica WA-314 harbouring plasmid pACYC184.
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centrifugation and incubated on ice for 1 h. Subsequently,
MTX-beads were centrifuged, washed five times in ice-cold
PBS and subjected to SDS-PAGE analysis. Coomassie
staining (Fig. 4, left panel) and Western blotting (Fig. 4,
right panel) revealed the specific binding of the fusion
proteins to MTX-agarose. Co-purification of SycE was ver-
ified by Western-blotting but was also visible on the
Coomassie-stained gel. As expected, SycE did not co-
purify with YopE1–18-DHFR fusion, since this construct
does not include the SycE binding site. This experiment
shows that SycE binding to YopE1–52-DHFR does not
exclude folding of DHFR in principle. Since efficiency of
these purifications was determined to be between 25 and
50%, the species enriched cannot be considered rare.
Though we cannot rule out that the 7% of YopE1–52-DHFR
secreted exhibit another conformation this is rather
unlikely because protease protection assays and native gel
analyses indicate that the complete pool of soluble DHFR
fusion proteins is accessible to MTX binding and thus

folded. This is further substantiated by the fact that no
DHFR degradation products derived from YopE1–52-
DHFR were detectable when blotting whole cell lysates
(see Fig. 3B).

Others might argue that SycE binding to these secretable
DHFR fusions could slow down folding of the DHFR moi-
ety so that these fusions remain secretion competent for a
certain time. If this argument would hold then secretion
should decrease rapidly after inhibition of protein transla-
tion. To test this argument we inhibited protein biosyn-
thesis with tetracycline and induced Yop secretion 20
minutes thereafter. Fig. 5 shows that significant secretion
of YopE1–52-DHFR and YopE1–53-DHFR could be demon-
strated after inhibition of protein biosynthesis. This find-
ing is both in accordance with the reported possibility of
post-translational secretion of YopE [11,18] and in sup-
port of our view that the TTSS is capable of secreting pro-
teins folded prior to secretion.

In summary, our data show show that the DHFR moiety
of YopE1–52-DHFR and YopE1–53-DHFR fusions was pre-
dominantly folded in a state that was competent to bind
MTX and that this folding state of DHFR was compatible
with SycE binding to fusions YopE1–52-DHFR and YopE1–

53-DHFR. Since these fusions were secretable, we conclude
that folding of substrate proteins prior to secretion is com-
patible with Yersinia type III secretion in principle.
Though in obvious discrepancy to the view of Lee and
Schneewind [23] as well as that of Feldman et al. [24] we
feel that our conclusions are well supported by several
studies.

Feldman et al. have claimed that SycE bound to a YopE1–

52-DHFR fusion prevents DHFR folding by overlapping
the DHFR moiety physically [24]. Since the crystal struc-
ture of the SycE dimer complexed to YopE23–78 clearly
shows that YopE is wrapped around the SycE dimer [14]
and not vice versa it is hard to imagine how SycE binding
should overlap with the fused DHFR domain. Further, it
is clear from the studies of Birtalan et al. [14] that the
influence of SycE on YopE is restricted to the chaperone
binding site and does not extend globally since the
RhoGAP domain of a (SycE)2/YopE complex was catalyti-
cally active. Moreover, comparison of the structure of the
SycE dimer uncomplexed [30] with that of SycE
complexed to the YopE chaperone binding site [14]
reveals that SycE serves as a purely static binding platform.
Thus, an unfolding activity of SycE is unlikely. Hence, the
Yersinia TTSS generally has to deal with folded secretion
substrates. In addition, it has been shown by isothermal
titration calorimetry studies of Tir/CesT from enteropath-
ogenic E. coli as well as by enzymatic activity profiling of
Salmonella enterica SigD/SigE [31] that these effectors are
not globally unfolded when bound to their specific

Secretion of YopE1–52-DHFR and YopE1–53-DHFR after inhi-bition of protein biosynthesisFigure 5
Secretion of YopE1–52-DHFR and YopE1–53-DHFR after inhi-
bition of protein biosynthesis. Yersiniae (Y. enterocolitica 
strain WA-314, abbrev. WT, and the secretion deficient yscV 
mutant) expressing YopE1–52-DHFR and YopE1–53-DHFR, 
respectively, were cultured for 2 h at 37°C in BHI supple-
mented with CaCl2. Then 50 µg/ml of tetracycline was added 
to inhibit protein synthesis and cultures were incubated for 
another 20 min. Then bacteria were pelleted and resus-
pended in BHI depleted of Ca2+ to induce Yop secretion in 
the presence of tetracycline. After 20 min of continued incu-
bation bacteria were pelleted and whole cell lysates (P) and 
TCA-precipitated supernatants (S) were subjected to SDS-
PAGE; ten times more supernatant than cell pellet was 
loaded. Subsequently, immunoblotting was performed with 
monoclonal anti-DHFR antibodies.
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chaperones. This suggests that storage of for the most part
folded effectors in the presence of their specific chaper-
ones is a common feature of type III secretion systems.
Stored effectors must be either unfolded prior to secretion
or the TTSS must be able to secrete folded proteins.
Recently, needles of the injectisomes of Shigella [32] and
Yersinia TTSSs [4] have been visualized by electron
microscopy showing a hollow center with a diameter of
20–30 Å. Needles of the Salmonella TTSS1 with an outer
diameter of 13 Å are even thinner [33]. In comparison, the
minimal diameter of the YopE catalytic domain is approx-
imately 25 Å [34], that of the YopH catalytic domain is at
least 40 Å [35], and that of the heterologous substrate
DHFR is around 32 Å [36]. Ubiquitin, which cannot be
secreted by the Yersinia TTSS [23] has a minimal diameter
of approximately 24 Å [37]. Thus, it is generally believed
that secretion does not occur with substrates in a folded
form. Therefore, we propose that TTSS systems possess
unfolding machineries to process the stored pool of effec-
tors. Accordingly, it seems possible that the machinery can
unfold heterologous substrates under certain conditions.
Substrates such as the fusions YopE1–18-DHFR and YopE1–

138-DHFR are identified as potential secretion substrates
and engaged by the machinery. Yet, due to the inability to
unfold these proteins they cause plugging of the pore.
Other fusions such as YopE1–52-DHFR and YopE1–53-
DHFR can be unfolded with some efficiency. An explana-
tion for the dependency of SycE to transport DHFR
fusions might be that SycE recruits and facilitates the
binding of the proposed unfoldase so that it can effi-
ciently pull on the polypeptide chain and trap local
unfolding fluctuations. As reviewed by Matouschek [38]
the characteristics of a protein to resist unravelling are not
determined by its stability against global unfolding. The
resistance is rather determined by the local structure first
encountered by the unfoldase after recognition of the sub-
strate. In that light, small differences among fusion con-
structs may influence efficiency of unfoldase to unravel
substrates and may lead to dramatically different secretion
phenotypes.

Gorbalenya and Koonin [39] were the first to describe the
relationship between Rho helicase, V- and F-type ATPases,
and the flagellar ATPase FliI, an homologue of the Yersinia
TTSS ATPase YscN. A recent phylogenetic classification of
P-loop NTPases suggests that all these NTPases belong to
the group of unfoldases [40]. Thus, we hypothesise that
the ATPase YscN could be a suitable candidate for unfold-
ing of TTSS substrates prior to secretion.

We want to stress that this issue is far from being clarified
and introduce to this discussion the possibility that
unfolding of TTSS substrates prior to secretion may occur.

Conclusions
The folding state of type three secretion substrates before
and during transport has not been clearly defined. Using
a DHFR fusion approach we have addressed these ques-
tions. We found that DHFR ligands methotrexate and
aminopterin poorly entered Yersinia enterocolitica cells
which limited the applicability of the DHFR tool. YopE1–

18-DHFR and YopE1–138-DHFR fusions proved secretion-
deficient and caused plugging of the secretion machinery.
This indicates that folding of these artificial secretion sub-
strates interfered with the secretion process. However, we
could demonstrate secretion of YopE1–52-DHFR and
YopE1–53-DHFR fusions even after inhibition of protein
synthesis. Further, we showed that folding of the DHFR-
moiety of these fusions as monitored by ligand binding
was compatible with binding of the YopE secretion chap-
erone SycE. We conclude that the Yersinia TTSS is familiar
with the processing of transport substrates which are
folded prior to secretion and postulate that an unfoldase
is involved in type III secretion.

Methods
Plasmid constructions
YopE-DHFR fusion constructs were generated by intro-
ducing a BamHI-SalI fragment of murine dhfr into vectors
pCJYE18-G3, pCJYE53-G3 and pCJYE138-G3 [25] after
excission of the BamHI-SalI fragment encoding GFP3. The
HindIII-BamHI fragment encoding the YopE amino-ter-
minus of the respective YopE fusion also encodes SycE
allowing the coexpression of this chaperone [25]. The
BamHI-SalI fragment encoding DHFR was generated by
PCR using primers 5'-GGATCCATGGTTCGACCATT-
GAACTGC-3' and 5'-GTCGACGGCCG-
GATCTAAAGCCAGC-3'. The murine dhfr used as
template was a gift from Walter Neupert. Resulting plas-
mids were termed pE18-DHFR, pE53-DHFR and pE138-
DHFR. Plasmid pE52-DHFR encoding a YopE1–52-DHFR
fusion was generated by HindIII-BamHI mediated exci-
sion of the sycE-yopE1–18 fragment from plasmid pE18-
DHFR and insertion of a PCR-generated sycE-yopE1–52 frag-
ment flanked by HindIII and BglII restriction sites.

Protein secretion and analysis
As host strains for expression and secretion of Yop-DHFR
fusions served the Yersinia enterocolitica strain WA-314
[27] harbouring the pYV virulence plasmid and its secre-
tion deficient yscV/lcrD mutant WA-C (pYV-515) [29].
Chloramphenicol (20 µg/ml), nalidixic acid (60 µg/ml),
kanamycin (50 µg/ml) were used as selective antibiotics.
Overnight cultures were incubated at 27°C in BHI
medium. For secretion experiments yersiniae were diluted
1:20 from overnight cultures and incubated for 2 h at
37°C in BHI medium; if indicated, CaCl2 was added to
2.5 mM to completely suppress Yop secretion. For secre-
tion of Yops BHI medium was supplemented with 10 mM
Page 7 of 9
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MgCl2, 0.2% glucose and 5 mM EGTA (BHI-EGTA; [41]).
Methotrexate (MTX) and aminopterin (APT), were dis-
solved in DMSO (100 mM stock concentration) and
added to the medium 10 min before induction of Yop
secretion to a final concentration of 1 mM. Accordingly,
controls were treated with 1% DMSO. DMSO did not sig-
nificantly influence secretion or viability of yersiniae
cultures. Cells and supernatants were separated by centrif-
ugation; proteins from supernatants were precipitated
with TCA, the pellet washed twice with acetone, once with
water. Cell pellets and protein pellets after TCA precipita-
tion were resuspended in SDS-PAGE loading buffer as
recently described [18] und subjected to SDS-PAGE and
Western blotting. Yop-DHFR fusions were detected with
monoclonal anti-DHFR antibodies (Becton Dickinson),
SycE was detected with a polyclonal antiserum from rab-
bit. Specifics of each experiment are given in the figure
legends.

For the analysis of protein secretion after inhibition of
protein synthesis the standard protocol was modified as
follows. Overnight cultures were diluted as described
above and grown in the presence of 2.5 mM CaCl2 at 37°C
for 2 h. Then tetracycline was added to a final concentra-
tion of 50 µg/ml to inhibit protein biosynthesis. After 15
min of continued incubation in the presence of tetracy-
cline bacteria were pelleted and resuspended in BHI sup-
plemented with EGTA and tetracycline. Bacteria were
cultured for another 20 min and supernatant and cell pel-
lets were analysed by western blotting as described above.
The efficiency of tetracycline treatment was verified by a
complete inhibition of cell growth and by comparison to
recently published methods based on treatment with
chloramphenicol [11,18].

Affinity purification
YopE-DHFR fusions were purified from yersiniae lysates
using MTX-agarose (Sigma). Yersiniae expressing DHFR
fusions were lysed by French press treatment and soluble
supernatants after centrifugation were incubated with
MTX-agarose beads on ice for 30 min. Beads were washed
with PBS five times, subsequently resuspended in SDS
loading buffer and subjected to SDS-PAGE.

Spheroplast preparation
Spheroplasts from yersiniae induced for Yop expression
and treated with 1 mM methotrexate (MTX), 1 mM ami-
nopterin (APT) as described above or untreated, respec-
tively, were prepared as described [42]. Speroplasts were
washed three times and subsequently lysed by osmotic
shock resuspending them in 10 mM Tris-HCl pH 7.5, and
soluble supernatants after centrifugation (cytosolic frac-
tions) were treated with thermolysin (0, 1, 10 µg/ml).

Native gel electrophoresis
6% AA gels (25 mM HEPES pH 7.4 (Invitrogen), 5 mM
NaCl, 1 mM DTT) were pre-run for 30 min at 80 V prior
to sample application [43]. Samples were loaded using a
5× sample buffer (25 mM HEPES pH 7.4, 5 mM NaCl, 1
mM DTT, 50% glycerole) and subjected to electrophoresis
at 80 V for 2–3 h. Subsequently gels were electroblotted.
Cytosolic fractions were prepared from spheroplasts after
osmotic shock lysis and concentrated on Amicon (Milli-
pore) concentrators (10 kDa molecular weight cut off) if
necessary. Protein concentration was determined (Bio-
Rad, Protein Assay) and 5 µg of protein was loaded per
lane. MTX (100 mM stock solution, dissolved in DMSO)
was added to 1 mM final concentration (to controls 1% of
DMSO was added).
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