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Biofilms refer to complex bacterial communities that are attached to the surface of animate
or inanimate objects, which highly resist the antibiotics or the host immune defense
mechanisms. Pathogenic biofilms in medicine are general, chronic, and even costly,
especially on medical devices and orthopedic implants. Bacteria within biofilms are the
cause of many persistent infections, which are almost impossible to eradicate. Though
some progress has been made in comprehending the mechanisms of biofilm formation
and persistence, novel alternative compounds or strategies and effective anti-biofilm
antibiotics are still lacking. Smart materials of nano size which are able to respond to
an external stimulus or internal environment have a great range of applications in clinic.
Recently, smart nanomaterials with or without carriage of antibiotics, targeting specific
bacteria and biofilm under some stimuli, have shown great potential for pathogenic biofilm
and resident bacteria eradication. First, this review briefly summarizes and describes the
significance of biofilms and the process of biofilm formation. Then, we focus on some of the
latest research studies involving biofilm elimination, which probably could be applied in
orthopedic implants. Finally, some outstanding challenges and limitations that need to be
settled urgently in order to make smart nanomaterials effectively target and treat implant
biofilms are also discussed. It is hoped that there will be more novel anti-biofilm strategies
for biofilm infection in the prospective future.
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INTRODUCTION

Biofilm formation, an ancient and indispensable feature of microorganisms, represents a protected
mode of growth (Hall-Stoodley et al., 2004). Since 1982, the first time when the involvement of
biofilms in medical devices (cardiac pacemakers) was observed by electron microscopy, almost all
types of indwelling devices have been related to the occurrence of bacterial or fungal biofilms (Hall-
Stoodley et al., 2004; Lebeaux et al., 2014). It is now estimated that 60–80% of bacterial infections in
humans are caused by bacterial biofilms (Childs, 2008). The morbidity and mortality chronically
associated with biofilm infection are very high (Drancourt et al., 1993), and annually, the treatment
cost of biofilm infection is more than $6 billion (Ehrlich et al., 2005).

Approximately, 1 million orthopedic prosthetic devices are implanted within the United States
each year, and 2% of these were infected (Ehrlich et al., 2005; Matthew et al., 2018). Periprosthetic
joint infection (PJI) is a serious complication for orthopedic implant-related operations and thought
to be largely due to biofilms that can grow on the surfaces of the implant (Gbejuade et al., 2015; Tzeng
et al., 2015), with an estimation that 80% of all bacterial PJIs involve biofilm formation
(Shoji and Chen, 2020). Staphylococcus aureus, coagulase-negative Staphylococcus, Streptococcus,
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and Pseudomonas are the common pathogens among these
biofilm infections (Schinsky et al., 2008; Tzeng et al., 2015).
Despite the high incidence of reinfection (Shoji and Chen,
2020), in many cases, the only efficient solution is the removal
of the implanted device or surgically excising the infected tissue
(Nistico et al., 2014), which is not only extremely long and painful
for patients but also a considerable financial burden for the
health-care system (Nistico et al., 2014). In addition to causing
orthopedic implant–associated infections, biofilms are also highly
related to urinary tract infections (UTI) (Flores-Mireles et al.,
2015), of which the biggest risk factor is the indwelling catheter
(Shuman and Chenoweth, 2018). Given that many patients with
joint replacement require catheterization during surgery,
knowing how to prevent urinary tract infections is crucial
(Khan et al., 2020b).

Nanoparticles are a highly promising approach to biofilm
therapy (Kumar et al., 2018; Eleraky et al., 2020), with
outstanding capacity to directly kill bacteria or release
bactericides by well adjusting their chemical composition, size,
and surface charge (Weir et al., 2008; Khan et al., 2020a; Khan
et al., 2020c; Khan et al., 2021). Some smart nanomaterials that
respond to unique microenvironments of the harsh biofilm
matrix or artificial stimulus can provide unparalleled flexibility
to carry, retain, and release bactericides exactly when and where
needed most (Benoit et al., 2019). Here, we summarize and
describe the significance of biofilms as well as the process of
biofilm formation. Then we will focus on some of the latest
research on smart nanomaterials killing bacteria and eliminating
biofilms, which probably could be applied in orthopedic implants,
in the further paragraphs. Finally, outstanding challenges and
limitations that need to be settled urgently are also discussed.

SIGNIFICANCE OF BIOFILMS

Biofilms can be regarded as layered aggregates of microbial cells
and cellular products (Costerton et al., 1978; Rodríguez et al.,
2011) with a three-dimensional polymer (Koo et al., 2017)
network clinging to solid surfaces (Kumar et al., 2019)
(surfaces of implants), which can provide important structural
support and protection for microbial communities (Flemming
et al., 2007; Flemming and Wingender, 2010) and an
environment for the exchange of genetic material between
microbial individuals (Rodríguez et al., 2011). The established
biofilm architecture consists of microbial cells and an
extracellular polymeric substance (EPS) matrix, of which the
EPS accounts for 90% of the mass with the rest being
microbial cells (Flemming and Wingender, 2010). It is worth
noting that water, bound in capsules of microbial cells or existing
as a solvent with physical properties (Schmitt and Flemming,
1999), makes up a large proportion of the biofilm matrix (up to
97%) (Zhang et al., 1998; Sutherland, 2001). Although the
physical and chemical compositions of the EPS of different
microorganisms vary, except for water, biofilm substrates
generally include all major macromolecules, such as
exopolysaccharides, proteins, extracellular DNA (eDNA),
lipids, and phospholipids (Toyofuku et al., 2012; Zoubos et al.,

2012; Tzeng et al., 2015). In fact, absorbed nutrients, metabolites
of microorganisms, products of cell lysis, and particulate matter
and debris from the surrounding environment may also be
present (Zoubos et al., 2012).

Microbial cells within a biofilm can resist most adverse
environments (Le Magrex-Debar et al., 2000; Espeland and
Wetzel, 2001; Teitzel and Parsek, 2003; Karol and Hamilton,
2010) (e.g., UV light exposure, heavy metal toxicity, acidity,
dehydration, and salinity changes) and host immune defenses
(Leid et al., 2002; Wagner et al., 2003) (e.g., opsonization,
phagocytosis, and complement-mediated lysis). In addition,
biofilm bacteria also display a characteristic ability to
withstand antibiotics (Walsh, 2000; Stewart and William
Costerton, 2001) compared to planktonic ones (Nickel et al.,
1985; Lewis, 2001; 2008) because of 1) mechanical and
physicochemical properties of the biofilm matrix reducing or
delaying antibiotic diffusion (Mugabe et al., 2006; Halwani et al.,
2007; Høiby et al., 2010; Li et al., 2013) and 2) the depletion of
nutrients and/or oxygen as well as accumulation of waste product
causing bacteria to enter a stationary state, which is insensitive to
antimicrobial agents (Zoubos et al., 2012). Biofilms can release
extracellular molecules to change gene expression of virulence
factors through quorum sensing (Shoji and Chen, 2020).
Additionally, bacteria in biofilms can increase mutation
frequency to avoid host defenses (Driffield et al., 2008),
increase β-lactamase activity (Ciofu, 2003), increase efflux
pump activity (Pamp et al., 2008), and exchange plasmids for
transfer of genes for antibiotic resistance and virulence factors.
The remaining biofilm matrix scaffold where microbial cells have
been inactivated may facilitate subsequent colonization of other
microorganisms or serve as a source of nutrients (Koo et al., 2017;
Arciola et al., 2018). All of these contribute to a significant
number of therapeutic difficulties encountered in clinical settings.

FORMATION PROCESS OF BIOFILM

In implant-associated infections, the implant will trigger a local
tissue response and generate a niche of immune depression, which
predisposes Table 1 the implant to microbial colonization
(Menkin, 1931; Anderson, 2016). The formation of biofilm on
the surface is a dynamic stepwise process, and roughly, it can be
divided into five stages (Figure 1) (Genevaux et al., 1996; O’Toole
andKolter, 1998; Pratt andKolter, 1998;Watnick and Kolter, 1999;
Hall-Stoodley et al., 2004; Costerton, 2005; Zoubos et al., 2012; Koo
et al., 2017; Arciola et al., 2018) as follows:

Stage 1: Initial attachment to the surface. The association with
the surface of this stage is loose, transient, and reversible and only
takes a few seconds, which occurs by various mechanisms
including Brownian motion, chemoattraction, and weak van
der Waals forces and facilitated by force-producing organelles
such as type IV pili and flagella. Besides, a variety of
environmental signals (surface composition and roughness,
hydrodynamics, hydrophobicity, temperature, osmolarity,
nutrients, pH, oxygen concentration, and irons) probably
influence this initial interaction. In this stage, the bacterial
cells show a logarithmic rate of growth.
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TABLE 1 | Stimuli-responsive nanomaterials with antibacterial properties.

Nanosystem Stimuli
type (s)

Main composition (s) Bacterial
strains

Antibacterial
mechanism

Antibacterial effect Development Reference

Magnetic iron oxide nanoparticles (MNPs) Magnetism-
responsive

Fe3O4 MRSA Mechanical disruption;
magnetic
hyperthermia

5 log10 reduction in biofilm
bacteria

in vitro Li et al. (2019a)

Superparamagnetic iron oxide
nanoparticles (SPIONs)

magnetism-
responsive

BioMag
®
Superparamagnetic

Iron Oxide
P. aeruginosa Magnetic

hyperthermia
More than 4 log inactivation
of the PA01 biofilm

in vitro Park et al. (2011)

Magneto-responsive gallium-based liquid
metal (LM) droplets

Magnetism-
responsive

68.5 wt% gallium; 21.5 wt%
indium; and 10 wt% tin

S. aureus; P.
aeruginosa

Mechanical disruption Inactivating 99% of both
species of bacteria;
disintegrating biofilms

in vitro Elbourne et al. (2020)

Magnetic nanocomposites Magnetism-
responsive

Selenium; iron oxide; and
chitosan

S. aureus Mechanical disruption;
ROS; and thiol
depletion

Relative ratio of dead-to-live
bacteria in nanocomposites
was 400.0%

in vitro Li et al. (2020b)

Silver ring–coated super paramagnetic iron
oxide NPs

Magnetism-
responsive

Iron oxide nanoparticles； silver
nanoparticles

S. aureus; S.
epidermidis

Mechanical
disruption; Ag+

Enhancing the antimicrobial
activities of Ag

in vitro Mahmoudi and
Serpooshan, (2012)

Magnetite hybrid nanocomplexes Magnetism-
responsive

Iron oxides; Ag E. coli; P.
aeruginosa

Mechanical
disruption; Ag+

A significant reduction of the
biofilm and viable bacterial cells

in vitro Zhang et al. (2019)

PEL1-CS-Fe3O4 Magnetism-
responsive

Fe3O4; phage PEL1; and
magnetic colloidal nanoparticle
clusters

E. coli; P.
aeruginosa

Mechanical disruption;
biological inhibition

Modest killing of the bacteria
(≈40%); remarkable reduction
in biofilm (88.7%)

in vitro Li et al. (2017)

Antimicrobial magnetic thermotherapy
platform

Magnetism-
responsive

Fe3O4; anti-protein A antibody S. aureus Magnetic
hyperthermia;
biological inhibition

99% killing efficiency in vitro;
a significant reduction of the
S. aureus in vivo

in vitro; in vivo Kim et al. (2013)

Deoxyribonuclease-decorated gold
nanoclusters

Light-
responsive

DNase; Au S. aureus; P.
aeruginosa

Biological inhibition;
photothermal therapy;
and photodynamic
therapy

Removing 80% biofilms; killing
∼90% shielded bacteria

in vitro Xie et al. (2020b)

Protease-conjugated GNRs (PGs) Light-
responsive

Bromelain; Au E. coli; S.
aureus

Photothermal therapy;
biological inhibition

Decreasing bacterial growth
(96.8% for E. coli, 97.9% for
S. aureus); removing 70.5%
(E. coli); and 93.3% (S. aureus)
of biofilm mass

in vitro Li et al. (2019b)

RP–IR780–arginine–glycine–aspartic
acid–cysteine coating

Light-
responsive

Red phosphorus; IR780 S. aureus Photothermal therapy;
photodynamic therapy

96.2% antibacterial efficiency
in vivo

in vitro; in vivo Tan et al. (2018)

TiO2 nanorod arrays light-
responsive

TiO2 S. aureus;
E. coli

Photothermal therapy;
photodynamic
therapy; and physical
destruction

About 100 and 99.9% against
E. coli and S. aureus in vitro;
excellent antibacterial activity in
vivo; and eradication of biofilms

in vitro; in vivo Zhang et al. (2021)

Titanium-containing composite material
surface

Light- and
thermo-
responsive

VCL-co-QAS-co-PEGMA-co-
VTMO; QAS

S. aureus;
E. coli

Physical and chemical
effects; QAS

Outstanding antibacterial
properties (98% for both
S. aureus and E. coli); anti-
adhesive property (99.86%
for S. aureus and 97.08%
for E. coli)

in vitro; in vivo Lin et al. (2021)

Multifunctional catechin@ZIF-L
nanocomposite (CA@ZIF-L)

pH-
responsive

Catechins; Zn; ZIF MRSA Catechins; Zn2+ Eradicating biofilms in a
dose-dependent manner

in vitro Raju et al. (2020)

Surface-adaptive, antimicrobially loaded,
micellar nanocarriers

pH- and
enzyme-
responsive

Triclosan; poly (ethylene glycol)
(PEG); and β-amino ester

S. aureus Triclosan More effective in killing
staphylococci deep into a
biofilm

in vitro Liu et al. (2016)

(Continued on following page)
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TABLE 1 | (Continued) Stimuli-responsive nanomaterials with antibacterial properties.

Nanosystem Stimuli
type (s)

Main composition (s) Bacterial
strains

Antibacterial
mechanism

Antibacterial effect Development Reference

PPD@CDLys pH-
responsive

2,3-dimethylmaleic anhydride
(PPD); calcined l-lysine powder
(CDLys)

S. aureus;
E. coli

PPD; ROS Effectively disrupting the
mature biofilm; inactivating the
embedded bacteria in a short
time

in vitro Li et al. (2020a)

Surface charge switchable supramolecular
nanocarriers (α-CD-Ce6-NO-DA)

pH-
responsive

α-Cyclodextrin (α-CD); nitric
oxide prodrug; chlorin e6
prodrug; and poly (ethylene
glycol) (PEG)

MRSA NO; ROS; RNS; and
photodynamic therapy

The bactericidal rate of the
biofilm was 99.92 ± 0.72%
in vitro; having much better
bactericidal effect in vivo

in vitro; in vivo Hu et al. (2020)

Surface-adaptive mixed charged gold
nanoparticle (AuNP-N-C)

pH- and light-
responsive

Au; (10-mercaptodecyl)
trimethylammonium bromide;
and 11-mercaptoundecanoic
acid

MRSA Photothermal therapy Effectively adhering to bacteria;
rapidly aggregating in MRSA
biofilm, exhibiting great
bactericidal effects

in vitro; in vivo Hu et al. (2017)

LBL@MSN-Ag nanocoating Enzyme-
responsive

Ag; MSN; poly-L-glutamic acid;
and polyallylamine hydrochloride

S. aureus Ag+ Having superior antibacterial
capacity (>95%) in vitro;
modified Ti implants, and
effectively treated infections
in vivo

in vitro; in vivo Ding et al. (2020)

Size/surface charge-adaptive micelles pH- and
enzyme-
responsive

Cationic copolymers;
azithromycin; and cis-aconityl-
D-tyrosine

P. aeruginosa D-tyrosine;
azithromycin

Micelles disrupt biofilms (85%
dispersal percentage in vitro)
and eliminate bacteria

in vitro; in vivo Chen et al. (2019)

Enzyme-responsive copolymer micelles Enzyme-/
toxin-
responsive

Poly vinyl caprolactam;
polyethylene glycol;
chlorhexidine

S. aureus;
MRSA; S.
epidermidis

Chlorhexidine Reducing biofilm
biomass (>60%)

in vitro Albayaty et al. (2019)

Gold nanoparticle–stabilized liposomes Toxin-
responsive

Au; chitosan; liposomes; and
vancomycin

MRSA Vancomycin Inhibiting MRSA growth as
effectively as an equal amount
of free vancomycin

in vitro Pornpattananangkul
et al. (2011)
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Stage 2: Extracellular polymeric substance production.
Bacteria begin to multiply when they successfully adhere to
the surface. During this stage, bacteria are able to
“communicate” with other individuals and activate the genetic
mechanism of EPS production through intercellular signals sent
by them. Then, the EPS accumulates and progressively generates
multiple layers, during which these aggregates can capture
nutrients and planktonic bacteria, resulting in robust adhesion.
The production of the extracellular polymeric substance is a
necessary condition for the stabilization of biofilms.

Stage 3: Biofilm architecture development, also known as
maturation I. The bacteria gradually gather into small colonies
in this stage, in which the cell-to-cell connection becomes closer
and more complicated.

Stage 4: Biofilm architecture maturation, also known as
maturation II. The biofilm of this stage will generally become
larger to reach its thickness limit, until it gets to the next stage.

Stage 5: Dispersion from the biofilms. When biofilm
environmental conditions are unfavorable, this stage begins.
Some of the biofilm bacteria with transient motility develop
planktonic phenotypes and disperse away from the biofilm to
find a surface to recolonize, where the conditions are more
favorable. There are three common strategies for bacteria to
disperse: “swarming/seeding dispersal,” in which individual
cells are released from biofilms into the surrounding
substratum or the fluid; “clumping dispersal,” in which
aggregates of cells are shed as clumps or emboli; and “surface
dispersal,” in which biofilm structures move across surfaces.

NANOPARTICLE-BASED BIOFILM
TREATMENTS

Many biofilm management strategies currently being devised in
the clinic and used by surgeons are largely based on an approach
from cancer treatment: early and aggressive physical removal and
conventional antibiotic-based therapy or topical delivery of high
and sustained antimicrobials (Høiby et al., 2015). Considering the
difficulty in the early diagnosis of biofilm infection, poor biofilm
matrix penetration of conventional applied drugs, altered
microenvironment of biofilm influencing the antimicrobials

activity, and the rapid development of bacterial resistance,
preventing or treating pathogenic biofilms is challenging.
Despite extensive efforts in research and enormous investment
of resources, new classes of antibiotic development have been
slow. Current advances in chemical engineering and
nanotechnology offer nanomaterials a promising prospect to
combat bacteria (Koo et al., 2017; Wang et al., 2017; Baptista
et al., 2018), by controlling the composition, size, shapes,
structure, surface area, and chemistry to have antimicrobial
ability. In addition to their multiple antibacterial activity
mechanisms (Baptista et al., 2018), such as 1) direct
interaction with the bacterial cell wall; 2) generation of
reactive oxygen species (ROS); 3) triggering of innate and
adaptive host immune responses; and 4) induction of
intracellular effects, nanomaterials with high surface-to-volume
ratios and multivalent interactions can also act as carriers for
antibiotics or assist in delivering novel drugs (Baptista et al.,
2018). Moreover, numerous pieces of experimental evidence
show that nanoparticles are capable of disrupting bacterial
membranes and can hinder biofilm formation, thus reducing
the survival of the microorganism (Baptista et al., 2018).

In general, nanomaterials used for antimicrobial applications
can be classified into metal and metallic oxide nanoparticles,
carbon-based nanomaterials, polymeric nanoparticles,
nanocomposites, nano emulsions, lipid nanoparticles, and
smart nanomaterials (Qayyum and Khan, 2016; Joshi et al.,
2020; Makabenta et al., 2021). Smart nanomaterials, with the
ability to change their characteristics that allow them to exert
antimicrobial action or control drug release under the condition
of endogenous stimuli or external stimuli (e.g., pH, bacterial
toxins, redox potential, enzymatic activation, magnetic fields,
light, temperature, and ultrasound), have been rapidly
developed over the years (Karimi et al., 2016; Makabenta
et al., 2021).

Magnetic Responsive Nanomaterials
Magnetic fields can penetrate body tissues, so they are commonly
used in MRI for body imaging; in addition to that, external
magnetic stimulation can also control the magnetic responsive
nanomaterials for treating biofilm infection (Yang et al., 2018).
There are two strategies: magnetic field–induced hyperthermia

FIGURE 1 | Steps involved in biofilm formation. 1) Initial attachment. 2) Extracellular polymeric substance production. 3) Biofilm development. 4) Biofilm maturation.
5) Dispersion from the biofilms.
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for drug release (Karthikeyan et al., 2018) and magnetic
field–guided drug targeting (Schleich et al., 2015), the basic
mechanisms of which involve their ability to generate heat via
alternating magnetic frequency.

Exposure of magnetic iron oxide nanoparticles to magnetic
field will cause a localized rise in temperature which destroys
biofilms through static friction, dispersing embedded bacterial
cells (Li et al., 2019a). Park et al. (2011) have demonstrated
superparamagnetic nanoparticles that have anti-biofilm
properties, which are able to reduce the viable P. aeruginosa
cells within a thick biofilm more than a four log under a magnetic
field (3 kAm−1, 493 kHz) for 8 min. Elbourne et al. (2020) utilized
magneto-responsive gallium-based liquid metal droplets, known
as “Galinstan.” When exposed to a low-intensity rotating
magnetic field, the magnetic droplets transform from spheres
to high–aspect ratio rods and star-like particles with nanoscale
sharp edges to effectively remove the majority of biofilms formed
by S. aureus, and P. aeruginosa bacteria and meanwhile pierce the
bacterial cell wall. Similarly, in Li’s work (Li et al., 2020b), a new
magnetic nanocomposite was synthesized, which combines
selenium nanoparticles (SENPs) with iron oxide nanoparticles
(IONPs). Depending on the pH of the reaction mixture, the
selenium nanoparticles can be nearly spherical or rod-shaped.
Nanocomposites showed excellent anti-biofilm property in the
presence of external magnetic field toward S. aureus, and the
toxicity to human cells was significantly low. The results show
that the relative ratio of dead-to-live bacteria in nanocomposites
(400.0%) was much higher than that of SENPs (51.6%) and
IONPs (60.0%).

Other studies have been able to successfully conjugate
antibiotics onto magnetic nanomaterials for pathogen
treatment. Mahmoudi and coworkers developed silver
ring–coated superparamagnetic iron oxide NPs (SPIONs)
which under an external magnetic field diffuse into deep
biofilm matrix and exhibit improved activity against biofilm
infection, demonstrating high antimicrobial ability without
causing damage to the healthy cells (Mahmoudi and
Serpooshan, 2012). Similar to the previous study, Zhang
et al. (2019) synthesized a kind of nanocomposite, with
Fe3O4 as an outer shell surrounded by an inner core of
nanosilver as the antimicrobial agent. In this case,
nanocomposites can be magnetically activated for biofilm
penetration, and they demonstrated a significant reduction in
the biofilm and viable bacterial cells in a test against biofilms
composed of E. coli and P. aeruginosa. Furthermore, Li et al.
(2017) utilized chitosan-coated Fe3O4 colloidal nanoparticle
clusters (CS-Fe3O4), conjugated with the polyvalent
bacteriophage PEL1, to penetrate biofilms of P. aeruginosa
and E. coli. The PEL1 were allowed to kill the bacterial cells
within the biofilm, with the help of CS-Fe3O4 nanoclusters
physically disrupting and penetrating the biofilm. Through
modest killing of the bacteria (≈40%), they achieved a
remarkable reduction in biofilm coverages, by 88.7 ± 2.8%.
Kim et al. (2013) even conjugated iron oxide nanoparticles
with anti-protein A antibody for the targeted treatment of S.
aureus biofilms. They demonstrated positive results, with a
killing efficiency at above 99% following an alternating

magnetic field of 31 and 40 kA m−1 thal dose in vitro and a
significant reduction of S. aureus in vivo of the mouse model.

Light-Responsive Nanomaterials
Several wavelengths of light [e.g., ultraviolet (Brown et al., 2009),
visible (Hossion et al., 2013), and near-infrared light (Liu et al.,
2017)] are used against bacteria (Raza et al., 2019; Pham et al.,
2020). Owing to better penetration ability and limited damage to
cells, NIR is of more potential benefit than the others (Xiang et al.,
2018), which involves three different mechanisms: the
photothermal effect, two-photon absorption, and upconverting
nanoparticles (Raza et al., 2019; Pham et al., 2020). The
photothermal agent can transfer light to heat through the
photothermal effect and then stimulate the heat-sensitive
material to break nanostructures, resulting in drug release at
the bacterial infection site or other response; meanwhile, the
produced heat and reactive oxygen species (ROS) can be effective
against pathogenic bacteria (Li et al., 2018).

Xie et al. (2020b) demonstrated that deoxyribonuclease
(DNase)-decorated gold nanoclusters (DNase–AuNCs) could
disperse biofilms and kill encapsulated bacteria. DNase
degrades the bacterial extracellular matrix to inhibit biofilm
formation or destroy the formed biofilm matrix, allowing the
AuNCs to access the encapsulated bacteria to perform combined
phototherapy under the excitation of 808-nm lasers. Moreover,
fluorescent DNase–AuNCs can be used to trace or detect bacteria,
thanks to their interaction with the pathogens.

Li et al. (2019b) reported a promising antimicrobial smart
nanomaterial that integrates the properties of protease
(bromelain) with a gold nanorod scaffold, named protease-
conjugated GNRs (PGs). In addition to achieving thermal
degradation and elimination of biofilms as well as exotoxins,
PGs also improve the activity of a conjugated mesophilic
protease, by employing hyperthermia generated by conversion
of NIR. It exhibited a broad spectrum of antibacterial activity
against both E. coli and S. aureus.

Tan et al. (2018) prepared the fibrous red phosphorus (RP)
film, a red phosphorus–IR780–arginine–glycine–aspartic
acid–cysteine (RGDC) coating, on the titanium bone implant’s
surface through chemical vapor deposition. Red phosphorus has
great ability of biocompatibility, while IR780 as an NIR
photosensitizer can produce singlet oxygen enhancing the
temperature sensitivity of S. aureus biofilm. This approach
eradicated the biofilm through near-infrared (808 nm)
photothermal therapy both in vitro and in vivo without
damaging the normal tissue as well as reached an antibacterial
efficiency of 96.2% in vivo.Meanwhile, RGDC even improved the
cell adhesion, proliferation, and osteogenic differentiation.

TiO2 nanorod arrays with high photothermal conversion
ability can produce a small amount of ROS, which is
antibacterial. In the work of Zhang et al. (2021), TiO2

nanorod arrays combined with the irradiation of 808 near-
infrared (NIR) light demonstrated the ability to eradicate
single-species biofilms through a combination of photothermal
therapy, photodynamic therapy, and physical destruction to
bacteria. Physiologically, with only 15 min of irradiation, the
combination of high temperature, ROS, and nanorod puncture
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produced excellent antimicrobial properties toward S. aureus or
E. coli on titanium, which they demonstrated in vitro and in vivo
experiments. At the same time, the nanorod arrays improved cell
adhesion, proliferation, and osteogenic differentiation, thereby
accelerating bone regeneration.

Photo response nanomaterials also have the ability to reduce
bacterial adhesion. Lin et al. (2021) synthesized a light-responsive
nanocomposite, by grafting thermo-responsive P
[vinylcaprolactam (VCL)–co-polyethylene glycol methacrylate
(PEGMA)–co-alkyl-dimethyl tertiary amine (QAS)–co-
vinyltrimethoxysilane (VTMO)] copolymer on TiO2

nanotubes/titanium (TNTs)/Ti surface (VCL–co-PEGMA–co-
QAS–co-VTMO). The thermal response resulted in
conformational changes in polymer molecules under water,
while the light response resulted in the formation of ROS on
the surface of the composites, both of which reduced bacterial
adhesion (99.86% for S. aureus and 97.08% for E. coli,
respectively). Due to the combination of antimicrobial QAS,
the composite surface showed significant antimicrobial activity
of 98%, both against S. aureus and E. coli.

pH-Responsive Nanomaterials
pH values vary in many specific, physiological or pathological
state. pH levels diversify in various segments of our body; pH of
saliva ranges 6.5–7.5, and the pH changes from 4–6.5 (stomach)
to 5–8 (intestine) along the gastrointestinal tract (Date et al.,
2016; Aflori, 2021). Additionally, for example, bacterial infections
present with an acidic pH in the range 6.0–6.6, an inflamed tissue
has a pH value of 6–7, and pH values are 7.4–5.4 in chronic
wounds (Xie et al., 2020a; Aflori, 2021). Smart nanomaterials
responding to diverse pH show great functional properties and
have important application value in the biomedical field. For
instance, pH-responsive nanocarriers were used to deliver
hydrophobic drugs to the biofilm matrix, which consisted of a
cationic outer shell to bind with the EPS and a pH-responsive
hydrophobic inner shell to release encapsulated farnesol
molecules on demand (Horev et al., 2015). A 2-fold increase
in the treatment efficacy of biofilms was reached by these
nanomaterials, compared to the drug use alone.

In a study of Raju et al. (2020), catechins were loaded onto
zeolitic imidazole frameworks (ZIFs) to synthesize pH-responsive
nanocarriers. Acidic pH within the biofilm favors the
disintegration of ZIF-L framework, leading to the release of
catechin and Zn2+ ions. Catechin can destabilize the biofilm
matrix through damage to the membrane or weaken the
biofilm formation by suppressing quorum sensing and enzyme
glucosyl transferase. In addition, Zn2+ also exhibited anti-biofilm
activity by impairing the swarming ability and exopolysaccharide
production, and the synergistic effect of anti-biofilm with
catechin. Liu et al. (2016) developed surface-adaptive, pH-
responsive, and mixed-shell polymeric micelles as nanocarriers
for hydrophobic antimicrobials (Triclosan). These nanocarriers
can penetrate S. aureus biofilms at physiological pH, adapt a
positive charge under acidic pH conditions, and target themselves
to negatively charged bacterial cell surfaces where they are
hydrolyzed by bacterial lipases to release the encapsulated
drug, bypassing biofilm recalcitrance to antimicrobial

penetration. In a work of Li et al. (2020a), they designed a
pH-sensitive anti-biofilm nanosystem based on carbon dots
(PPD@CDLys), self-assembled by a negatively charged shell
[poly (ethylene glycol)-COOH-polyethylenimine-2,3-
dimethylmaleic anhydride (PPD)] and a positively charged
core [amines on the surface of carbon dots derived from the
ashes of calcined l-lysine powder (CDLys)]. The outer copolymer
reversed to be positively charged by amide hydrolysis in a mildly
acidic environment, making PPD@CDLys permeate into the
dense biofilm. Under the stimulation of the acidic
microenvironment of the biofilm, PPD@CDLys disintegrated,
protonized the -NH2-ended shell polymer, and transformed
into a cationic antibacterial agent. Meanwhile, the released
CDs can also produce ROS to decompress the EPS. Under the
synergistic antibacterial effects of cation and ROS, the formation
of S. aureus biofilm can be effectively inhibited and the mature
biofilm can be destroyed quickly.

The surface charge switchable nanocarriers can exhibit
outstanding synergistic photodynamic eradication of the
MRSA biofilm. In research of Hu et al. (2020), they reported a
supramolecular nanocarrier (α-CD-Ce6-NO-DA), integrating
the α-cyclodextrin-conjugated NO prodrug and Ce6 prodrug
into PEG block polypeptide copolymer, to target the biofilm
microenvironment. At acidic biofilm pH (5.5), α-CD-Ce6-NO-
DA nanocarriers become positively charged (at physiological pH
of 7.4, have negatively charged surfaces), facilitating effective
penetration into the biofilm and adhesion to the negatively
charged bacterial surfaces, and then release NO molecules. NO
could dramatically reduce the concentration of GSH in biofilm to
enhance the PDT efficiency. Moreover, light-triggered ROS
reacted with NO, producing the RNS (ONOO−) with stronger
bactericidal ability, which further improves the PDT efficiency. In
a similar study, Hu et al. (2017) also designed a kind of surface-
adaptive mixed charged zwitterionic gold nanoparticle
(abbreviated as AuNP-N-C) to investigate the effect of an
acidic trigger approach onto the effective adherence and
enhanced photothermal ablation of MRSA biofilm, though
bare damage to surrounding healthy tissues.

Enzyme/Toxin-Responsive Nanomaterials
Among all stimuli-responsive systems, enzyme-responsive
systems are suitable for biomedical applications owing to their
high selectivity and specificity (Aflori, 2021). The sites of bacterial
infection are often full of enzymes or toxins that block the
penetration of antibiotics and inactivate them (Aflori, 2021).
Notably, many antimicrobial research studies have employed
enzyme-responsive nanocarriers (Aflori, 2021), which provide
a hydrophilic environment to stabilize the hydrophobic
antimicrobials and release the encapsulated drug when the
nanocarrier matrix was enzymatically degraded in biofilms.

For instance, Ding et al. (2020) reported a kind of a titanium-
based implant containing mesoporous silica nanoparticles loaded
with silver nanoparticles coated with multilayer layers of poly
(L-glutamic acid) (PG) and polyallylamine hydrochloride, an
enzyme-sensitive nanomaterial designed to treat infections
associated with S. aureus and to facilitate the growth of bone
tissue in vivo. Chen et al. (2019) designed pH- and lipase-sensitive
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hybrid micelles, which grafted D-tyrosine and azithromycin. The
anionic surface of micelles can reduce nonspecific interactions
with blood proteins and cells, which prolongs blood circulation
and enhances the accumulation at the infection area. In response
to bacterial lipases and the acidic pH environment of P.
aeruginosa biofilms, micelles shrank in size, reversed charge,
and D-tyrosine released to disperse the dense biofilm matrix,
along with azithromycin releasing to destruct bacterial cells. In
addition, Albayaty et al. (2019) designed a kind of copolymer
micelle as a nanocarrier that is susceptible to lipases/esterases
produced by bacteria, such as S. aureus and P. aeruginosa,
successfully achieving targeted release of chlorhexidine (CHX)
in bacterial biofilms. This method not only further increased
permeability of CHX (71%) but also promoted maximum
reduction in biofilm biomass (>60%).

In addition to enzyme-responsive nanoplatform,
nanomaterials can be designed to trigger antibiotic release of
antibiotics after exposure to bacterial toxins. For example,
Pornpattananangkul et al. (2011) fabricated bacterial
toxin–responsive AuNP-stabilized phospholipid liposomes
(AuChi liposomes). Chitosan-functionalized AuNPs were
adsorbed on the liposomal surfaces to provide stability and
prevent undesirable antibiotic leakage. In the presence of
α-toxin secreted by S. aureus, AuChi liposomes released
vancomycin that effectively inhibited their growth.

IMMUNOREGULATION EFFECT OF
NANOMATERIALS

Macrophages are immune cells of plasticity and heterogeneity
that are essential regulators of the host defense in humans (Taylor
et al., 2005). Macrophages in the resting state (M0) can respond to
various local microenvironments and differentiate into two kinds
of activated states of macrophages: pro-inflammatory (M1) or
anti-inflammatory (M2), which is defined as macrophage
polarization (Mills et al., 2000). Polarized macrophages
perform different roles in immunoregulation, inflammation,
tissue remodeling, proliferation, and metabolism. Among
them, M1 macrophages are key effector cells against
intracellular pathogens (Hill et al., 2014; Zanganeh et al.,
2016), while M2 macrophages can promote tissue remodeling
(Biswas et al., 2012).

Nanomaterials, as a stimulant, can promote the initiation of
macrophages to different polarization states in the
microenvironment (Lucarelli et al., 2004; Bartneck et al., 2012;
Laskar et al., 2013; Fuchs et al., 2016). Available data suggest that
the ability of nanomaterials to regulate M1 polarization is
influenced by their physicochemical properties, such as
chemical composition, size, and surface coatings (Lucarelli
et al., 2004; Yen et al., 2010; Tran et al., 2015).

For instance, metal NPs such as Au NPs and Ag NPs can
directly induce M1 polarization, but Au NPs have a greater effect
than AgNPs in inducingM1 polarization (Yen et al., 2010). Other
studies have shown that the pro-inflammatory effects of Ag, TiO2,
and ZnO NPS in RAW264.7 macrophages are related to their
doses in ultralow concentration (Miao et al., 2017). Besides,

compared with the inert ceramic NPs (such as TiO2 NPs and
ZrO2 NPs), SiO2 NPs are more likely to stimulate primary
macrophages toward a pro-inflammatory M1 subtype
(Lucarelli et al., 2004).

Graphene oxide (GO) NPs, in a size-dependent manner,
induced macrophages to polarize the M1 phenotype (Ma et al.,
2015), with large GO nanosheets inducing a higher production of
inflammatory cytokines than smaller ones. However, it was
reported that for most metallic NPs (Ag, Al, and Au NP),
smaller size NPs have greater effects in inducing M1
macrophage polarization than their larger counterparts (Yen
et al., 2010; Nishanth et al., 2011).

Surface modifications of bioactive peptides regulate
macrophages toward contrasting polarization states. Au
nanorod–modified glycine–leucine–phenylalanine (GLF) is
more pro-inflammatory than arginine–glycine–aspartic acid
(RGD) Au nanorods, directing isolated hepatic macrophages
to the M1 subtype (Bartneck et al., 2012).

In addition, when stimuli change, M1 macrophages can be re-
educated into the M2 phenotype, and vice versa. This process is
referred to as macrophage reprogramming or repolarization (Jain
et al., 2015; Lee et al., 2016). Superparamagnetic iron-oxide
nanoparticles (SPIONs) could shift macrophages from the M2
to M1, by changing the cellular iron concentration. Glycocalyx-
mimicking NPs (glycol-NPs) were observed to reverse the M2
phenotype, skewing the mouse peritoneal macrophage–derived
M2 phenotype into an M1 phenotype (Su et al., 2015).
Polystyrene NPs with surface carboxyl and amino groups
could strongly skew the M2 macrophage polarization without
affecting M1 markers (Fuchs et al., 2016).

CHALLENGES AND PROSPECTS

Nanomaterials have numerous advantageous features in the
biomedical field that promise in addressing the key hurdles in
treating biofilm infection . Regrettably, there are still challenges
that need to be resolved urgently to be translated to clinical
application.

Chemists have probably created a number of nanotechnology-
based antimicrobials that promise to face the tricky infectious
biofilms. However, partly driven by the motivation of researchers
to write high-impact articles, few of them are translated to the
bedside for the benefit of patients (Liu et al., 2019). As a
consequence, how to achieve commercialization and clinical
application with low cost and high efficiency will be the
primary problem faced by the antibacterial nanomaterials.

In addition, considering in vivo conditions, such as blood and
host immune components, tissue cells, and interactions between
bacteria and antibiotics, the results obtained from in vitro
experiments are difficult to be applied directly in vivo
(Mahmoudi et al., 2009; Mahmoudi et al., 2010). Even if some
experiments have been carried out related to animal research and
achieved relatively satisfactory results, whether the results of
animal experiments can be replicated in humans has to be
identified, due to the physiological differences between human
and animals. And in clinical microbiology, statistically significant
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differences of 2–10 or even 100 times are meaningless (Liu et al.,
2019). The clinical significance begins with a reduction of at least
3 to 4 logarithms of the viable count (representing a 99.9 and
99.99% decrease, respectively), while in the field of the
development of new antimicrobial strategies based on
nanotechnology, many articles report statistically significant
reductions of less than 1 logarithmic unit, or only 90%
(Nguyen et al., 2016), which is microbiologically insignificant.
It cannot be used as a primary parameter to represent clinical
benefits, which are defined by the proportion of patients cured by
a new drug compared with existing treatment and costs.

Intravenous nanomaterials have been shown to accumulate in
the colon, lung, bone marrow, liver, spleen, and lymph nodes
(Hagens et al., 2007), while inhaled nanomaterials can be
efficiently absorbed by epithelial and endothelial cells entering
the blood and lymphatic circulation to reach the lungs, liver,
heart, spleen, and other organs (Rabea et al., 2003; Poma and Di
Giorgio, 2008). Currently, the potential toxicity of antibiotic
nanoparticles to human health is poorly understood, although
many studies have suggested that therapeutic nanoparticles may
produce multiple organ toxicity (Poma and Di Giorgio, 2008).
For example, free radical–mediated oxidative stress resulting
from the interaction of antimicrobial nanoparticles with cells
may lead to hepatotoxicity and pulmonary toxicity (De Jong and
Borm, 2008; Lei et al., 2008). Various metabolic changes indicate
mitochondrial failure, enhanced ketone production, fatty acid
β-oxidation, and glycolysis, leading to hepatotoxicity and
nephrotoxicity (Lei et al., 2008). Antibacterial nanoparticles
also have interaction with the central nervous system, but
their toxicity is unknown (Hu and Gao, 2010). In addition,
certain classes of NP can affect the reproductive system by
increasing sperm epithelial separation and possible sperm
toxicity (Komatsu et al., 2008; Yoshida et al., 2010).
Nanoparticles may degrade metabolism and excrete through
renal/fecal matter (Corot et al., 2006), for example, iron oxide
nanoparticles, whereas the body does not possess mechanisms to
process heavier elements and some nanoparticles (Naha et al.,
2016), such as gold. A profound knowledge of nanomaterials’
potential toxicity is needed, including a comprehensive
assessment of the interactions with cells, tissues, and organs in

order to recalibrate doses, determine appropriate routes of
administration, and develop relevant test criteria to achieve the
desired clinical translation (Suri et al., 2007; Sandhiya et al., 2009).

CONCLUSION

In short, nanomaterials are promising delivery vehicles and can
themselves act as antimicrobial agents, whose ability to penetrate
biofilms also holds promise as a treatment for particularly hard-
to-treat infections. However, there is still a long way to go before
successful clinical translation, which requires the joint efforts of
multiple disciplines.
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