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Abstract: The pathogenic mechanisms causing type 2 diabetes (T2D) are still poorly understood;
a greater awareness of its causation can lead to the development of newer and better antidiabetic
drugs. In this study, we used a network-based approach to assess the cellular processes associated
with protein–protein interaction subnetworks of glycemic traits—HOMA-β and HOMA-IR. Their
subnetworks were further analyzed in terms of their overlap with the differentially expressed genes
(DEGs) in pancreatic, muscle, and adipose tissue in diabetics. We found several DEGs in these tissues
showing an overlap with the HOMA-β subnetwork, suggesting a role of these tissues in β-cell failure.
Many genes in the HOMA-IR subnetwork too showed an overlap with the HOMA-β subnetwork.
For understanding the functional theme of these subnetworks, a pathway-to-pathway complementary
network analysis was done, which identified various adipose biology-related pathways, containing
genes involved in both insulin secretion and action. In conclusion, network analysis of genes
showing an association between T2D and its intermediate phenotypic traits suggests their potential
role in beta cell failure. These genes enriched the adipo-centric pathways and were expressed in
both pancreatic and adipose tissue and, the refore, might be one of the potential targets for future
antidiabetic treatment.

Keywords: type 2 diabetes; HOMA-β; HOMA-IR; genenetworks

1. Introduction

The current epidemic of diabetes presents a challenge to the global healthcare system. It has been
speculated that by 2045 over 629 million people will have diabetes [1], and as per the International
Diabetes Federation, type 2 diabetes (T2D) would account for over 90% of these patients. This alarming
situation can be attributed to our inadequate understanding of the diverse pathogenic processes involved
at the molecular level that converge into two well-defined intermediate glycemic traits—impaired
insulin secretion by the pancreatic beta cells and insulin resistance in peripheral tissues. Understanding
these underlying mechanisms wouldhugely benefit in the designing of better antidiabetic agents to treat
T2D and its associated micro-vascular (nephropathy, neuropathy, and retinopathy) and macro-vascular
(atherosclerosis and cardiovascular) complications.

The etiology of T2D is complex; here, a large number of susceptibility genes in varying combinations
conspire with environmental factors to give rise to the final pathophysiological pathways of insulin
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resistance and secretion defects. Even though several hundred susceptibility loci for T2D have been
identified using genome-wide association studies (GWAS), the y account for only about 20%–30% of
the heritability of T2D, with the remaining “missing heritability” being attributed to rare or small effect
variants, epistasis, gene–environment interaction epigenetic changes, etc. [2].

However, the utility of GWAS in the functional interpretation of T2D pathogenesis is still debatable
because a fraction of the identified genetic loci is limited to the geographical and ethnic background of
participants. Furthermore, a majority of them did not clearly converge on the functional categories
consistent with known aspects of T2D pathophysiology, i.e., impaired insulin secretion and insulin
resistance in peripheral tissues—the two hallmark glycemic intermediate traits of T2D.

These intermediate traits should be expected to show less locus heterogeneity and epistasis than
the disease-associated loci themselves and investigations focusing on the functional aspects of these
loci could shed some light on the underlying molecular pathophysiological processes of T2D in a
better way. Additionally, to understand the genome-to-phenome mechanism in T2D, integrating
GWAS results with genome-wide transcriptome profiles in the pancreas and other insulin-responsive
tissues can also prove valuable, as the differentially expressed genes (DEGs) identified in these tissues
between non-diabetics and diabetics could possibly lead to identification of the underlying fundamental
biological process—perhaps beyond the genetic differences between individuals, thus circumventing
the limitation of GWAS.

Previously we have used a systems biology approach to unravel genome-to-phenome correlation
in T2D in Asian Indians [3]. We found that the physical and genetic interaction networks of the
GWAS genes showed robust enrichment of insulin signaling and other T2D pathophysiology-related
pathways, including insulin secretion. Additionally, we generated genome-wide expression profiles of
adipose tissue from non-diabetic and diabetic patients. Remarkably, the differentially expressed genes
showed a significant overlap with the network genes with the intersection showing enrichment of
insulin signaling and other pathways consistent with T2D pathophysiology. Therefore, studying the
overlap between networks of GWAS-identified genes and DEGs in disease-related tissues could shed
some light on the underlying molecular mechanisms and genome-to-phenome correlation in diabetes.

Recently, to disseminate and analyze T2D-linked human genetic information and to accelerate
the development of new therapies, a knowledge portal (http://www.type2diabetesgenetics.org/) has
been established by National Institute of Health, USA. It lists a total of one hundred and thirty-two
T2D-effectors genes, which were computationally predicted by synthesizing multiple genetic, regulatory,
and perturbational evidences in support of their role in T2D pathophysiology (see Supplementary
Table S1). Therefore, the y can be considered as high confidence seed T2D genes. This portal also
contains GWAS data on associations between genetic variants and glycemic traits, such as fasting
glucose, Hb1Ac, Two Hour Glucose, Fasting Insulin, Insulin Sensitivity, HOMA-IR, HOMA-β, and
OGTT. We selected HOMA-IR and HOMA-β [4] as measures of insulin resistance and insulin secretion,
respectively, due to the availability of large sets of GWAS data on these traits, comprising over 46,186
non-diabetic participants [5].

Our proposed hypothesis is that the genes showing an association with these intermediate
phenotypic traits should be involved in overall glucose homeostasis and if we locate these genes
in a T2D-specific protein–protein interaction network they might show overlap with DEGs in
diabetes-related tissues like pancreas, muscle, and adipose. We also hypothesize that a functional
analysis of the subnetworks associated with these genes could help understand the molecular
mechanisms underlying insulin resistance and unraveling genome-to-phenome correlation in T2D
subjects. As it is ethically not possible to simultaneously do GWAS for T2D and its intermediate
phenotypic traits and transcription profiling of related tissues in a single experiment, in silicoanalysis
of the available information in databases could be an alternative for such studies; however, it demands
experimental validation.

Therefore, in the present study, we attempted to further the insight into the molecular
pathophysiology of T2D by (1) integrating “predicted T2D-effectors” with genes associated with
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HOMA-IR and HOMA-β using a network-based approach; (2) analyzing the HOMA-β and HOMA-IR
subnetworks to identify the percentage of overlapping genes with DEGs in diabetes-related tissues to
unravel the relative contribution of these organs in the overall T2D pathophysiology in terms of its
intermediate phenotypic traits (HOMA-β/IR); and (3) functional analysis of these networks to identify
pathogenic mechanisms leading to T2D.

2. Materials and Methods

We obtained one hundred and thirty-two predicted T2D-effector genes from the T2D knowledge
portal. A T2D-intractome was then constructed in cytoscape [6] taking these effector genes as seed
nodes along with their first-degree neighbors from a high confidence human protein–protein network
obtained from ConsensusPathDB and StringDB using the PhenomeScapeapp [7].

Summary-level GWAS meta-analysis results for HOMA-β and HOMA-IR were also retrieved
from the T2D Knowledge portal and p-values associated with each genetic variant were converted to
gene-based empirical association p-values using Versatile Gene-based Association Study 2 (VEGAS2) [8],
which is available online (https://vegas2.qimrberghofer.edu.au/).

To locate subnetworks or modules associated with insulin secretion and insulin signaling-related
cellular processes, we mapped the HOMA-β and HOMA-IR-associated genes (p < 0.05) on the
T2D-interactome and then used the Cytoscape app—jActiveModules [9]—to search for individual
subnetworks for HOMA-β and HOMA-IR genes by taking gene-level p-values as numerical
node attributes.

We also obtained a list of DEGs from the Type 2 Diabetes Mellitus Associated Complex Disorders
(T2DiACoD) portal (http://t2diacod.igib.res.in/) [10] for pancreas and insulin-responsive tissues:adipose
and muscle from the Normal Glucose Tolerant (NGT) vs. T2D microarray studies(see Supplementary
Table S2). As each tissue had three microarray studies, composite DEGs were obtained by compiling
DEGs obtained from each study. We then calculated the percentage of composite DEGs that were
also associated with glycemic traits to look for the relative contribution of each tissue in diabetes
pathophysiology. Further, the DEGs associated with the HOMA-β trait in each tissue were also
analyzed for their functional enrichment of KEGG pathways using WebGestalt (WEB-based Gene
SeTAnaLysis Toolkit) [11].

To assess the functionality of proteins in these subnetworks, we used theEnrichR method [12]
for pathway enrichment analysis against the KEGG database [13] through PathwayConnector
(http://bioinformatics.cing.ac.cy/PathwayConnector/) [14], which provides functionality to construct
complementary pathway-to-pathway networks and subnetworks based on a reference KEGG pathway
network. These pathway subnetworks were then explored in the light of existing literature to underpin
the pathogenesis of type 2 diabetes.

3. Results

A T2D interactome of 2222 proteins was constructed for the T2D-effector genes (proteins). VEGAS2
provides 8135 genes associated with HOMA-βand 299 genes associated with HOMA-IR GWAS-variants,
each with an empirical p-value < 0.05 (see Supplementary Table S3). This large difference in the
number of genes between HOMA-β and HOMA-IR strengthens the hypothesis that defects in insulin
secretion are caused by a large number of genes and may have a large genetic component, while insulin
resistance may largely be induced by environmental factors [15].

A total of 1360 HOMA-β-associated genes overlapped with the T2D interactome showing that
almost 61% of the network nodes are functionally associated with the insulin secretion-related trait of
T2D, while only 24 HOMA-IR (∼8%) genes were mapped to the T2D interactome network. Out of these
24 HOMA-IR genes, 20 genes (ACVRL1, AGTRAP, ATRNL1, CD44, CDKN1A, DAG1, GRB10, INADL,
IRS1, MAD2L2, PLCG2, PTEN, RHOA, SIRT1, SNAP25, SNCA, TET2, TGM2, WWOX, and ZMIZ1) were
common between both the traits. In other words, barring the genes shared with HOMA-β, most of the
HOMA-IR-associated genes showed no association with the T2DM trait.

https://vegas2.qimrberghofer.edu.au/
http://t2diacod.igib.res.in/
http://bioinformatics.cing.ac.cy/PathwayConnector/
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Due to the central role of the pancreas in diabetes pathology, we compared the list of 295 DEGs
obtained from the pancreatic transcriptomic analysis from T2DiACoD with that of adipose (253 DEGs)
and skeletal tissues (275 DEGs). Adipose tissue shared 119 (53.45%) and skeletal tissue shared 147 DEGs
(34.8%) with those in pancreas. A total of 62 DEGs were common across all the tissues.

We also calculated the percentage overlaps of these DEGs with the HOMA-IR- and
HOMA-β-associated T2D-interacotme genes (Table 1) and found that approximately 20%–25% of these
DEGs overlapped with the HOMA-β-associated network. A total of 16 common DEGs across all the
three tissues were found to be associated with the HOMA-βtrait in our T2D-interactome (CDKAL1,
ACVRL1, APOE, SYVN1, SPP1, SCARB1, CNDP2, DNMT1, SRC, TRIB3, EGFR, MAPK14, ATP2A2,
IGFBP5, D1, and PRKAA1). Interestingly, 13 of these genes already have been reported in diabetes
or its related phenotypes in the DisGeNET database [16] and therefore validated our network-based
bioinformatics approach (Figure 1).

Figure 1. Association of thirteen common HOMA-β differentially expressed genes (DEGs) with diabetes
or its related phenotypes.

Due to their differential regulation in T2D-associated tissues along with their association with
insulin secretion-related traits, our insilico analysis points towards a major role of these genes in
diabetes pathophysiology, with high confidence.

Table 1. DEGs in various tissues and their overlap with HOMA-βand HOMA-IR GWAS genes.

S. No. Tissue # of DEGs Obtained
(p < 0.05)

Overlap with
HOMA-β

Overlap with
HOMA-IR

1 Pancreas 295 74 (~25%) 7

2 Skeletal 275 63 (~22.7%) 4

3 Adipose 253 55 (~21.7%) 3

We also did a functional enrichment analysis of DEGs in pancreatic, skeletal, and adipose
tissue showing overlap with the HOMA-β-associated genes, and found that they enriched theInsulin
Signaling and Insulin Resistance pathways in skeletal muscles and adipose tissues (see Supplementary
Table S4). Adipose tissue also enriched theAdipocytokine signaling pathway, pointing towards the role
of adipose tissue in insulin secretion defects of diabetes measured as HOMA-β. Besides, pancreatic
DEGs also enriched Cholesterol metabolism,whichfurther substantiates the adipocentric origin of the
overall pathology.

Subnetwork analysis of genes showing association with HOMA-IR and HOMA-β in GWAS
and overlap with the interactome of the T2D-associated genes was also done. The jActiveModules
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constructed five subnetworks for each of these traits. For functional analyses, a HOMA-β network of
291 nodes containing a maximum 245 mapped genes and a HOMA-IR network of 32 nodes with 18
mapped genes was selected for functional analysis.

EnrichR primarily enriched 144 KEGG pathways, including various diabetes-related pathways
(Insulin signaling pathway, Type II diabetes mellitus, AGE-RAGE signaling pathway in diabetic complications,
Insulin resistance, Maturity onset diabetes of the young, and Insulin secretion) with extremely significant
p-values. The top 15 pathways, including two T2D-related pathways—Insulin signaling pathway
(Rank 7) and Type 2 diabetes mellitus (Rank 12)—were selected for subsequent complementary
pathway-to-pathway network analysis. This post-pathway analysis connected these pathways with 13
other complementary pathways and improved the rank of Type2 diabetes mellitus pathway from 12 to 2
(Table 2; Figure 2).

Table 2. PathwayConnector—complementary pathway networks enriched by the HOMA-β network.

S.
N

o

Pathway p Value Common
Pathways

Common
Genes

Genes
Found

Pathway
Ratio Rank

1 Adherens junction 4.61653 × 10−26 7/4246 19/72 19/291 1.649 × 10−3 3
2 Type II diabetes mellitus 1.22599 × 10−13 5/4246 13/46 13/291 1.178 × 10−3 12
3 Chronic myeloid leukemic 1.35055 × 10−17 8/4246 18/76 18/291 1.884 × 10−3 4
4 Pathways in cancer 4.61653 × 10−26 23/4246 52/526 52/291 5.417 × 10−3 1
5 ErbB signaling pathway 7.28619 × 10−15 10/4246 17/85 17/291 2.355 × 10−3 10

6 Bacterial invasion of
epithelial cells 3.71078 × 10−13 7/4246 15/74 15/291 1.649 × 10−3 15

7 Proteoglycans in cancer 1.21687 × 10−21 14/4246 30/201 30/291 3.297 × 10−3 2

8 Neurotrophin signaling
pathway 4.91599 × 10−17 6/4246 21/119 21/291 1.413 × 10−3 5

9 Pancreatic cancer 5.48038 × 10−13 10/4246 14/75 14/291 2.355 × 10−3 16
10 Colorectal cancer 2.16852 × 10−13 7/4246 19/72 19/291 1.649 × 10−3 3
11 Insulin signaling pathway 1.09957 × 10−15 5/4246 13/46 13/291 1.178 × 10−3 12
12 Focal adhesion 2.55996 × 10−15 8/4246 18/76 18/291 1.884 × 10−3 4
13 Hepatitis B 2.3797 × 10−16 23/4246 52/526 52/291 5.417 × 10−3 1

14 Human T-cell leukemic virus
1 infection 9.37 × 10−15 10/4246 17/85 17/291 2.355 × 10−3 10

15 Rap1 signaling pathway 6.90707 × 10−15 7/4246 15/74 15/291 1.649 × 10−3 15

16 EGFR tyrosine kinase
inhibitor resistance - 14/4246 30/201 30/291 3.297 × 10−3 New

17 Ras signaling pathway 3.086743 × 10−13 6/4246 21/119 21/291 1.413 × 10−3 5
18 Non-small cell lung cancer 1.41 × 10−6 10/4246 14/75 14/291 2.355 × 10−3 16
19 Endometrial cancer 7.88 × 10−7 10/4246 15/86 15/291 2.355 × 10−3 13
20 MAPK signaling pathway 1.13 × 10−9 7/4246 21/137 21/291 1.649 × 10−3 7

21 Adipocytokine signaling
pathway 7.72 × 10−7 9/4246 24/199 24/291 2.120 × 10−3 8

22 PI3K-Akt signaling pathway 6.34 × 10−9 11/4246 21/163 21/291 2.591 × 10−3 6
23 Apoptosis 1.38 × 10−7 12/4246 25/219 25/291 2.826 × 10−3 11
24 Cell cycle 2.02 × 10−6 9/4246 24/206 24/291 2.120 × 10−3 9
25 Platinum drug resistance - 10/4246 12/79 12/291 2.355 × 10−3 New

26 Non-alcoholic fatty liver
disease (NAFLD) 1.36 × 10−5 9/4246 24/232 24/291 2.120 × 10−3 14

27 Bladder cancer 2.91 × 10−3 8/4246 10/66 10/291 1.884 × 10−3 69
28 mTOR signaling pathway 2.33 × 10−4 9/4246 8/58 8/291 2.120 × 10−3 64
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Figure 2. Pathway-to-pathway network enriched by the HOMA-β sub network.

Some of these pathways have already been implicated in T2D pathophysiology viz. theMAPK
signaling pathway, PI3K-Akt signaling pathway, mTOR signaling pathway, and Adipocytokine signaling
pathway. Pathways related to cancer in various organs and bacterial/viral infections were also observed
along with two new anti-cancer drug metabolic pathways—EGFR tyrosine kinase inhibitor resistance and
Platinum drug resistance.

To understand the functional theme of T2D, PathwayConnector also provides a sub-grouping
of complementary pathway-to-pathway networks using a community structure detection algorithm,
which provided three well-defined clusters.

Three pathways—Non-alcoholic fatty liver disease (NAFLD), Type 2 Diabetes Mellitus, and Adipocytokine
signaling, were clustered together, pointing towards the adipo-centric origin of both morbidities.
The prevalence of NAFLD in patients with T2D is high [17]. Failure to store extra fat in the adipose
tissue leads to its ectopic deposition in the liver with concurrent development of insulin resistance in
peripheral tissues. A low circulating blood level of adiponectin—an adipocytokine, which has both
hepatoprotective as well as anti-inflammatory activity—has been reported in NAFLD and T2D [18].

The second cluster constitutes various cell signaling pathways with reported involvement in
T2D pathophysiology. Most of the metabolic effects of insulin signaling are mediated by the PI3K-Akt
signaling pathway; its activation leads to the disposal of blood glucose into insulin-sensitive tissues
(through promoting translocation of glucose transporter GLUT2/4), suppression of hepatic glucose
production, andreduction in circulating free fatty acids (FFA), by promoting their deposition in adipose
depots. Excess energy consumption has been reported to cause an imbalance in this pathway, leading to
a T2D pathogenic cascade as follows: increased adipose tissue lipolysis, increase in FFA concentration,
and impaired insulin signaling and consequent development of T2D [19]. This pathway is also one of
the most frequently dysregulated signaling pathway in human cancers; this dysregulation has largely
been attributed to the inactivation of the functionof a tumor suppressor gene Phosphatase and tensin
homolog (PTEN), which is a negative regulator of the PI3K pathway and is associated with its increased
activity resulting in various human cancers as also reflected by our complement pathway analysis.

Another enriched pathway mTOR signaling pathway is also connected with PI3K-Akt signaling and
plays a key role in regulating glucose and lipid metabolism besides cell growth. The mTOR/receptor
complex is activated by Akt and phosphorylase S6 Kinase, which has been reported to cause insulin
resistance by serine phosphorylation of insulin receptor substrate-1 (IRS-1), eventually disrupting
PI3K-Akt signaling [20].
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The Mitogen-activated protein kinases (MAPK) signaling pathway is another major signaling pathway
that affects insulin signaling via another enriched pathway the Ras signaling pathway and mediates
the anabolic effects of insulin signaling, such as cell growth and differentiation. MAPKs, mainly
extracellular signal-regulated kinase (ERK),are involved in the proliferation and differentiation of
adipocytes. It has been reported that a high-fat diet induced hypertrophy in 3T-3L adipocyte cells,
disturbing the normal physiological role of theMAPK signaling pathway and leading to enhanced
lipolysis and insulin resistance in adipose tissue. Pharmacological inhibition of these kinases may
provide a potential new strategy for the treatment of insulin resistance and type 2 diabetes [21].

We also investigated two new pathways—EGFR tyrosine kinase inhibitor resistance and Platinum
drug resistance—in the third cluster amongst various cancer-related pathways.

Inflammation in adipose tissue, i.e., “adiposopathy”, has been regarded as the main pathogenic
pathway that leads to insulin resistance in peripheral tissues and subsequent development of T2D; it is
characterized by infiltration of macrophages in adipose depots and is attributed to epidermal growth
factor receptor (EGFR)-mediated chemotaxis and proliferation of monocytes and macrophages. It has
been reported that EGFR tyrosine kinase inhibitors improve glucose tolerance and insulin action in
high-fatdiet-fed mice [22]; therefore, the se agents can be used as an effective antidiabetic therapy.

Another drug pathway—Platinum drug resistance—further underlies the pharmacological potential
of PPARγ agonists as antidiabetic agents as these drugs also exert their anticancer affect by acting
as PPARγ agonists [23] similar to the thiazolindinedione classes of antidiabetics [24]. PPARγ is a
transcription factor that functions as a master regulator of fat development in the body.

For the insulin resistance module of 32 genes, EnrichR enriched 136 KEGG pathways and further
connected the top 15 pathways with 12 complementary pathways, including two new pathways—Fluid
shear stress and atherosclerosis and EGFR tyrosine kinase inhibitor resistance (Table 3).

Table 3. PathwayConnector—complementary pathway networks by HOMA-IR interactome.

S.
N

o

Pathway p Value Common
Pathways

Common
Genes

Genes
Found

Pathway
Ratio Rank

1 Proteoglycans in cancer 4.932838 × 10−13 14/4246 10/201 10/32 3.297 × 10−3 1

2 Glioma 8.665005 × 10−12 8/4246 7/75 7/32 1.884 × 10−3 2

3 Pathways in cancer 1.556996 × 10−7 23/4246 9/526 9/32 5.417 × 10−3 10

4 MicroRNAs in cancer 1.661089 × 10−8 7/4246 8/299 8/32 1.649 × 10−3 5

5 FoxO signaling pathway 1.437119 × 10− 9 13/4246 7/132 7/32 3.062 × 10−3 3

6 mTOR signaling pathway 2.470845 × 10−6 8/4246 7/153 7/32 1.884 × 10−3 18

7 HIF-1 signaling pathway 1.30885 × 10−8 9/4246 6/100 6/32 2.120 × 10−3 4

8 PI3K-Akt signaling pathway 9.186771 × 10−7 17/4246 7/354 7/32 4.004 × 10−3 14

9 Neurotrophin signaling
pathway 3.280781 × 10−8 6/4246 6/119 6/32 1.413 × 10−3 6

10 Longevity regulating
pathway 3.751219 × 10−7 8/4246 5/62 5/32 1.884 × 10−3 7

11 Melanoma 9.131152 × 10−8 7/4246 5/72 5/32 1.649 × 10−13 8

12 Bacterial invasion of
epithelial cells 1.468947 × 10−7 7/4246 5/74 5/32 1.649 × 10−3 9

13 EGFR tyrosine kinase
inhibitor resistance - 10/4246 5/79 5/32 2.355 × 10−3 new

14 Focal adhesion 7.174111 × 10−7 9/4246 6/199 6/32 2.120 × 10−3 13
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Table 3. Cont.
S.

N
o

Pathway p Value Common
Pathways

Common
Genes

Genes
Found

Pathway
Ratio Rank

15 Longevity regulating
pathway 5.389533 × 10−8 9/4246 5/89 5/32 2.120 × 10−3 12

16 Prostate cancer 2.852625 × 10−7 9/4246 5/97 5/32 2.120 × 10−3 11

17 Leukocyte transendothelial
migration 1.163798 × 10−6 3/4246 5/112 5/32 7.065 × 10−4 15

18 ErbB signaling pathway 1.1 × 10−5 10/4246 4/85 4/32 2.355 × 10−3 20

19 Small cell lung cancer 0.000348 7/4246 4/93 4/32 1.649 × 10−3 37

20 Non-small cell lung cancer 0.003619 8/4246 3/66 3/32 1.884 × 10−3 57

21 MAPK signaling pathway 0.062537 7/4246 4/295 4/32 1.649 × 10−3 96

22 p53 signaling pathway 0.000181 4/4246 3/72 3/32 9.421 × 10−4 31

23 Colorectal cancer 0.004417 10/4246 3/86 3/32 2.355 × 10−3 61

24 Fluid shear stress and
atherosclerosis 9/4246 3/139 3/32 2.120 × 10−3 new

25 Cell cycle 0.016751 4/4246 2/124 2/32 9.421 × 10−4 81

26 Apoptosis 0.021037 9/4246 2/136 2/32 2.120 × 10−3 87

27 Chemokine signaling
pathway 0.035898 7/4246 2/190 2/32 1.649 × 10−3 94

Inflammation related pathways—Leukocyte trans-endothelial migration and Chemokine signaling
pathway—strongly suggest that these are indeed the primary events taking place in the adipose tissue
and are involved in the genesis of type 2 diabetes.

Some metabolic pathways—FoxO signaling pathway, mTOR signaling pathway, HIF-1 signaling
pathway, PI3K-Akt signaling pathway, ErbB signaling pathway, MAPK signaling pathway, and p53 signaling
pathway—were also found to be enriched.

The FoxO signaling pathway is mediated by transcription factor FOXO that stimulates the
transcription of the genes that inhibit cell proliferation or induce cell death. The PI3K-Akt signaling
pathway promotes cell proliferation and survival by inactivating FOXO. The HIF-1 signaling pathway is
mediated by hypoxia-inducible factor-a transcription factor, whose high level due to obesity-induced
hypoxic condition in adipose tissue may give rise to inflammation in these depots [25]. The p53 signaling
pathway is associated with DNA damage, which might be the result of oxidative stress in adipocytes due
to increased lipolysis in diabetic conditions [26]. The ErbB signaling pathway has also been reported to
cause diabetes-associated micro- and macro-vascular complications due to its increased activation [27].

4. Discussion

Understanding the molecular pathogenesis of complex diseases, such as type 2 diabetes,
cardiovascular complications, Alzheimer’s, Parkinson’s, and various types of cancers, is challenging,
hindering the development of an effective treatment. Assessment of disease-related intermediate
phenotypic traits is therefore an important initial step towards any systematic genomic study [28].
In the present study, we hypothesized that genes significantly associated with the intermediate glycemic
traits HOMA-IR and HOMA-β would likely help in identifying subnetworks of T2D protein–protein
networks that may be targeted for understanding the pathogenic mechanisms leading to the disease,
and also provide a clue for potential drug targets for pharmacological interventions. To the best of our
knowledge, no published reports in the English literature have attempted studying the overlap between
the networks associated with diabetes and its intermediate phenotypic traits. It is hypothesized that
the molecular network shared by diabetes and its intermediate phenotypic traits is worthy to be called
the most fundamental molecular network of diabetes. If the genes in this network are differentially
expressed in any specific organs, this would further point towards the molecular pathology of diabetes.
However, pathway-based analysis for deciphering the molecular mechanism of complex diseases is not
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a trivial task since the functional linkage of various human pathways is still unexplored, and it poses a
problem in relating these pathways with disease phenotype. We therefore used a novel method that
was implemented in PathwayConnector for the construction of pathway-to-pathway complementary
networks. It facilitated us to interpret the functional theme in an unbiased and systematic way.

In this study we found a 61% overlap between the diabetes network and HOMA-β network,
whereas this overlap was less than 2% for the HOMA-IR network. Despite this limitation, our findings
are consistent with the already established fact that diabetes susceptibility genes play a major role in the
impairment of pancreatic beta cell function, while insulin resistance is predominantly contributed by
the environmental factors [15]. However, two additional findings of this study need to be highlighted.
Firstly, on functional analysis, the HOMA-β network genes overlapping T2D interactome encompasses
both the insulin secretion-related pathways as well as molecular pathways related to insulin signaling
and fat metabolism, which also included some of the pathways otherwise responsible for adipose
tissue dysfunction underlying diabetes and metabolic syndrome. Secondly, 80% of the genes in the
HOMA-IR network overlapping with the T2D interactome were also overlapped with genes in the
HOMA-β network. In other words, some of the genes associated with intermediate traits of insulin
secretion (HOMA-β) and action (HOMA-IR) overlapped with each other. This association of the
HOMA-β-associated gene network with insulin action and adipose tissue dysfunction was further
supported by the finding that significant overlap between these genes and the differentially expressed
genes in pancreas, adipose, and skeletal tissue in diabetics occurred.

Interestingly, the re was also a significant overlap between the DEGs in these three tissues.
Therefore, this bioinformatic analysis points towards a common underlying molecular mechanism for
insulin resistance and secretion defects, which is shared by pancreatic, skeletal, and adipose tissues.
One can assume these genetic mechanisms to be the “core molecular mechanisms” of pathogenesis of
T2D and might be the most specific target for preventive and therapeutic strategies. These findings are
consistent with those of our previous report where we examined the enrichment of pathways in genes
identified in T2D GWAS. We found that some of these genes, specifically those at the lower significance
threshold, showed enrichment of the insulin secretion-related pathway, but the physical and genetic
interaction network of these genes showed robust enrichment of both insulin signaling and insulin
secretion pathways.

The finding of this study, that a functional analysis of the subnetworks encompassing
HOMA-β-associated GWAS signal-harboring genes enriched pathways of especially fat metabolism,
with a central role of adipose tissues, support the “lipotoxicity” theory of beta cell failure in T2D,
where heightened free fatty acid flux results from adipose tissue leads to increased insulin resistance.
Indeed, several studies have demonstrated that obese type 2 diabetic patients presented a disturbed
adipokine profile, which seems to be an important link between adiposity (i.e., insulin resistance),
beta cell dysfunction, and T2D [29,30]. There is pharmacological evidence that drugs like insulin and
thiazolidinediones significantly suppress the free fatty acid flux and improves beta cell functions in
diabetes. Therefore, a genetically determined (as suggested by results of this bioinformatics analysis)
adipo-centric pathway of pancreatic beta cell failure and insulin resistance could prove to be one of
the most important targets for intervention for preventing and treating T2D. Moreover, identification
of circulatory biomarkers of this common “genome-to-phenome pathway” underlying both beta cell
failure and insulin resistance, could help in establishing “adiposopathy” as a clinical entity with the
scope for intervention before beta cell dysfunction begins, as a pre-primary prevention of diabetes.
The findings of this analysis have potential future application in the clinical practice of diabetes in the
sense that diagnosing and treating adipocentric pathophysiological pathways found in this analysis
could help in not only preventing diabetes and metabolic syndrome, but also in the preservation of
pancreatic beta cell reserves. In clinical practice, preservation of beta cell function during most of the
natural history of disease can be expected to be associated with better metabolic control and, the refore,
a reduced burden of both microvascular and macrovascular complications of diabetes. However,
a fundamental limitation of the present analysis is that it is based on literature-derived evidence and
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needs to be proven through actual laboratory experimentations. Furthermore, the GWAS data of
glycemic traits we have used in this analysis tend to be ethnicity specific; however, we attempted
to minimize this effect by integrating this data with relevant transcriptomic and protein–protein
interaction data.

5. Conclusions

We have proposed a generic bioinformatics workflow that can be used with a high confidence
computational gene list as well as a prioritized gene list, generated via high-throughput omics
experiments. Our analysis endorses the adipocentric origin of type 2 diabetes, including beta cell
dysfunction; appreciation of this fact will likely ideate the biomedical scientist to develop therapies
with emphasis on improvement of fat biology in conjugation with maintenance of blood glucose levels.
An adipocentric mechanism of T2D also underscores the significance of lifestyle improvements in
curing metabolic disturbances like T2D, cardiovascular risk, etc.
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