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Abstract 

The coronavirus disease-19 pandemic has resulted in a significant global health crisis, causing hundreds of millions of cases and 
millions of deaths. Despite being declared endemic, SARS-CoV-2 infection continues to pose a significant risk, particularly for immu
nocompromised individuals, highlighting the need for a more sensitive and specific detection. Reverse transcription digital droplet 
polymerase chain reaction (RT-ddPCR) possesses a sensitive and absolute quantification compared to the gold standard. This study 
is the first to optimize RT-ddPCR for detecting SARS-CoV-2 in saliva specimens using a commercially available RT-qPCR kit. 
Optimization involved the assessment of the RT-ddPCR reaction mixture, annealing temperature adjustments, and validation using 
40 stored saliva specimens. RT-qPCR was used as a reference method in this study. Compatibility assessment revealed that ddPCR 
Supermix for Probes (no dUTP) was preferable with an optimal annealing temperature of 57.6�C. Although a 25% higher primer/probe 
concentration provides a higher amplitude in droplet separation of positive control, the number of copy numbers decreased. An in
verse correlation between Ct value and copy number concentration was displayed, presenting that the lower the Ct value, the higher 
the concentration, for the N and E genes with r2 values of 0.98 and 0.85, respectively. However, ORF1ab was poorly correlated (r2 of 
0.34). The sensitivity of targeted and E genes was 100% and 93.3%, respectively; as for the specificity, the percentage ranged from 
80.8% to 91.3%. This study implicates the applicability of a modified method in the ddPCR platform for similar types of pathogens 
using saliva specimens.
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Introduction
Coronavirus disease-19 (COVID-19) is a disease caused by SARS- 
CoV-2 that has been a pandemic and has caused more than 687 
million cases until the end of the pandemic period in May 2023 
[1]. SARS-CoV-2 has been classified as endemic in recent days, 
co-existing as a common virus similar to other respiratory symp
toms [2]. However, the severity of the infection varies among 
individuals, particularly those with immunocompromised condi
tions. Transmission of COVID-19 can cause mild to serious symp
toms in immunocompromised individuals, which may result in a 
more severe and higher mortality risk [3]. Thus, a more sensitive 
and specific detection of SARS-CoV-2 still highly relevant to be 
developed in order to improve the accuracy, time efficiency, and 
convenience for diagnostic methods. The development may be 
further implemented in the diagnosis of other diseases with simi
lar modes of action.

Based on the recommendation of the World Health 
Organization (WHO), the nucleic acid amplification test (NAAT) 

is used for the detection of COVID-19, where reverse 

transcription-quantitative polymerase chain reaction (RT-qPCR) 

is mainly used as the gold standard for COVID-19 diagnosis [4]. 

RT-qPCR has good sensitivity and specificity to diagnose 

COVID-19, but on a low viral count specimen, this testing method 

usually results in a false negative specimen [5–7]. In addition, 

RT-qPCR relies on a standard curve produced during the amplifi

cation process to relatively quantify nucleic acid targets [8]. 

Other than RT-qPCR, one of the other NAAT methods, reverse 

transcription digital droplet polymerase chain reaction (RT- 

ddPCR), has been known for its sensitive and absolute quantifica

tion results using the Poisson statistic principle.
In RT-ddPCR, the specimen will be distributed into thousands 

of uniform-sized droplets with water-oil emulsion before being 

amplified in a smaller segment, causing fewer biases to occur by 

the amplification of other targets or inhibitors that come along 

with the specimen. The need for calibration can be dismissed, as 

ddPCR does not required a standard curve for analysis. 
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Furthermore, the principles of limited dilution and end-point 
PCR that are used in ddPCR further increase its accuracy. Several 
studies have revealed that ddPCR is more sensitive and accurate 
compared to RT-qPCR in both singleplex or multiplex targeted 
detection and in the implementation of pooling [9–11]. However, 
ddPCR is yet to be used routinely for diagnosis, which could be 
due to its relatively high cost of reagents worldwide compared to 
qPCR reagents [12]. One strategy to overcome this challenge is 
through technological advancement by harmonizing reagents 
that can be used across different platforms, as in RT-qPCR. 
Consequently, this approach could become readily available to 
numerous testing laboratories, which may increase competition 
that will gradually lower costs. In addition, the modified method 
would potentially establish itself as the gold standard for future 
diagnostic applications.

On the other hand, saliva, a clinically approved specimen for 
emergency use for SARS-CoV-2 diagnosis according to the Food 
and Drug Administration (FDA), has a promising role in molecu
lar diagnostics [13, 14]. Aside from a non-invasive sampling tech
nique, saliva collection is simple to be performed individually, 
which eventually reduces the risk of infecting healthcare work
ers. The usage of saliva in the detection of SARS-CoV-2 has 
proven to be reliable on both RT-PCR [15] and ddPCR platforms 
[9, 16, 17]. Minimally processed saliva using a multiplexed 
paired-pooled assay was revealed to have high throughput and 
sensitivity in SARS-CoV-2 screening [16, 18]. Similarly, detection 
using RT-ddPCR demonstrated an accuracy similar to that of na
sal swabs in detecting infected cases, with a concordance of 
93.75% compared to RT-qPCR [8]. Absolute SARS-CoV-2 RNA viral 
load rapid increment is able to be observed through RT-ddPCR in 
presymptomatic individuals, supporting its reliability for viral 
detection [17].

Taking into account the strategy of harmonizing RT-qPCR 
reagents on the RT-ddPCR platform and utilizing minimally 
treated saliva specimens, this study will be the first to optimize 
the application of RT-ddPCR in detecting SARS-CoV-2 in saliva 
specimens using the commercially available RT-qPCR kit. 
Furthermore, the modified method will be validated across 40 sa
liva specimens, with the results being compared to the RT-qPCR 
gold standard for SARS-CoV-2 detection. The RT-ddPCR optimiza
tion procedure that our study has implemented may serve as a 
potential strategy to increase the detection and diagnosis 
accuracy of other viral and respiratory infections or even other 
pathogens with similar modes of infection.

Materials and methods
Specimen collection
A total of 40 saliva specimens from the COVID-19 Laboratory 
Center, School of Medicine and Health Sciences, Atma Jaya 
Catholic University of Indonesia (SMHS-AJCUI) collection, which 
was kept at −80�C, were utilized to optimize and validate the per
formance of RT-qPCR commercial kit on ddPCR. Those specimens 
consisted of 20 positive and 20 negative SARS-CoV-2 saliva speci
mens. The saliva specimens were collected and tested for 
COVID-19 from November 2022 - November 2023. This study has 
been approved by the Institutional Review Board of SMHS-AJCUI 
(06/05/KEP-FKIKUAJ/2022, 19 May 2022).

Viability test using RT-qPCR
Prior to optimization and validation, viability tests were per
formed on the 40 selected specimens using RT-qPCR to ensure 
the quality of the specimens’ post −80�C storage. The saliva 

specimen (90 μL) was heated at 95�C for 10 minutes [18] before 

the addition of internal control (10 μL) and centrifuged at 

8000 rpm for 1 minute. The supernatant of the saliva specimen 

was used as a viral RNA template. The xABT Multiple Real-Time 

PCR Kit for Detection of 2019-CoV (Beijing Applied Biological 

Technologies Co., Ltd, Beijing, China, #CT8223-48T) was used as a 

reference kit in this study. The RT-qPCR master mixture was pre

pared in a 20 μL reaction volume according to the manufacturer’s 

instructions, consisting of 10μL of the nucleic acid amplification 

reaction solution, 2 μL of nuclease-free water, 1 μL of xABT re

verse transcriptase (RT), 2 μL reaction of either xABT solution A 

(ORF1ab and N gene) or B (E gene), and 5 μL of heat-treated saliva 

specimen. Upon the addition of the viral RNA template, the plate 

was briefly spun down to ensure that all solution was positioned 

at the bottom of the well. The amplification process was per

formed on the CFX96 Touch Real-Time PCR detection platform 

(Bio-Rad Laboratories, Hercules, CA, USA) under the following cy

cling conditions: 45�C for 10 minutes (RT), 95�C for 5 minutes 

(DNA polymerase activation), 45 cycles of 95�C for 15 seconds (de

naturation), and 60�C for 45 seconds (annealing). Fluorescence 

was measured at 60�C. Each RT-qPCR run included negative and 

positive controls (SARS-CoV-2 pseudovirus (RNA) containing 

ORF1ab, N, and E gene fragments). Ct value analysis was con

ducted using CFX Maestro 1.0 software version 4.0 (Bio-Rad 

Laboratories, Hercules, CA, USA). Amplification of internal con

trol gene (detected by Cy5 channel) in specimens with no amplifi

cation (N/A) or Ct values greater than 40 on any of the target 

genes (ORF1ab and E gene detected by FAM channel; N gene 

detected by VIC channel) was interpreted as a negative result. 

Specimens were regarded as viable when exhibiting concordance 

results with pre-storage testing. Specimens with a detectable cy

cle threshold (Ct) value after long-term storage are considered 

positive. Negative specimens are specimens that remained unde

tected above Ct cut-off values. Viable specimens were selected 

for further assessment.

Assessment of RT-ddPCR reaction mixture for 
RT-qPCR
There were two available mixture types offered by ddPCR that 

could facilitate the assay. The compatibility of two different RT- 

ddPCR reaction mixtures, namely ddPCR Supermix for Probes (no 

dUTP) (Bio-Rad Laboratories, Hercules, CA, USA, Cat#1863023) 

and One-Step RT-ddPCR Advanced Kit for Probes (Bio-Rad, 

Cat#1864021), was assessed three times in the detection of 

ORF1ab, N, and E genes toward the reference kit. As for the detec

tion of internal control (phocine herpesvirus 1—PhHV-1) used in 

this study was assessed using EvaGreen Supermix (Bio-Rad, 

Cat#1864034). PhHV-1 is a universal internal amplification con

trol, which consisted of a complete DNA virus of the non-human 

seal herpes virus type 1 [19, 20]. Two viable SARS-CoV-2 saliva 

specimens, consisting of both positive and negative specimens, 

were selected as representative and utilized in this step.
The RT-qPCR mixture for probes was prepared according to the 

reference kit instructions with the substitution of the nucleic acid 

amplification reaction solution with either ddPCR Supermix for 

Probes (no dUTP) (Bio-Rad, Cat#1863023) or One-Step RT-ddPCR 

Advanced Kit for Probes (Bio-Rad, Cat#1864021). The amplification 

process and analysis were performed in a similar setting as 

mentioned above. The compatible RT-ddPCR reaction mixture was 

further evaluated using the RT-ddPCR platform.
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Annealing temperature and primer/probe 
optimization in RT-ddPCR
Nuclease-free water (NFW), xABT positive control (PC), and 
SARS-CoV-2 negative and positive saliva specimens were used as 
templates to assess the optimal annealing temperature. The 
standard RT-ddPCR cycling program was modified by replacing 
the annealing temperature step with a thermal gradient between 
57�C and 65�C for a 45-second extension time. An increased con
centration by the addition of 25% primer–probe concentrations 
was compared with the reference condition using NFW as no 
template control (NTC) and PC.

RT-ddPCR
A two-color ddPCR detection system, the QX200 droplet reader 
(Bio-Rad), which is able to perform two-plex target detection in 
channel 1 (FAM/EvaGreen) and channel 2 (VIC/HEX) was used in 
this study. The RT-ddPCR was run twice. First to detect double 
targets in xABT solution A of the ORF1ab gene using channel 1 to 
measure FAM fluorophore and the N gene using channel 2 to 
measure VIC fluorophore, and single target detection in xABT so
lution B of the E gene using channel 1 to measure FAM fluoro
phore. Second, the detection of PhHV-1 as an internal control 
using channel 1, which measured EvaGreen dye in the QX200 
droplet reader.

For ORF1ab, N, and E gene detection, 24μL of each reaction 
mixture was prepared to reach similar end concentrations 
according to the reference kit by substituting nucleic acid ampli
fication reaction solution with the compatible ddPCR reaction 
mixture for probes obtained in the previous step (Supplementary 
Table 1). The volume per reaction of the master mixture is solely 
calculated to achieve the same end concentration as the com
mercial kit, as the manufacturer has not disclosed information 
regarding the specification of the targeted genes, which includes 
the primer-probe set and concentration. The reaction mixture 
was inserted into a ddPCR 96-well semi-skirted plate (Bio-Rad 
Cat#12001925) on an ice block, followed by the addition of 6 μL of 
heat-treated saliva specimens, totaling a volume of 24μL. The 
plate containing the mixture was covered with a pierceable foil 
heat seal (Bio-Rad Cat#1814040) and sealed using a thermal PX1 
PCR Plate Sealer (Bio-Rad) at 180�C for 5 seconds. The mixture 
was thoroughly homogenized and spun down shortly to remove 
visible bubbles which can cause failure during the generation of 
droplets and PCR [21, 22]. The plate was conditioned to reach 
room temperature, transferred into the Automated Droplet 
Generator—AutoDG (Bio-Rad) machine along with the DG32 
Automated Droplet Generator Cartridge (Bio-Rad, Cat#1864108) 
and a new ddPCR 96-well semi-skirted plate. The master mixture 
and specimen solution were converted into droplets in the 
AutoDG machine. The plate was gently removed from the droplet 
generator machine and briefly sealed, as previously stated. 
Within a maximum of 30 minutes post-droplet generation, plate- 
containing partitioned specimens were cycled in a C1000 Touch 
Thermal Cycler (Bio-Rad) under a similar thermocycling protocol 
as the reference RT-qPCR, with an additional post-cycling step of 
98�C for 10 minutes (enzyme inactivation) and an infinite 4�C 
hold. A ramp rate of 2�C/second was added to each cycling step. 
The cycled plate was then gently transferred and read in the FAM 
and VIC channels to detect the ORF1ab/E gene and N gene, re
spectively, using the QX200 droplet reader (Bio-Rad). Figure 1 
depicts the general workflow of RT-ddPCR procedure.

For PhHV-1 detection, 18μL of reaction mixture was prepared 
consisting of 12μL of the QX200 ddPCR EvaGreen Supermix (Bio- 
Rad, Cat#1864034), 5.64μL of nuclease-free water, and 0.18 μL of 

both forward and reverse primers. Conversion of the mixture 
into droplets and amplification were performed as previously 
stated in the RT-ddPCR procedure. The cycled plate was further 
read in the EvaGreen channel.

Protocol validation
The validation of viable specimens was performed on both RT- 
qPCR and RT-ddPCR systems, as illustrated in Fig. 2.

Data analysis
A threshold was manually adjusted in regard to the NTC and PC 
or as close as reasonably possible to the amplitude value of the 
cloud corresponding to the negative droplets, which is also con
sidered the background, and in accordance with the correspond
ing NTC results on the ORF1ab, N and E genes in each RT-ddPCR 
run [23–26]. The interpretation of positive SARS-CoV-2 specimens 
was in consideration of the positive droplet detection across all 
targeted genes [26]. Specimens with a droplet value above 10 000 
were considered viable [24] and thus subjected to further statisti
cal analysis. According to the ddPCR guideline, the specimen is 
considered positive if 1–3 positive droplets are present, taking 
into account (i) the recommendation of having more than one 
positive droplet to reduce false positives caused by noise and (ii) 
the possible impact of the saliva specimen matrix on fluorescent 
readings in the RT-ddPCR platform due to the direct heating 
method as a substitute for RNA extraction, thus showing the pos
sibility of impurities that persist in the viral RNA template; con
sequently, specimens with two positive droplets are considered 
positive in this study [24, 27]. In accordance with the commer
cially available RT-qPCR kit manufacturer’s instructions, addi
tional conditions were considered for interpreting the RT-ddPCR 
detection results. The exemption was made for ORF1ab due to 
noisy data. Therefore, a specimen is deemed positive if one or 
two target genes (N or/and E) exhibit positive droplets with a 
copy number concentration (copies/µL). Conversely, if both N and 
E genes are not detected, the specimen is classified as negative 
(Tabel 1). Sensitivity and specificity were calculated for RT- 
ddPCR, considering the RT-qPCR results as references. Analysis 
of copy number was performed using QX Manager 1.2 Analysis 
Software (Bio-Rad) and analyzed using simple linear regression. 
GraphPad Prism 9.1.1 (GraphPad Software, La Jolla, CA, USA) was 
used to visualize the results.

Results and discussion
In this study, we conducted viability tests on 40 stored saliva 
specimens to ensure the quality of the specimens’ post-storage. 
Current and previous detections displayed consistent results. All 
negative SARS-CoV-2 specimens with no detected Ct values 
remained undetected, and two of the positive SARS-CoV-2 speci
mens with previously detected Ct values (Sample ID 35—ORF1ab: 
33.45, N: 34.36, E: 34.3; Sample ID 39—ORF1ab: 37.87, N: 36.35, E: 
N/A) were detected as negative (Table 1). Consequently, 95% of 
stored specimens (n¼ 40) were considered viable for SARS-CoV-2 
detection, implicating the applicability of stored specimens for 
further studies that utilize similar types of viruses. A total of 18 
positive and 22 negative SARS-CoV-2 saliva specimens deter
mined by current RT-qPCR were further included in the detection 
using RT-ddPCR.

The compatibility assessment was conducted using two differ
ent types of commercially available ddPCR reaction mixtures, 
namely: ddPCR Supermix for Probes (no dUTP) and the One-Step 
RT-ddPCR Advanced Kit for Probes. The digital droplet PCR 
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supermix has a hot start feature at the polymerase stage, allow
ing the sample to partition into droplets while keeping the en
zyme inactive at room temperature. Supermix has been designed 
to support the amplification and detection of target genes using 
commercially available probe-based assays [28, 29]. The ddPCR 

Supermix for Probes (no dUTP) mixture was revealed to be com
patible with the reference kit. The assessment has been con
ducted three times, showing consistent results (Fig. 3d–f) when 
compared to the reference mixture (Fig. 3a–c). The ddPCR 
Advanced Kit for Probes mixture comprises of One-Step 

Figure 1. The workflow of the RT-ddPCR procedure. The RT-ddPCR workflow consists of six essential stages: master mix preparation (combined 
reagents of RT-ddPCR and RT-qPCR–xABT), pipetting into the plate, thorough sealing using a thermal sealer, loading into the ddPCR droplet generator, 
amplification, and final processing by the ddPCR droplet detection. The droplet generator instrument automatically partitions samples and mixtures 
into smaller droplets, while the droplet reader quantifies droplets using a two-color detection system (created with BioRender.com).

Figure 2. Overview of RT-ddPCR SARS-CoV-2 detection using saliva specimens. Saliva specimens were collected in cryotubes and stored at −80�C. Upon 
usage, the specimens were heated to 95�C for 10 minutes, followed by the addition of an internal control. The mixture was thoroughly homogenized 
and subsequently centrifuged at 10 000 rpm for 1 minute. The PCR master mixture and the supernatant of the heat-treated specimens were pipetted 
into a 96-well plate. RT-PCR and RT-ddPCR amplification were performed according to the established procedure.
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RT-ddPCR supermix solution, RT enzyme, and dithiothreitol 
(DTT), which claimed increased efficiency, specificity, and sensi
tivity for quantification of RNA targets in the ddPCR process. 
Apart from that, the supermix contains RNase inhibitors, which 
function to protect RNA during the test process [28, 30]. However, 
our test has proven that the One-Step RT-ddPCR Advanced Kit 
for Probes was not compatible with our experiment setting 
(Fig. 3g–i). It might be due to the existence of DTT and incompati
bility between the Bio-Rad RT enzyme and the commercial kit 

primer/probe set. Dithiothreitol (DTT) is a strong reductor agent 

that is used as a reaction stabilizing agent and to accelerate the 
degradation of black hole quenchers (BHQ), which can imitate 
positive signals, thus decreasing test sensitivity. It was observed 
that DTT disrupted real-time PCR by causing the passive refer
ence signal to be quenched, leading to an overestimation of DNA 
concentrations. This compound was discovered to yield fluctuat
ing signals from negative droplets in control reactions [26, 31–33]. 
Therefore, it could be possible that the One-Step RT-ddPCR 
Advanced Kit for Probes is less stable and can produce different 

numbers of detectable droplets with each test repetition. It is 

Table 1. Ct value, copy number concentration, and interpretation result of positive SARS-CoV-2 saliva specimen collection.

Sample  
code

Ct value RT-qPCR SARS-CoV-2  
intrepretation result

Copy number concentration (copies/µL) RT-ddPCR SARS-CoV-2  
intrepretation result

ORF1ab N E ORF1ab N�� E��

21 35.13 35.59 36.20 Positive 1.97 0.26 (P) 0.62 (P) Positive
22 29.16 29.69 29.67 Positive 8.2 4.1 (P) 1.24 (P) Positive
23 29.34 28.78 29.12 Positive 0.79 10.74 (P) 7.3 (P) Positive
24 35.65 37.06 35.74 Positive 0.61 0.09 (N) 0.09 (N) Negative
25 35.88 34.94 35.82 Positive N/A� N/A� N/A� No amplification
26 30.44 31.35 30.72 Positive 0.88 4.27 (P) 3.54 (P) Positive
27 33.30 34.55 34.06 Positive 1.36 0.06 (N) 0.16 (P) Positive
28 34.56 37.19 35.05 Positive 3.81 0.08 (N) 0.19 (P) Positive
29 35.76 35.55 35.72 Positive 1.17 0.15 (P) 0.28 (P) Positive
30 33.01 34.23 33.47 Positive 1.08 0.59 (P) 0.21 (P) Positive
31 37.25 36.12 38.19 Positive 0 0 (N) 0 (N) Negative
32 29.20 29.14 29.10 Positive 0.2 5.54 (P) 6.15 (P) Positive
33 38.42 39.09 – Positive 3.91 0 (N) 2.01 (P) Positive
34 22.30 22.86 22.48 Positive 240.61 220.95 (P) 125.77 (P) Positive
35 – – – Negative 0 0 (N) 0 (N) Negative
36 30.13 30.51 30.64 Positive 3.9 3.32 (P) 0.9 (P) Positive
37 32.53 32.59 32.69 Positive 0.27 1.25 (P) 0.69 (P) Positive
38 32.46 33.08 32.03 Positive 2.43 1.56 (P) 4.29 (P) Positive
39 – – – Negative 0 0 (N) 0.7 (P) Negative
40 24.43 24.67 24.62 Positive 39.44 89.96 (P) 54.57 (P) Positive

� N/A: No amplification, droplet counts below 10 000.
�� Individual interpretations of positive (P) and negative (N) for the N and E genes are displayed alongside the copy number concentration values.

Figure 3. Compatibility of ddPCR mixtures tested using RT-qPCR. (a)–(c): xABT reference running condition of ORF1ab, N and E gene; (d)–(f): modified 
condition using ddPCR Supermix mixture for Probes (no dUTP) of ORF1ab, N and E gene; (g)–(i): modified condition using One-Step RT-ddPCR Advanced 
Kit mixture of ORF1ab, N and E gene. The compatibility test was done on positive SARS-CoV-2 saliva, negative SARS-CoV2 saliva, PC, and NTC, which 
are traced in blue, green, red, and orange lines, respectively.
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also possible that the RT enzyme produced by Bio-Rad is incom
patible with the primer/probe set of the xABT commercial kit. 
However, the compatibility comparison between the two compo
nents cannot be studied further in our study because the detailed 
base pair sequences of the commercial kit belong to company 
confidentiality (trade properties). Following the viability test, our 
assessment of RT-ddPCR reaction mixtures in RT-qPCR was 
revealed to be compatible.ddPCR Supermix for Probes (no dUTP) 
was further utilized in the RT-ddPCR platform, which showed a 
non-optimal quantification result, displaying unclear visible sep
aration between positive and negative droplets for each gene tar
get (Fig. 4). Further optimization, which includes annealing 
temperature adjustment, could potentially yield an efficient am
plification result. Typically, the efficiency disparity between the 
intended target and co-amplified target can be widened by in
creasing the annealing temperature, which consequently enhan
ces the specificity of the primer binding. This can frequently 
occur to the extent that the co-amplified population fuses with 
the negative population. Additionally, adjusting the annealing 
temperature to lower values may improve digital resolution and 
droplet separation clarity by minimizing the presence of strag
glers or “rain” [26]. Therefore, in this study, we further conducted 
annealing temperature modifications. Changes in temperature at 
the annealing stage gave positive results regarding the amplitude 
separation between droplets with SARS-CoV-2 genetic material 
(positive droplets) and droplets without amplification of SARS- 
CoV-2 genetic material (negative droplets) with minimal back
ground signal. Reducing the reaction temperature at the anneal
ing stage causes the primer to bind to the template; however, if 
the reaction temperature is too low, it can allow binding to other 

non-specific genes, which can reduce reaction efficiency [31]. In 
this study, we observed droplet separation on a thermal gradient 
ranging from 57�C to 65�C, specifically 57�C, 57.6�C, 58.7�C, 
60.2�C, 62�C, 63.5�C, 64.5�C, and 65�C which were automatically 
set by the C1000 Touch Thermal Cycler. Droplet separations 
were clearly visible using 57.6�C as the annealing temperature 
for the N and E genes. For both targets, there was no significant 
difference in the amplitude of this temperature (Fig. 5b–c, e–f). 
The annealing temperature is usually 3–5�C lower than the pri
mary melting temperature [31], which in the xABT kit occurs at a 
temperature of 60�C. During the PCR step of the RT-ddPCR, a to
tal volume of 40μL consisting of 20μL of master mixture and 
specimen and 20μL of droplet generation oil was subjected to 
amplification, implying the need for adjustments in annealing 
temperature according to the total volume. These results are 
higher than a study by Zhang et al. (2018), who stated that the 
optimal temperature at the annealing stage for ddPCR detection 
of SARS-CoV-2 was 53.6�C, and in this study, most of the primer 
sets and probes for SARS-CoV-2 virus detection had tolerance to 
a wide temperature range and a very low background signal at 
an annealing temperature range of 50–60.5�C [32]. In addition, a 
study revealed that lower temperatures lead to better amplitude 
separation, while the distance between amplitudes decreases 
and becomes less distinct for temperatures above 60�C [25]. The 
applied temperatures ranged from 50�C to 64�C and were tested 
on a primary probe set with three replicates per temperature. 
Our experiment concluded that 57.6�C was the optimal annealing 
temperature for ddPCR, which is the highest temperature that 
still produces clear amplitude separation [34]. However, in the 
amplification of the ORF1ab target gene (Fig. 5a, d), the difference 

Figure 4. Droplet separation using ddPCR Supermix for probes (no dUTP) on targeted genes. (a) ORF1ab, (b) N gene, and (c) E gene. NTC, PC, and positive 
SARS-CoV-2 saliva are utilized in chronological order display
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in the amplitude of positive and negative droplets in the speci
mens was not clearly visible with changes in annealing tempera
ture. Therefore, the threshold was adjusted manually using the 
PC and NTC as a reference, as has been done by several previous 
studies [9, 34–37]. This is suspected to occur due to incompatibil
ity, the presence of certain inhibitors that only affect the ORF1ab 
gene, or it might be due to the unspecific target of ORF1ab in this 
commercial kit causing high cross-reactivity, although further 
study into this cause still needs to be done.

An additional optimization was performed by increasing the 
concentrations of the primer and probe by 25%. This optimiza
tion provides supporting data that may be utilized, as it was 
conducted solely with a PC and was limited to the testing of 
SARS-CoV-2 saliva specimens (Fig. 6). In the case of the ORF1ab 
target gene (Fig. 6a), the PC with reference concentration 
presented a higher copy number of 79.41% (82.26 copies/µL) com
pared to the additional 25% primer/probe concentration (16.93 
copies/µL). A similar result was demonstrated on the N and E 
genes at the reference concentration (Fig. 6b–c), with a percent
age of 79.01% (reference: 79.39 copies/µL, higher concentration: 
16.66 copies/µL) and 10.41% (reference: 257.82 copies/µL, higher 
concentration: 230.98 copies/µL) higher compared to the addi
tional 25% primer/probe condition, respectively. Although a 
higher primer/probe concentration provides a higher amplitude 
in droplet separation, the reference concentration scheme still 
presented a clear separation. Therefore, during the specimens’ 
validation, we only used the result of the optimized annealing 
temperature as the reference concentration deemed sufficient. 
Even though the research did not use additional higher concen
trations, it can be concluded that increasing the concentration of 
the primer and probe can be one way to obtain significant droplet 
separation. This is because by increasing the concentration of 
primer and probe, more binding of the target gene will occur, so 
the amount of amplification will increase. Further increasing the 
amount of amplification can cause separation of positive and 
negative droplet amplitudes [38, 39].

The detection of our custom internal control, phocine herpesvi
rus 1 (PhHV-1), which has commonly served as an amplification 
control [20], also demonstrated a concordance result on both PCR 
methods. PhHV Ct value and concentration in the form of copy 

number were detected during the RT-qPCR and RT-ddPCR, respec
tively, ensuring the accuracy and reliability of the result, including 
the efficiency of the process [40]. The detection of IC was further 
validated on forty saliva specimens, displaying corresponding 
results with a Ct value ranging from 27.09 to 31.78 and a copy num
ber concentration ranging from 8.24 to 109.83 copies/µL 
(Supplementary Fig. 1). As our internal control has proven to be 
valid, we conducted further validation of 40 samples for each target 
of the ORF1ab, N, and E genes. Thirty-eight out of 40 specimens are 
valid for this detection since the droplet numbers are all above 10 
000 and displayed clear separation. Fig. 7 depicts the droplets sepa
ration of targeted genes in representative saliva specimens. Both N 
and E genes presented high concordance of copy number (range 
0.06-220.95 copies/µL, 0.09-125.77 copies/µL) and Ct value (range 
22.86-39.09, 22.48-38.19) with an r2 value of 0.98 and 0.85, respec
tively (Fig. 8). An inverse correlation between Ct value and copy 
number concentration was displayed: the lower the Ct value, the 
higher the copy number concentration. Our analysis revealed that 
a copy number concentration below 0.1 copies/μL indicates the 
presence of only one positive droplet, which is therefore considered 
a negative for the detection of the targeted gene (Table 1). We en
countered challenges in establishing an appropriate threshold for 
ORF1ab gene, potentially stemming from the nature of this targeted 
gene, and thus the ORF1ab target was poorly detected, r2 of 0.34 (Ct 
value range: 22.3-38.42, copy number: 0.2-240.61 copies/µL). A simi
lar result was reported in studies that the N gene was reported to 
have less nucleotide variation than ORF1ab which may cause a 
more stable detection of the N gene compared to ORF1ab [41, 42]. 
Our study suggests that an approach to finding a better target for 
the detection of SARS-CoV-2, in particular, to modify the ORF1ab 
target, is an option to avoid unspecific detection.

The RT-qPCR analysis revealed 18 positive and 22 negative 
SARS-CoV-2 saliva specimens, whereas the RT-ddPCR analysis 
identified 15 positive and 23 negative specimens. One out of each 
positive and negative SARS-CoV-2 saliva specimen was catego
rized as unviable in the RT-ddPCR detection of all targeted genes 
with droplets below 10 000 (Table 1). Despite the fact that some 
saliva specimens were interpreted as positive for SARS-CoV-2 in 
the RT-qPCR setting, a positive at a low level (reaching Ct>35) 
was observed and might be a false positive [43]. On the other 

Figure 5. Droplet separation of the thermal annealing gradient ranges from 57�C to 65�C. (a)–(c): ORF1ab, N, and E genes of the positive SARS-CoV-2 
saliva. (d)–(f): ORF1ab, N, and E genes of PC
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hand, the RT-ddPCR platform has the capacity to detect the 
smallest quantity of viral particles [44, 45] and has been able to 
identify positive cases with low viral load that were initially 
tested negative with RT-qPCR; the condition may occur in 
Sample ID-29 [7, 11, 46, 47]. This interpretation could be due to 
the increased tolerance of RT-ddPCR toward PCR inhibitors com
pared to RT-qPCR [48]. After conducting an additional overall in
terpretation by excluding the ORF1ab due to threshold-setting 
challenges, we observed that samples ID-27 and ID-29 might be 
negative for SARS-CoV-2 because of ambiguous threshold lines 
for the E and N genes, respectively. However, this does not alter 
the conclusion of our study, which aims to demonstrate the fea
sibility of optimizing the commercial RT-qPCR kit on the RT- 
ddPCR platform.

Based on the aforementioned reason, the sensitivity values 
were calculated for N and E targeted genes, which were shown to 
be 100% and 93.3%, as for the specificity, the percentage was 
80.8% and 91.3% for N and E genes, respectively. However, despite 
exhibiting a high degree of specificity, the ORF1ab demonstrated 
the presence of “rain” droplets in the 1D analysis, indicating that 
it may not be specific (Supplementary Fig. 2). During the valida
tion of both ORF1ab and N genes, which were the targets of solu
tion A, we found a percentage of double-positive droplets to the 
total positive droplets of 21% and 22% for ORF1ab and N genes, re
spectively. This result presented a highly double-positive indicat
ing that in one droplet of the reaction mixture containing both the 
ORF1ab and N genes, thus detected in FAM and VIC ddPCR chan
nels. Meanwhile, a low double-positive is also present in this 

study, with a percentage of 4 and 6 for the ORF1ab and N genes, 
respectively. Our study indicated that the lower Ct value or higher 
copy number concentration resulted in a stronger double-positive 
correlation, providing a clear and clustered separation in the 2D 
analysis. However, further research should be conducted to com
prehend this result. Supplementary Fig. 3 displays the 2D plot of 
two double-positive detected specimens.

Our method optimizes existing molecular detection kits for 
coherent integration with the RT-ddPCR platform. Combining 
components from the current kit with those of ddPCR (such as 
ddPCR Supermix and oil) enables direct conversion. The optimi
zation process involves assessing the compatibility of the 
RT-ddPCR master mixture, optimizing primers/probes concentra
tions, and annealing temperature adjustment, thus facilitating 
the detection of targets not limited to SARS-CoV-2. This approach 
might contribute to the enhanced precision in pathogen detec
tion, fostering progress in molecular diagnostics. Generally, cost 
is still a drawback of implementing advanced technologies. 
However, the cost will align with the demand for technology by 
means of integrating the economy of scale. According to our 
study, the cost of RT-ddPCR is twice as high as that of RT-PCR. 
Nonetheless, the situation might differ among the countries/ 
areas. In many developing countries, including Indonesia, most 
equipment, reagents, and consumables are still imported, thus 
scaling up the cost of the experiment itself. Despite its drawback, 
RT-ddPCR generates an absolute quantification of genetic mate
rial without the necessity of running standard curves, serving as 
a potential strategy to increase the detection and diagnosis 

Figure 6. Comparison of droplet separation between reference and the additional 25% primer–probe concentrations. (a)–(c): ORF1ab, N, and E genes of 
NTC and PC in reference and modified conditions
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Figure 7. Droplet separation of targeted genes in representative saliva specimens. (a)–(c): ORF1ab, N, and E genes, respectively, of NTC, PC, and 
representative saliva specimen in chronological order. Blue or green dots represent positive droplets, and samples are intrepreted as positive (P) and 
negative (N) on each gene of N and E. Sample IDs 2–20 and 21–40 have an overall interpretation as negative and positive SARS-CoV-2 saliva specimens, 
respectively, except for Sample IDs 35 and 39, which are both interpreted as negative in the RT-ddPCR platform
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accuracy of the targeted pathogen(s). Moreover, absolute copies 

are needed to investigate the tested method’s sensitivity and pro

vide a diagnostic test’s LoD (Limit of Detection).
In conclusion, our study revealed that utilizing the commer

cially available RT-qPCR kit was proven possible and recom

mended as an option for optimization on the RT-ddPCR 

platform, especially when the primer/probe sets produce a 

high yield in the RT-qPCR setting. Adjustment of annealing 

temperature presented an optimized result, although an incre

ment in primer/probe concentration is not adapted as the ref

erence condition is deemed sufficient. In addition, we 

recommend conducting a complementary experiment. For in

stance, designing primer–probe sets similar to those employed 

in commercial RT-qPCR assays, which could provide compara

ble method in terms of accuracy and performance. This ap

proach may advance molecular diagnostics, regardless of the 

pathogen types. Considering our ORF1ab detection challenges 

in establishing an appropriate threshold for analysis, our study 

may also serve as a suggestion for industries and researchers 

for further development in selecting optimal primer–probe 

designs for the targeted gene of commercial or in-use kits. 

Post-validation revealed an inverse correlation between copy 

number concentration and Ct value. A strong double positive 

was observed in a low Ct value SARS-CoV-2 saliva specimen. 

However, additional research is required to achieve a deeper 

understanding. Implementation of this established procedure 

may be employed to evaluate a suboptimal amplification in a 

targeted gene of RT-ddPCR setting.
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