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Abstract: Colorectal patients generally have the maximum counts of Fusobacterium nucleatum (F.
nucleatum) in tumors and elevate colorectal adenomas and carcinomas, which show the lowest rate
of human survival. Hence, F. nucleatum is a diagnostic marker of colorectal cancer (CRC). Studies
demonstrated that targeting fusobacterial Fap2 or polysaccharide of the host epithelium may decrease
fusobacteria count in the CRC. Attenuated F. nucleatum-Fap2 prevents transmembrane signals and
inhibits tumorigenesis inducing mechanisms. Hence, in this review, we hypothesized that application
of genetically programmed fusobacterium can be skillful and thus reduce fusobacterium in the CRC.
Genetically programmed F. nucleatum is a promising antitumor strategy.
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1. Introduction

Colorectal cancer (CRC) is the third-highest widespread malignant neoplasm and the fourth
extremely common cause of malignancy death globally, and the five-year existence rate is less than
65 percent [1]. It is accountable for 694,000 demises yearly worldwide. It is a multifaceted disease,
caused by genetic predisposition, lifestyle (sedentary, smoking), or diet (alcohol or red and processed
meat consumption), and environmental exposure to various xenobiotics that could result in CRC
development. Gut microbiota seems to be the mediator of this causal relationship, being disturbed
by the exposure to such compounds, thus causing tumorigenic phenomena, a fact that constitutes
a novel topic of research [2]. The mortality rate of CRC is based on the availability of medical
resources [3]. In recent years, accumulating evidence greatly suggested a relationship between gut
microbiota composition and CRC [4–6]. The human intestinal tract contains more than 100 trillion
microorganisms that play a great significant function in human health. These organisms regulate gut
homeostasis by maintaining several biological activities, including mucosal barrier, metabolic and
immune functions [3,7,8]. Any disturbances occur in gut equilibrium, it may cause various intestinal
illnesses, including Crohn’s disease, ulcerative colitis, and colorectal neoplasms [9,10]. There is great
evidence that disturbance of gut microbiota can also lead to various systemic diseases such as diabetes,
obesity, cancer, cardiovascular, and central nervous system disorders [11,12]. Increasing evidence
confirmed that the gut microbiota is extremely connected with colorectal neoplasms [3,13–15].

Numerous investigations have confirmed that the levels of Bacteroides, Prevotella, Leptotrichia,
Clostridium difficile, Streptococcus gallolyticus, Bacteroides fragilis, Enterococcus faecalis, Campylobacter
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spp., Escherichia coli, Fusobacterium nucleatum, and Streptococcus bovis are considerably higher in CRC
compared to those in nearby normal tissue [16–19]. Studies in fecal samples containing Hungatella
hathewayi, F. nucleatum, Clostridium asparagiforme, Klebsiella oxytoca, E. coli, Bilophila wadsworthia, and
the genera Lactococcus, Porphyromonas, Odoribacter, Bilophila, and Pyramidobacter found to be enriched
in patients with CRC [20,21]. F. nucleatum is a Gram-negative anaerobic bacterium found to be
considerably higher and synergistically associated with other Gram-negative bacteria that promote the
incidence and pathogenesis of CRC [22–24]. Gathering evidence suggested that the tumor tissues and
fecal specimens of CRC patients have significantly increased counts of F. nucleatum [25–27]. This higher
count of the organism may contribute to the development of CRC [28,29]. In a recent review regarding
the role of oral bacteria and intestinal dysbiosis in CRC, it has been indicated that F. nucleatum
merely resembles a passenger rather than a driver of intestinal dysbiosis in CRC according to the
“driver-passenger model” about microbiota-driven CRC pathogenesis [30]. Nevertheless, the exact
role of this specific bacterium in CRC progression is still an ongoing debate. It would be important
at this point to include a brief summary of the “driver-passenger” model of microbiota dysbiosis, as
introduced by Tjalsma et al. [31] since it is a crucial pathogenic concept regarding CRC. Hence, the F.
nucleatum is a diagnostic marker of CRC. The positive detection rates of F. nucleatum in CRC patients
testified by diverse study groups listed in Table 1. Further investigations have also confirmed that a
higher count of F. nucleatum in CRC related to shorter survival rates [26,29].

Table 1. Detection of F. nucleatum in colorectal cancer (CRC) patients.

Sample Tested Total Number of
Clinical Samples Detection Method Positive

Percentage References

FFPE tissue 6 16S rRNA 32 [32]
FFPE tissue 6 16S rRNA 100 [33]
FFPE tissue 8 16S rRNA 100 [34]

Feces 14 qPCR 57 [35]
FFPE tissue 31 16S rRNA 10 [36]
FFPE tissue 37 16S rRNA 9 [37]
FFPE tissue 44 16S rRNA 100 [38]
FFPE tissue 46 16S rRNA 100 [39]
FFPE tissue 46 16S rRNA 54 [40]
FFPE tissue 47 16S rRNA 32 [41]
FFPE tissue 52 16S rRNA 77 [42]

Feces 72 qPCR 64 [43]
FFPE tissue 97 16S rRNA 72 [14]

Frozen tissue and FFPE tissue 101 FISH and FQ-PCR 87 [44]
Genomic DNA 149 qPCR 74 [45]

Feces 158 ddPCR 54 [46]
FFPE tissue 309 qPCR 34 [47]
FFPE tissue 511 qPCR 9 [48]
FFPE tissue 504 qPCR 56 [49]
FFPE tissue 598 qPCR 13 [26]

Abbreviation: ddPCR: droplet digital polymerase chain reaction; FFPE: formalin-fixed paraffin-embedded; FISH:
fluorescence in situ hybridization; rRNA: ribosomal ribonucleic acid; FQ-PCR: fluorescent quantitative polymerase
chain reaction; qPCR: quantitative real-time polymerase chain reaction.

F. nucleatum normally lives in the oral cavity of human and is commonly associated with diseases
such as gingivitis, periodontal plaque, tonsillitis, sinusitis, chronic periodontitis, liver abscess, and
appendicitis [19,24,50]. In addition to oral infections, this organism has been implicated in respiratory
tract infections, cardiovascular disease, arthritis, Alzheimer’s disease, adverse pregnancy outcomes,
and the development of various cancers including esophageal, gastric, and colon [51]. It exhibits
high levels of homology with other Fusobacterium species including, F. alocis, F. periodonticum, and F.
simiae. All these Fusobacterium species reside in oral cavities [51]. It is usually absent or habitually
not found elsewhere in the body under normal conditions [52]. Until recently, F. nucleatum was
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thought to primarily be a component of the human oral microbiota and only an occasional resident
of the gut. However, this premise was built on a culture-based examination of stool, which usually
does not contain high numbers of live, epithelium-associated bacteria. FISH was used to elegantly
demonstrate an association between invasive Fusobacterium spp. (including F. nucleatum) cells with
inflamed appendix tissues, suggesting that the gut could be a hitherto unrecognized niche for this
pathogen [53]. The mechanism of migration of these bacteria from the oral cavity to intestines to
promote CRC are illustrated in Figure 1.
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CRC constitutes a huge global economic problem and vigorous action should be taken to reduce
the financial cost of this disease [54]. CRC is one of the leading and genetically categorized malignancies,
with definite somatic mutations, oncogenes, and tumor suppressor genes. These mutations and other
cellular regulators are essential for the development of adenomatous lesions to hostile carcinoma [25,55].
Accumulating evidence showed that F. nucleatum is among the most abundant species of bacteria in CRC
tissues [43,56]. The outer membrane of this organism contains variable thickness of lipopolysaccharide
(LPS) that may present pathogenic properties [52], and are vital for the evasion of the immune system
in the human [50].

In recent years, F. nucleatum has been recognized to be a possible causative agent of CRC, tumor
development and promotes colorectal tumorigenesis in Apcmin/+ mice [29,57,58]. In situ hybridization
studies have also confirmed that F. nucleatum is largely connected with malignancy cells in the
metastatic lesions [58]. It stimulates tumor cell proliferation in CRC by activating β-catenin signaling
and stimulating upstream regulation of oncogenic gene expression via the adhesive membrane virulence
factor, includes protein adhesins, toxins, and enzymes [28]. Previously, Fecal F. nucleatum infection
has been recognized as a significant diagnostic marker for CRC [47]. Our recent study also confirmed
that among the important probiotics-Faecalibacterium and Bifidobacterium, F. nucleatum has identified
as biomarkers for early CRC screening [59]. Taken together, these investigations demonstrated that
F. nucleatum plays a significant role in the prime causes, diagnostic markers and progression of CRC
and development.

2. F. nucleatum Mediate CRC and Inhibits Host Immune Response

F. nucleatum has been linked to immune suppression, through the promotion of lymphocytic
apoptosis [60], and the abundance of F. nucleatum has been found to be inversely proportional to
cluster of differentiation 3 (CD3+) T-cell density [61]. Recently, growing evidence demonstrated a
high relationship between the infection of F. nucleatum and various cancers thus proposing innovative
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approaches in malignancy prevention by targeting F. nucleatum [29,56]. The earlier investigation has
also established that F. nucleatum induces a noteworthy humoral immune response in chronic oral
infection [62,63]. Recently, in our lab, we confirmed that F. nucleatum infection provoked high-level
serum antibodies to F. nucleatum in CRC patients [64]. Using the sera of CRC patients to probe the
bacteria protein extract, we found a robust reactive antigen, alkyl hydroperoxide reductase subunit C,
activates the anti- F. nucleatum immune response [64].

F. nucleatum is a facultative intracellular anaerobic microorganism, possibly activating, proliferating,
and migrating macrophages/monocytes that can provoke CRC development [34,65,66]. F. nucleatum
can invade into endothelial and epithelial cells, induces the synthesis of pro-inflammatory cytokines,
inflammatory lesions ultimately leading to CRC [29,67,68]. A contemporary study has also provided
insights into the connection between the gut microbiota and the capacity of inflammatory cytokine
production [69]. F. nucleatum promotes local inflammation and elevates the expression of inflammatory
cytokines (Interleukins-IL-6, IL-8, tumor necrosis factor-alpha (TNF-α), and cyclooxygenase (COX-2),
contributing to tumorigenic effects in CRC [28,29,69]. It can also induce chemokine C-C-motif ligand
20 (CCL20) expression in CRC while they are treated with F. nucleatum [66].

Nuclear factor kappa B (NF-κB) is a transcription factor that participates in regulating many
gene expressions and promoting tumor development and progression [70]. It is well recognized as
having crucial relationship with inflammation and cancer. The enrichment of the F. nucleatum triggers
NF-κB activation that can be significantly involved in CRC development [71]. The expression of
NF-κB is quite often triggering in F. nucleatum -enriched CRC [27,29]. Consistent with this study,
Rubinstein et al. [28] have also confirmed that wild-type F. nucleatum continuously induces the
expression of NF-κB in a human colon tumor (HCT116) xenograft model. Recently, two outer
membrane proteins from F. nucleatum have been taken for attention, namely, fibroblast activation
protein 2 (Fap2) and Fusobacterium adhesin A (FadA). Fap2 is a galactose-sensitive hemagglutinin
and adhesive protein, which contributes to the invasive ability of F. nucleatum into the human cells that
bind to D-galactose-β (1-3)-N-acetyl-D-galactosamine (Gal-GalNAc) [72–75]. FadA is another surface
adhesive protein, exclusively present in F. nucleatum that plays a vital function in the mechanism
of cell–cell attachment [75]. These two described proteins have greatly participated in the host cell
attachment that modulates the expression of CRC signaling [28,76].

Yang et al. [27] found the massive quantities of F. nucleatum in the CRC tissues and the team
further observed the increased invasion rate, proliferation, and xenograft tumors in humanized mice.
F. nucleatum (specifically LPS) binds to TLR4, which trough myeloid differentiation primary response
gene 88 (MYD88) signaling activates the NF-κB pathway, which enhances the gene expression of
miR-21 [30]. Toll like receptor 4 (TLR4) is a chief receptor for bacterial LPS that overexpresses in
CRC and plays a vital function in tumor development [77]. miR-21 may serve as a key promotor of
colitis-associated colon cancer [78,79]. Earlier studies revealed that patients with a higher count of F.
nucleatum and miR-21 exhibited the lowest survival rate [27]. Antibiotic treatment of CRC in mice
bearing xenograft models reduced the count of Fusobacterium and prevent the proliferation of all tumor
growth. However, these findings debate with the clinical investigation of antimicrobial interventions
as effective management with F. nucleatum -associated CRC [80]. Moreover, our study also identified
that F. nucleatum is sensitive to the tryptophan-depleted microenvironments and kynurenine could
inhibit the growth of F. nucleatum, suggesting that tryptophan metabolism plays a role during the
infection [65]. In addition, our study further confirmed that the subunit vaccine for F. nucleatum, such
as alkyl hydroperoxide reductase subunit C can reduce F. nucleatum load in the intestinal tract [59,81].

Gut microbiota of humans comprises a diverse range of microbial strains in which certain
strains are well recognized as carcinogenic agents [76]. In 2012, two different studies confirmed
that Fusobacterium species or F. nucleatum in specific is excessively habituated in CRC tissues when
compared to the normal mucosa of the gut [25,58]. Fusobacterium species are normal inhabitants of
the oral cavity and poor invader to the healthy intestine and however, during an unhealthy tumor
environment, these organisms can be reached to the gut [75]. These outcomes were effectively
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confirmed by McCoy et al. [57] and these authors have demonstrated an excess of Fusobacterium species,
acknowledged as CRC precursors, which are highly populated in the colorectal adenomas (CRAs) when
compared to the normal gut mucosa. Subsequently, numerous investigations have also proved the
connection between Fusobacterium and CRA [82]. To recognize the molecular pathway associated with
F. nucleatum, inflammation, and CRC, Kostic et al. [29] have demonstrated using animals (ApcMin/+)
and found the genetic vulnerability of emerging colonic cancers. These animals were administered
with invasive organisms of F. nucleatum initially obtained from the patient’s intestine of inflammatory
bowel disease. The outcome showed elevated tumorigenesis, caused due to elevating infiltrating
cells of the myeloid lineage (dendritic cells, macrophages, and granulocytes) [29]. Eventually, F.
nucleatum induced inflammation as well as tumor proliferation through regulating tumor-immune
microenvironment [29]. These animal trials confirmed that human colonic strains strongly correlated
with the richness of F. nucleatum and pro-inflammatory markers expression [29,57]. F. nucleatum has
been known to suppress anti-tumor immunity by preventing tumor-killing cells (natural killer cells
and tumor-infiltrating lymphocytes) [74]. Based on these experimental outcomes, F. nucleatum is not
only inhabited and developed in CRAs and adenocarcinomas but also augments tumor progression
and existence through the tumor-immune microenvironment.

3. Fap2 in F. nucleatum Mediates CRC through Host Gal-GalNAc

Fibroblast activation protein 2 (Fap2) plays a critical function in mediating CRC development
through binding with acetylgalactosamine (Gal-GalNAc), which is overexpressed in human metastases
and colorectal adenocarcinoma [83]. Fap2 is a galactose-sensitive hemagglutinin and adhesin that
possibly plays a function in the virulence of Fusobacterium. It is a 390-KDa protein encoded by
the Fap2 gene of F. nucleatum [73]. The outer membrane composed of 3692 amino acid, which is
recognized to stimulate apoptosis in human lymphocytes [48]. Earlier study demonstrated that Fap2
has participated in the binding of F. nucleatum to malignant cells and interacts with the immunoglobulin
and immunoreceptor tyrosine based inhibitory motif (ITIM) domain receptor mainly expressed on
natural killer cells (NK), regulatory T cells (Treg), cluster of differentiation-CD8+, and CD4+ T cells [75].
The binding of Fap2 to T cell immuneoreceptor with Immunoglobulin G (TIGIT) was found to inhibit
the activity of NK cells against the tumor cells, thus causing the development of CRC [74].

Abed et al. [84] have confirmed the quantities of fusobacterial lectin and host polysaccharide
that explicates fusobacterial abundance in the CRC. This study further explains that host epithelial
Gal-GalNAc over-expressed in the CRC, which is identified by fusobacterial Fap2, providing its role
as a Gal-GalNAc lectin [84]. High Gal-GalNAc levels are also found in CRC and are connected with
fusobacterial genomic DNA occurrence in these metastases, representing the ability of fusobacteria
to colonize CRC [85]. The team has also further confirmed in orthotopic rectal colon tumor (CT26)
adenocarcinoma model that intravascular injection of oral F. nucleatum strain favors inhabiting in CRC
tissue. This transmission route is mediated through the binding of Fap2 to Gal-GalNAc. Hence, all
these supporting ideas have provided oral fusobacteria that may colonize CRC via a hematogenous
route [84].

Gal-GalNAc lectin is universally familiar by the immune sera of patients with amoebic liver
abscess and various other diseases [86]. It plays a crucial role in cytolysis and phagocytosis of human
and rat colonic mucin glycoproteins. Earlier study related to the uptake of L. pneumophila by H.
vermiformis was specifically inhibited by Gal-GalNAc against the lectin of E. histolytica. Remarkably,
the inhibition of invasion by Gal-GalNAc was connected with inhibition of bacterial-induced tyrosine
dephosphorylation of H. vermiformis proteins [87]. Normally, the functions of the lectin comprise the
host cell binding, cytotoxicity, complement resistance, induction of encystation, and generation of
the cyst wall. In addition, the functions of the lectin in both differentiation and virulence suggest
that it may be a pivotal molecule that determines the severity of the infection from a commensal
state resulting from increased encystation to an invasive state [88]. Earlier studies, high levels of the
tumor expressed Gal-GalNAc moieties have shown in adenocarcinomas of various organs such as
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stomach [89], prostate [90], ovary [91], colon [92], uterus [93], pancreas [94], breast [89], lung [95], and
esophagus [96].

Clinical fusobacteria strains that present lacking Fap2 or inactivated Fap2 mutants demonstrate
reduced binding to Gal-GalNAc-expressing CRC cells [84]. Providing the tumorigenic role of
fusobacteria and its immune evasion potential, the removal of fusobacteria might be a promising
and improve treatment outcome of the CRC [85]. Moreover, fusobacteria seems to explicitly
bind to Gal-GalNAc-displaying tumors, it must be programmed as a stage for the treating CRC.
As immunosuppression is undesired in the future fusobacterial-based tumor therapy, the interesting
novelty of detecting and inactivation of the Fap2 TIGIT receptor-activating domain highly required.

F. nucleatum infects the oral cavity and reaches the colon, whereby it causes tumor progression.
However, the proposal of the programmed F. nucleatum promotes a healthy colon and prevents tumor
prevention in the host. Outer membrane protein of F. nucleatum- Fap2 contributes to the invasive
ability of F. nucleatum into the human that binds to E-cadherin and Gal-GalNAc. Fap2 binds only to
Gal-GalNAc. FadA binds to E-cadherin [97]. Through Toll-like receptor 4, the F. nucleatum actively
triggers the signals to MYD88 that stimulate activating protein-1 (AP1), NF-κB, mammalian target of
rapamycin (mTOR), and extracellular signal-regulated kinase (ERK) pathways and eventually cause
tumorigenesis. Although these facts are generally true, the activation of TLR4 is due to binding with
LPS, not Fap2 [77]. The attenuated F. nucleatum-Fap2 prevents transmembrane signals and inhibit
tumorigenesis inducing mechanisms. The genetically programmed mechanism can be achieved in
fusobacterial Fap2 by the following steps: mutagenesis, rDNA techniques, attenuation of oncogenic
materials performed by using vector encoded siRNA and shRNAs; induction of tumor suppressor genes,
and immunogenic peptides. Targeting programmed fusobacterial Fap2 may reduce fusobacterium
count in the CRC and promotes a healthy colon. Thus, the programmed F. nucleatum Fap2 is a promising
anti-tumor activity against CRC.

Adhering to the gut epithelium by the various cell surface proteins, FadA, Fap2, and role of
radiation genes (RadD) expressed by F. nucleatum can cause CRC in humans and produce inflammatory
factors in the tumor microenvironment [98]. Rubinstein et al. [28] demonstrated that F. nucleatum
enters into the host and persuades inflammation and oncogenic responses that proliferate CRC cells
via its FadA attachment. FadA is a surface adhesive protein localized in F. nucleatum that functions
as cell binding [75]. These FadA proteins fix with host E-cadherin (cellular adhesion) to trigger
Wnt/β-catenin signaling pathways and regulate the inflammation as well as oncogenic responses
(Figure 2). FadA interacts with E-cadherin at a locality of the 11-amino-acid region [28]. However, this
amino acid proximately synthesizes a new peptide in the human, which terminates FadA induced cell
proliferation, inflammation, and oncogenic responses in the colon [28]. In patients with adenomas and
adenocarcinomas, FadA levels are 10–100 times higher than normal subjects [57]. These elevated FadA
levels in CRC mostly associate with augmented inflammatory signaling and tumorigenic responses [28].
This investigation further reveals a key mechanism of F. nucleatum that can potentially regulate CRC
and recognizes FadA as a possible diagnosis and therapeutic marker for CRC [76]. F. nucleatum binds
to the patient’s adenocarcinomas associated with Gal-GalNAc expression that has been diminished
upon O-glycanase treatment [84]. Therefore, targeting Fap2 in F. nucleatum and or host epithelial
Gal-GalNAc could shorten fusobacteria potentiation in the CRC.
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Abbreviation: Akt-protein kinase B; Ap1-activating protein-1; ERK-extracellular signal-regulated kinase;
FadA- Fusobacterium adhesin A; Fap2-fibroblast activation protein 2; Gal-GalNAc-acetylgalactosamine;
IkB-Ikappa B proteins; IKK-Ikappa B kinase; IRAK1-Interleukin-1; receptor-associated kinase 1;
IRAK4-Interleukin-1 receptor-associated kinase 4; LPS-lipopolysaccharide; MAPK-mitogen-activated
protein kinase; MEK-MAPK-ERK-kinase; mTOR-mammalian target of rapamycin; MYD88-myeloid
differentiation primary response gene 88; NF-kB-nuclear factor kappa-B; p-phosphorylated;
PI3K-phosphatidylinositol 3-kinase; RAF-rapidly accelerated fibrosarcoma; RAS-rat sarcoma;
TLR4-Toll-like receptor 4; TRAF6-Tumor necrosis factor receptor associated factor 6; TRAM-Transverse
rectus abdominis myocutaneous; TRAP-thyroid hormone receptor associated protein.

Researchers have strongly believed that F. nucleatum is prevalent and resident in high numbers
during tooth brushing as well as a periodontal disease [99]. There are high chances that this transient
oral fusobacteria may transmit through the circulatory system to spread CRA and CRC spots. Since F.
nucleatum transition to tumor spots is a detrimental effect to the host [74], new avenues to block the
enrichment of F. nucleatum in tumor sites or CRC would be therapeutically beneficial.

4. Bacteria-Mediated Cancer Treatment: Alternative to Surgery

Surgical treatment is the utmost general cancer therapy, and it has been practiced for several
centuries [100]. Nevertheless, surgical procedure is not an actual treatment for metastatic conditions
since they need radiation and chemotherapy [101]. The surgical procedure has lots of hitches that might
offer incomplete elimination of tumor growth and possible reappearance [102]. The potential treatment
of radiotherapy mostly affects tissue oxygen levels, however hypoxic environments occur in cancerous
spots that result in failure of the treatment [101]. Moreover, the drug transition is therapeutically
effective for chemotherapy; and deprived vasculature in cancer spots weakens drug delivery, which
reduces the efficacy of the drugs, particularly in hypoxic and necrotic environments [102]. The usage of
microbes in malignancy treatment has been practiced several times [102], and it is not well documented
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as an effective therapeutic tactic. Efficient knowledge and scientific progress have permitted generation
of genetically programmed bacteria that drive harmless and effective application in cancer therapy.
Bacteria-mediated cancer treatment facilitates facultative anaerobes that can able to live even in hypoxic
and necrotic environments. It aids drug transition all over the tumor sites [103]. Nowadays, the sum
of available bacterial therapy articles has been swiftly improved, in which the use of bacterial therapy
of Salmonella has increased significantly [104].

5. Programmed Bacteria

Synthetic biology is dynamic to a new era of medicine through the genetic programming of
living cells [105]. This transformative method allows for the creation of engineered systems and
adding specificity and effectiveness that encompasses beyond the competences of molecular-based
therapeutics [106,107]. One specific area of attention has been the programming of bacteria as
therapeutic delivery systems to selectively discharge therapeutic cargos in vivo [105,106,108,109].
Chowdhury et al. [105] engineered a non-pathogenic Escherichia coli strain encoded with CD47nb,
which elevates activation of tumor-infiltrating T cells, induces quick tumor regression, averts metastasis,
and provides long-term survival in a syngeneic tumor mouse model. Harimoto et al. [110] screened
Salmonella typhimurium strains expressing and carrying antitumor therapeutic molecules through
various programmed gene circuits. In addition, these research groups have identified the candidates
exhibiting noteworthy tumor reduction in a syngeneic mouse model [110]. This platform can be aided
to identify the programmed diverse microbial species such as Listeria monocytogenes, Proteus mirabilis,
and Escherichia coli in several host cell types [110].

Yoon et al. [111] also indicated that inherently adapted attenuated Salmonella typhimurium, that
produces interferon-gamma (IFN-γ) as a tumoricidal agent, could elevate the therapeutic efficiency.
In 1891, one of the greatest bone sarcoma surgeon named William B. Coley inoculated streptococcal
organisms into a cancer patient, and those organisms successfully cured the patient of malignancy [104].
The anti-tumor activity of attenuated bacteria was achieved in various animal models. It has
been achieved by antigen-specific tumor inhibition [112], reduced tumor mass [113,114], reduced
proinflammatory stimulation [115,116], suppression of angiogenesis and pulmonary metastasized
tumors [117], and eventually increases the survival time [118]. The list of programmed bacteria
expressed as anti-tumor agents in various animal models are given in Table 2.
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Table 2. Programmed bacteria expressed as anti-tumor agents in various animal models.

Bacterial Species Agent(s) Host Origin of the
Tumor Tumor(s) Effector(s) Results References

S. typhimurium

Bacterial antigen
S. typhimurium

secreting L.
monocytogenes

Iap217–225 (Lm-p60)

BALB/c Bones WEHI-164 (Fibrosarcoma)
cells expressing Lm-p60

CD8+

cell-mediated Antigen-specific tumor inhibition [112]

S. typhimurium
Bacterial toxin

S. typhimurium
secreting HlyE

BALB/c Breast CT-26, 4T1 Not reported Reduction in tumor mass [113,114]

S. typhimurium Birc5 (Survivin) C57BL/6 Lungs D121 CD8+

cell-mediated
Suppression of angiogenesis and
pulmonary metastasized tumors [117]

S. typhimurium BIRC5 shRNA
NDUFA13 (GRIM-19) Nude Mice Larynx, prostate Hep-2 (Laryngeal cancer)

DU145 (PC-Xenograft) Apoptosis Tumor growth reduced [119,120]

S. typhimurium BIRC5 shRNA
TNFSF15 (VEGI) Nude mice Breast MDA-MB-231

(BC-Xenograft) Apoptosis Tumor growth reduced [121]

S. typhimurium ccl21 BALB/C Breast D2F2, CT-26 CD4+ and CD8+

cell mediated
Tumor-limited inflammatory reaction with

a substantial reduction in tumor burden [115]

S. typhimurium CTAG1B (NY-ESO-1) BALB/c Skin
CMS5 cells expressing

human
NY-ESO-1

CD8+

cell-mediated NY-ESO-1-positive tumors are eliminated [122]

S. typhimurium Cytokine ccl21 C57BL/6 Lungs D121 (LC-Syngeneic) CD8+ cell
mediated

Suppression of angiogenesis and growth of
pulmonary metastasized tumors [117]

S. typhimurium
Death inducer S.

typhimurium secreting
murine Fasl

BALB/c Breast, colon CT-26 D2F2
(BC-Syngeneic) Neutrophils Reduction in tumor mass [123]

S. typhimurium Diablo/Trail BALB/c
C57BL/6

Liver, spleen,
kidney

4T1
LL/2 (LC-Syngeneic)
B16F10 (Melanoma)

Apoptosis Tumor growth inhibition with prolonged
survival [124]

E. coli E. coli expressing LLO C57BL/6 Blood
MBL2

(Leukemia-Syngeneic)
TRAMP-C (PC-Syngeneic)

CD8+

cell-mediated Reduction in tumor mass [125]

S. typhimurium Growth inhibitor(s)
Bcl2 shRNA C57BL/6 Liver, spleen,

skin B16F10 Apoptosis
Survival time of tumor-bearing mice

Prolonged Complete tumor regression not
observed

[126]
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Table 2. Cont.

Bacterial Species Agent(s) Host Origin of the
Tumor Tumor(s) Effector(s) Results References

S. typhimurium HPV E6 shRNA
TP53 Nude mice Cervix SiHa Apoptosis Tumor growth reduced [127]

S. typhimurium IL 18

C57BL/6 Skin B16F1A (Melanoma) Not reported Increased survival time [118]

BALB/C Skin, colon D2F2, CT-26
Granulocyte,

NK, CD4+, CD8+

cell mediated

Reduced tumor growth and pulmonary
metastases [111]

S. typhimurium IL2

C57BL/6 Liver
MCA-38

(Adenocarcinoma
Syngeneic)

NK cells Hepatic metastases reduced [116]

BALB/C Bone, lungs K7M2 (Osteosarcoma
–Syngeneic) NK cells Pulmonary metastases reduced compared

to saline control [128]

S. typhimurium

IL4 C57BL/6 Skin B16F1A (Melanoma) Not reported Increased survival time [118]

MDM2 shRNA
TP53-Cisplatin Nude Mice Prostate PC3 Apoptosis Tumor growth reduced [129]

S. typhimurium S. typhimurium
secreting murine Trail BALB/c Breast 4T1 Apoptosis Tumor growth reduced [130]

S. typhimurium S. typhimurium
secreting Stx2 Nude Mice Skin, colon B16, HCT116, HeLa Necrosis Reduction in tumor mass [131]

S. typhimurium Stat3 shRNA C57BL/6 Bone H22
Apoptosis and

CD8+ cell
mediated

Tumor growth reduced [132]

S. typhimurium Stat3 shRNA
Col18A1Endo C57BL/6 Prostate RM1 Apoptosis Tumor growth reduced [133,134]

S. typhimurium Target antigen
KLK3 (PSA) DBA/2 Prostate

P815 cells expressing
human

PSA

CD8+
cell-mediated

Direct i.m. DNA vaccination was better
than Serovar typhimurium-delivered

immunogen
[135]

S. typhimurium Tnfsf14 (LIGHT) BALB/C Breast D2F2, CT-26 NK, CD4+, CD8+

cell- mediated
Primary and metastatic tumor growth

inhibited [136]

S. typhimurium Vegfr2 (Kdr or Flk1)
full-length Protein

BALB/c
C57BL/6 Skin

CT-26
B16G3.26 (Melanoma)

D121
MC-38 (CRC-Syngeneic)

CD8+

cell-mediated

Microvessel destruction retarded tumor
growth and metastases. Healing of skin

wounds slightly delayed. Immunological
memory persisted at 120 days

post-immunization

[137]
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6. Mechanism of Tumoricidal Properties of Programmed Bacteria

Indeed, bacteria synthesize exotoxins through their type 1 secretion systems (T1SS) for their
survival in the rigid environment [138]. T1SS is generally chaperone-dependent machinery employing
proteins expressed by hly and tol genes [113]. Clinically significant T1SS cargo comprises of proteins,
polysaccharides, ions, and small molecules, which are termed as exotoxin. For instance, uropathogenic
E. coli contains a virulence factor of exotoxin: a-hemolysin (HlyA). This set of exotoxin normally aids
pores on the host cells and consequently has the capacity to break down blood cells as well as cancer
cells [139]. The studies showed that T1SS machinery activates chimeric human prostate-specific antigen
(PSA), which elevates CD8+ cell-mediated reactions against a mouse mastocytoma [135]. Employing
T1SS machinery in recent investigations showed a reduction of cancerous proliferation when hlyE
was secreted by recombinant S. typhimurium using arabinose-inducible [113] and hypoxia-inducible
bacterial promoter [114] in syngeneic hosts, even though the nature of anti-tumor reaction performed
mainly not reliant on CD8+ cells.

The promoter of recombinant S. typhimurium [131] established to synthesize Shiga toxin in the
tumor microenvironment, which causes tumor necrosis. When E. coli expresses a chimeric heterologous
bacterial toxin, Listeriolysin-O (LLO), it can be elevated CD8+ cell-mediated antitumor response [125].
LLO is an exotoxin secreted by the bacterium Listeria monocytogenes, similar to hemolysin of E. coli.
Likewise, when S. typhimurium synthesized a chimeric heterologous antigen, CD8+ cell-mediated
anti-tumor reactions can be aroused [112]. Based on this experimental methodology, anti-tumor
responses were initiated and experiments were performed using nude mice to control experimental
tumors [140,141]. This high-throughput framework may serve to accelerate synthetic biology for
translational medicine and for understanding the host-microbe interactions in disease sites.

7. Targeting Programmed F. nucleatum Fap2 for Colorectal Cancer

According to current studies, the tumor microenvironment and feces samples of patients with
CRC are enriched by F. nucleatum [98]. Therefore, F. nucleatum is projected as one of the risk
factors in the commencement and progression of CRC. The most significant mechanisms of F.
nucleatum participated in CRC carcinogenesis are virulence factors (FadA, Fap2, RadD), miR-21,
immunomodulation (inhibitory receptors of NK cells and elevating myeloid-derived suppressor
cells), and metabolism of bacteria [98,142]. Studies showed that a host polysaccharide and lectin of
fusobacterium that explains CRC comprises the richness of fusobacterium [28]. The host epithelium
sugars of Gal-GalNAc are generally expressed higher in CRC, which is recognized by binding with
fusobacterial Fap2. Thus, targeting fusobacterial Fap2 or host epithelium polysaccharide of Gal-GalNAc
may decrease fusobacteria count in the CRC. Enormous studies previously described that bacteria
act as anti-tumorigenic or anti-cancer agents [27,107,142]. The entire bacterium or the immunogenic
properties of peptides carried by the bacteria show an effective anti-tumorigenic potent in the animal
models of various cancers [106,107]. In this context, the application of attenuated host strains resulting
from mutagenesis, rDNA techniques could also be practiced in bacteria that aid to eliminate tumor
colonization. Vector encoded siRNA and shRNAs that target oncogenic materials, induction of tumor
suppressor genes, and immunogenic peptides could also be developed. These methodologies show
that the genetically programmed F. nucleatum has promising anti-tumor activity against CRC.

8. Conclusions

F. nucleatum infects the oral cavity to the colon that interrelates with the host immune system,
ultimately cause inflammation and tumor progression. F. nucleatum exhibited the ability to cause
CRC by Fap2-Gal-GalNAc complex specifically. However, attenuated F. nucleatum-Fap2 prevent
transmembrane cellular signals and avert tumorigenesis persuading mechanisms. The genetically
programmed practice can be performed in fusobacterial Fap2 by mutagenesis, rDNA techniques,
attenuation of oncogenic materials, stimulation of immunogenic peptides and tumor suppressor genes.
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Targeting programmed fusobacterial Fap2 may reduce fusobacterium count in the CRC and promotes
a healthy colon. Thus, the development of genetically programmed F. nucleatum Fap2 is a promising
anti-tumor activity that will provide more methods for bacteria-based cancer treatment.
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