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ABSTRACT
Clinical prediction models include a diagnostic prediction model to estimate the probability of an individual currently
having a disease (e.g., pulmonary embolism) and a prognostic prediction model to estimate the probability of an indi‐
vidual developing a specific health outcome over a specific time period (e.g., myocardial infarction and stroke in
10 years). Clinical prediction models can be developed by applying traditional regression models (e.g., logistic and Cox
regression models) or emerging machine learning models to real-world data, such as electronic health records and
administrative claims data. For derivation, researchers select candidate variables based on a literature review and clini‐
cal knowledge, and predictor variables in the final model based on pre-defined criteria (e.g., thresholds for the size of
relative risk and p-values) or strategies such as the stepwise regression and the least absolute shrinkage and selection
operator (LASSO) regression. For validation, the clinical prediction model’s performance is evaluated in terms of good‐
ness of fit (e.g., R2), discrimination (e.g., area under the receiver operating characteristic curve or c-statistics), and
calibration (e.g., calibration plot and Hosmer-Lemeshow test). Performance of a new variable added to an existing
clinical prediction model is evaluated in terms of reclassification (e.g., net reclassification improvement and integrated
discrimination improvement). The model should be validated using the original data to examine internal validity through
methods such as resampling (e.g., cross-validation and bootstrapping) and using other participants’ data to examine
external validity. For successful implementation of a clinical prediction model in actual clinical practice, presentation
methods such as paper-based (nomogram) or web-based calculator and an easy-to-use risk score should be considered.
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1.  INTRODUCTION

A clinical prediction model, also called as a prediction
rule or risk score, aims to predict a specific health condi‐
tion or disease for each individual [1]. Clinical prediction
models include diagnostic and prognostic prediction
models [2].

Diagnostic prediction models aim to estimate the
probability of an individual currently having a specific
health condition (often a disease) [2], such as pulmonary
embolism (PE). For example, according to the Wells’
criteria for PE [3, 4], a patient who has malignancy on
treatment (1 point), is visiting an emergency department
with clinical signs and symptoms of deep venous

thrombosis (3 points) and hemoptysis (1 point), and has
increased pulse rate of >100/min (1.5 points) is
calculated to have a risk score of 6.5, categorized as being
at “high risk” for PE. Thus, in addition to D-dimer
measurement, this patient should receive more expensive
and invasive examinations, such as contrast-enhanced
computed tomography, ventilation-perfusion lung scan‐
ning, and right heart catheterization, to confirm the diag‐
nosis of PE.

Prognostic prediction models aim to estimate an
individual’s probability of developing a specific health
outcome over a specific time period, such as myocardial
infarction (MI) and stroke. For example, according to the
QRISK-3 risk calculator in UK primary care (https://
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qrisk.org/three/index.php) [5], an individual who is a 55-
year-old white male with type-2 diabetes, is a current
heavy smoker, and is of height 170 cm and weight 70 kg
is estimated to have a 21.1% risk of having MI or stroke
within the next 10 years. Thus, this patient should be
advised to stop smoking and start statins, in line with
guidance from the National Institute for Health and
Care Excellence, which recommends starting statins for
patients with ≥10% risk from the viewpoints of both
benefit-risk balance and cost-effectiveness [6].

As seen in these successful examples, clinical predic‐
tion models are useful to identify people at high risk for a
certain outcome, and to intervene them efficiently. Clini‐
cal prediction models can be developed using routinely
collected clinical data or real-world data. However, to
establish a valid prediction model, researchers need to
account for several knacks and pitfalls. This paper
introduces ways to develop and validate a clinical predic‐
tion model.

2.  PREPARATION OF STUDIED DATA

Similar to any observational study, data obtained from
the study population of interest (e.g., a group of patients
visiting hospitals with a certain condition [3, 4] or the
general population with or without diseases [5]) are
needed to develop and validate a clinical prediction
model. Primary data collection [3, 4] or secondary use of
existing data—such as data from electronic health
records [5], administrative claims [7], registries [8], bio‐
banks [9], and clinical trials [10]—are possible.

2.1 Variables in the Dataset
The dataset needs to contain an outcome variable (also
called a dependent variable) as the reference standard, as
well as predictor variables (also called predictors or
independent variables/parameters/values) for individual
participants. The outcome variable is often a binary
variable (i.e., presence or absence of an outcome) or a
time-to-event outcome (i.e., presence or absence of an
outcome, in addition to the follow-up time until the inci‐
dence of the outcome or end of follow-up); it could also
be a continuous or multi-categorical (nominal or ordinal)
variable. Predictor variables may be continuous or cate‐
gorical. Continuous variables should ideally be kept con‐
tinuous, while applying linear or non-linear (e.g., frac‐
tional polynomial or spline) functions, depending on
their relationship with the outcome. They can be catego‐
rized using cut points based on the model’s predicted
probabilities or risks, although dichotomization of these

variables to optimize p-values is discouraged [11]. As
there might be missing data for some variables, an appro‐
priate strategy to deal with such missing data is needed
during analyses [12]. Missing data and multiple imputa‐
tion were featured in a previous paper in this seminar
series [13].

If the original data source includes a large number of
variables, which may or may not contribute to a clinical
prediction model, researchers may select candidate
variables (i.e., potentially relevant predictors) for model
development based on a literature search of known risk
factors and/or clinical knowledge in the field. For exam‐
ple, to develop the QRISK-3, researchers selected around
20 candidate variables from a large number of variables
recorded in a UK primary care database. These variables
included established risk factors already used in the
previous risk score (QRISK-2 [14]) and new candidate
variables recently highlighted in the literature or guide‐
lines, such as corticosteroid use, severe mental illness,
and diagnosis of HIV/AIDS [5].

2.2 Sample Size Consideration
Sample size consideration is important to develop robust
models. For binary or time-to-event outcomes, a rule of
thumb for the required sample size is to ensure at least 10
events for each predictor parameter [15, 16]. For exam‐
ple, to develop a clinical prediction model consisting of
15 parameters, the dataset should contain at least 150
patients with the outcome of interest. However, experts in
this field suggest the following:

The actual required sample size is context specific
and depends not only on the number of events
relative to the number of candidate predictor
parameters but also on the total number of partici‐
pants, the outcome proportion (incidence) in the
study population, and the expected predictive per‐
formance of the model. [15]

Even when the sample size is already fixed in an
existing dataset, the sample size calculations (using the
pmsampsize package in Stata or R) might help determine
if the sample size is sufficient and how many predictors
can be considered before overfitting becomes a concern
[15].

2.3 Splitting or Resampling the Data for Model Develop-
ment and Validation
Fig. 1 illustrates common patterns of data usage for
model development, internal validation (i.e., examination
of the extent to which the model can perform in the
original study sample), and external validation (i.e.,
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examination of the extent to which the model can per‐
form for other participant data than that used for model
development [1]).
(i) Split-sample method
With a split-sample method, the model or equation is
developed using a part of one dataset as the “derivation”
stage, and its internal validity is evaluated in another part
of the original study sample. The studied dataset is split
randomly into two, one for model development and
another for internal validation, in ratios such as 3:1 [5].
However, the split sample is generally not recommended
for several reasons such as statistical inefficiency and
instability of results in small datasets [11]. A methodo‐
logical study comparing the split-sample and resampling
methods suggested that resampling methods, especially
the bootstrap method, provided more stable estimates
than the split-sample methods [17].
(ii) Resampling method
Resampling methods include (k-fold) cross-validation
and bootstrapping. Cross-validation involves developing
and validating prediction models by dividing the data in
turn and averaging the results. For example, in a five-fold
cross-validation, a prediction model is created using four
of the five data divisions, and the remaining one data
division is used for validation (Fig. 1). This is repeated
five times, and the average of the model estimates (e.g.,

regression coefficients in a regression model) and model
performance (e.g., c-statistic) are presented as the final results.

In the bootstrap method, “bootstrap samples” of the
same size are randomly sampled, with replacements from
the original data many (e.g., more than 100) times.
Models can be developed using bootstrap samples and
validated using the original data or data from people not
included in the bootstrap sample [18]. Resampling
methods are also recommended to increase the statistical
power, because all the data can be used for model
development and validation [15]. Nowadays, packages of
existing statistical software (e.g., Stata or R) have become
more easily available [18].
(iii) Machine learning methods
Recently, machine learning methods, such as support
vector machine (SVM), neural network (NN), and
random forests, have been used increasingly to develop
clinical prediction models [19]. However, caution is
needed as machine learning methods are much more
likely to cause “overfitting” (meaning that a model is
developed to predict the data too well, so that it cannot
be generalized to other data) than traditional regression
models such as logistic regression and Cox regression
models [20]. To avoid overfitting, in machine learning
methods, it is recommended to use two datasets for the
derivation stage alone (Fig. 1): a training set that is used

Fig. 1 Common patterns of data usage for model development, internal validation, and external validation

Note: In the field of machine learning, the derivation (further divided into training and tuning) and validation datasets may be called the “training”
(further divided into “training” and “validation”) and “test” datasets, respectively.
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to learn “parameters” (e.g., support vectors for SVM and
weights for NN) and a tuning set to adjust “hyperpara‐
meters” (e.g., C and sigma hyperparameters for SVM and
learning rate for NN) [20]. Resampling methods may be
preferred over split-sample methods to obtain the train‐
ing and tuning datasets, especially when the derivation
data are small. Notably, in the field of machine learning,
the derivation (further divided into training and tuning)
and validation datasets may be called “training” (further
divided into “training” and “validation”) and “test” data‐
sets, respectively.
(iv) External validation
Ideally, within the same study or as a new study, the
developed model should be validated using other partici‐
pant data than that used for model development [1].
However, the definition of “other participant data” seems
to be inconsistent across studies and among different
researchers. The Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) statement suggests the following:

External validation may use participant data col‐
lected by the same investigators, typically using
the same predictor and outcome definitions and
measurements, but sampled from a later period
(temporal or narrow validation); by other investiga‐
tors in another hospital or country, sometimes using
different definitions and measurements (geographic
or broad validation); in similar participants but
from an intentionally different setting (for example,
model developed in secondary care and assessed in
similar participants but selected from primary care);
or even in other types of participants (for example,
model developed in adults and assessed in children,
or developed for predicting fatal events and assessed
for predicting non-fatal events). [1]

The TRIPOD team also suggests that temporal split‐
ting of the original single dataset (e.g., into data for
financial years 2014–18 and for 2019 [21]) can be consid‐
ered an intermediate stage between internal and external
validation [11]. The original single dataset can also be
split based on study sites for model development and
validation, which may be called “internal-external valida‐
tion” [22]. In a methodological study comparing different
strategies to split samples based on the study site and/or
period, the study results (e.g., c-statistic) were very simi‐
lar regardless of the strategies. However, the study’s
authors still recommend splitting the sample by study site
and period in turn and pooling or meta-analyzing the
results to examine geographic and temporal transporta‐
bility, if possible [23].

3.  DEVELOPMENT OF A CLINICAL PREDICTION MODEL

3.1 Selection of a Regression Model or Machine Learning
Model(s)
For model development, researchers need to select a type
of regression model (equation) or machine learning
model(s) and plan a strategy to select predictors to be
used in the final model. Researches tend to select
common regression models/equations, such as the logis‐
tic regression model [7] and Cox regression model [5],
whereas some researchers compare different models to
suggest the best model in the context of the study [21,
24]. A recent systematic review suggests there is no per‐
formance benefit of machine learning over logistic
regression for clinical prediction models [25]. However,
this may be because many studies included in the sys‐
tematic review used only a limited number and variation
(e.g., binary) of variables. More research is needed to
examine whether the conclusion is the same even if the
number and variation of candidate variables and data
volume are increased.

3.2 Selection of Predictor Variables
There are two main strategies to select predictors in the
final model. The first is to increase model performance as
much as possible. In general, it is expected that a variable
with high prevalence (but not too high, i.e., over 50%) in
the study population and large relative risk on the out‐
come can contribute to increased performance of the
clinical prediction model. Adding such variables is
expected to increase the model performance, as long as
overfitting or multicollinearity (i.e., strong correlations
between the variables, resulting in decreased perform‐
ance of the model) does not occur. If researchers suspect
overfitting or multicollinearity associated with certain
variables, they should compare the performance of
models with and without that variable in the validation
stage to examine which model is better. Generally, over‐
fitting is likely to occur if the total number of predictors
in the model is too large relative to the number of out‐
comes, as well as if a variable is represented too much in
the original study sample, such as patient ID.

Some researchers pre-define their own criteria to select
predictors in the final model. For example, researchers
developing the QRISK-3 planned to retain a variable if it
had an adjusted hazard ratio of less than 0.90 or greater
than 1.10 (for binary variables) and was statistically sig‐
nificant at the 0.01 level [5]. Consequently, among their
candidate variables, HID/AIDS was dropped from the
final model.
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The second strategy is to develop a parsimonious
model with a smaller number of variables, which is more
efficient and easier to use in clinical practice. A tradi‐
tional approach may be a stepwise regression, including
forward selection (meaning that candidate predictors are
added to the regression model one by one), backward
elimination (meaning that candidate predictors are sub‐
tracted one by one from the regression model with all
candidate predictors), or their combination, with some
criteria to retain each predictor, such as the Akaike and
Bayesian information criteria. Another increasingly
popular approach is the least absolute shrinkage and
selection operator (LASSO) regression, which constrains
the sum of the absolute values of regression coefficients
and can effectively exclude predictors from the final
model by shrinking their coefficients to exactly zero [16].

3.3 Presentation of a Clinical Prediction Model
Once the prediction model is developed, researchers
need to consider how to present it. Taking a logistic
regression model as an example, the finally developed
equation would look as follows:

log [p/(1 − p)] = β0 + β1X1 + β2X2 + ... + βkXk,
where p is the probability of having an outcome, X1 to Xk

are all predictors, and β0 to βk are the regression coeffi‐
cients;
⇔ p/(1 − p) = e(β0 + β1X1 + β2X2 + ... + βkXk)

= eβ0eβ1X1 eβ2X2 ... eβkXk,
where eβ1 to eβk correspond to an odds ratio for each pre‐
dictor;
⇔ p = e(β0+β1X1+β2X2+...+βkXk)/[1 + e(β0+β1X1+β2X2+...+βkXk)],

where p falls within a range of 0 to 1 (i.e., 0% to 100%).
Thus, by applying the estimated regression coefficients

and information on each predictor of the individuals
(e.g., 0 for male and 1 for female) to this equation, the
probability of having the outcome (p) can be calculated
for each individual.

However, it is theoretically possible but practically
difficult for clinicians and patients to calculate the proba‐
bility of individuals by identifying and using regression
coefficients presented in a medical article. Therefore,
researchers are expected to present a risk calculator as a
paper-based tool (called a nomogram [26]) or a web-
based tool, such as the QRISK-3 risk calculator (https://
qrisk.org/three/index.php) [5]. Their algorithms and
command programs are also fully open to the public
(https://qrisk.org/three/src.php). Nowadays, creation of
such web-app tools has become easier, so researchers
tend to make their own apps and publish their weblinks
in their abstracts or manuscripts [27].

Another method of presentation is to create a simple
(integer) risk score, which can be calculated easily at bed‐
side or outpatient, such as the Wells’ criteria for PE [3, 4]
and the Framingham risk score [28]. For this purpose, an
estimated regression coefficient for each factor is often
rounded to an integer value after multiplying it by a scal‐
ing factor (k) [29]. For example, in a study setting the
scaling factor as 4, if a regression coefficient for a risk
factor (e.g., type-2 diabetes on the incidence of cardiovas‐
cular disease) is 0.45, it can be approximated to an inte‐
ger score of 2 after multiplying 0.45 by 4 (i.e., 1.8, which
is closer to 2). A regression coefficient for another risk
factor may be 0.1, which is approximated to 0 after multi‐
plying 0.1 by 4 (i.e., 0.4, which is closer to 0). Therefore, it
does not contribute to the risk score. Another approach is
to define the constant (B), that is, the number of regres‐
sion units that correspond to 1 point in the final score
system. For example, Framingham investigators often set
up B to be equivalent to the regression coefficient for a
five-year increase in age [30]. Notably, despite its ease of
use, such a simple risk score’s predictive performance
may be lower than that of the original (paper-based or
web-based) risk calculator without approximating the
regression coefficients.

4.  VALIDATION OF A CLINICAL PREDICTION MODEL

There are several aspects in evaluating the performance
of a developed clinical prediction model, such as good‐
ness of fit, discrimination, calibration, and reclassifica‐
tion. Researchers should evaluate two or more of these
aspects in the same study; for example, researchers evalu‐
ated goodness of fit, discrimination, and calibration for
QRISK-3 [5].

4.1 Goodness of Fit
Goodness of fit suggests the extent to which the predic‐
tion model fits actual observations. A typical measure of
this is a coefficient of determination (R2). R2 means the
proportion of variability of the outcome that is explained
by the prediction model among the total variability of the
outcome. R2 takes values between 0 and 1 (i.e., 0% and
100%), with larger values indicating better-fitting models.
Because R2 tends to naturally increase as the number of
variables increases, the adjusted coefficient of determina‐
tion (adjusted R2), corrected for the number of variables
in the model, is often used. In general, the (adjusted) R2 is
estimated in a linear regression model for a continuous
variable as an outcome. In other regression models,
modified R2 has been proposed, such as pseudo-R2 for a
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logistic regression [31] and generalized R2 for a Cox
regression [32].

4.2 Discrimination
Discrimination refers to the prediction model’s ability to
discriminate between the presence and absence of the
outcome, if the outcome is a binary variable. A represen‐
tative indicator of this ability is a c-statistic, which is an
estimate of the concordance index (c-index). The c-
statistic is equal to an area under the curve of the receiver
operating characteristic, which connects the dots sug‐
gesting the sensitivity on the vertical axis (Y-axis) and 1-
specificity on the horizontal axis (X-axis) according to
each cut-off value of the predicted probability/score
(Fig. 2). The c-statistic takes values between 0.5 and 1,
with larger values indicating better-discriminating
models. For time-to-event outcomes typically modeled
by the Cox regression, an estimator of the overall C,
which suggests the ability to discriminate between a
longer or shorter time until the incidence of outcome,
was proposed by Harrel et al. [33] and improved by Uno
et al. [34] to correct the bias dependent on the censoring
distribution.

4.3 Calibration
Calibration involves examining the extent of agreement

between the predicted risk of outcome incidence, as esti‐
mated by a clinical prediction model, and the actual risk
of outcome incidence at a group level. In more detail,
people in the study sample for validation are divided into
multiple (e.g., five or 10) small groups of similar number
of people, according to the size of the predicted probabil‐
ity (or risk score) for each individual. In each group,
the average value of the predicted probability can be cal‐
culated, whereas the actual risk of outcome incidence or
observed probability/proportion in the data (i.e., number
of outcomes divided by the number of people in the
group) can be also calculated. The plot of this informa‐
tion on the x- and y-axes, respectively, is called the
calibration curve (Fig. 3). In addition, the Hosmer-
Lemeshow test can test the null-hypothesis—whether
there is no difference between the predicted and actual
risks of outcome incidence. A large p-value suggests that
calibration of a clinical prediction model is compatible
with the event distribution in a dataset, while caution is
needed as a smaller sample size is generally more likely to
result in a larger p-value.

4.4 Reclassification
Reclassification refers to the ability of a variable (e.g., a
new biomarker) that is added to an existing prediction
model to better reclassify the risk of individuals [35]. It is

Fig. 2 Graphical representation of a receiver operating characteristic curve and a two-by-two table (confusion matrix) for a certain cut-off
value of the predicted probability/score
Note: PPV = positive predictive value; NPV = negative predictive value.
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possible for a new biomarker to not improve discrimina‐
tion (e.g., c-statistic), but it could better reclassify the
existing prediction model [35]. Common indicators of
the reclassification (ability) are net reclassification
improvement (NRI) and integrated discrimination
improvement (IDI).

To calculate the NRI, study participants are divided
into multiple (e.g., two or three) risk categories according
to their predicted probabilities in the prediction models
with and without the newly added variable. Then, in each
group of cases and non-cases (i.e., people with and with‐
out the outcome), the proportion of people moving
into other risk categories based on the new model is cal‐
culated and combined by subtracting the proportion of
unfavorable moves from the proportion of favorable
moves. Fig. 4 shows an example of a study examining the
reclassification ability of genetic information (a polygenic
risk score, which can be calculated for each individual by
measuring their DNA from the blood and applying the
results of a genome-wide association study) besides the
QRISK-3 for coronary artery disease prediction in the
UK Biobank [36]. The authors divided the study par‐
ticipants into two risk categories at 10%, because this
threshold is used to start statins in UK primary care.
Consequently, the reclassification improvement (RI) was
calculated to be 0.043 (4.3%) for cases and −0.006
(−0.6%) for non-cases, resulting in an NRI 0.037 (3.7%).

This could be interpreted as the prediction model improved
by 3.7% because of additional genetic information.

One potential issue with the NRI is that the cut-off for
the risk category could be chosen arbitrarily by research‐
ers to achieve statistical significance. A solution to this is
calculating a continuous NRI that does not create any
category and simply counts the number and proportion
of people moving in favorable and unfavorable directions
in each group of cases and non-cases, respectively. In the
aforementioned example of the UK Biobank, the contin‐
uous NRI was 0.296 by summing RI 0.149 for cases and
RI 0.147 for non-cases [36].

However, a weakness of the continuous NRI is that it
accounts for only the direction but not the amount of
change in the predicted probability for each individual.
Therefore, another solution is to calculate the IDI, an
improvement in differences between the average predic‐
ted probabilities among cases and among non-cases (also
known as Yates’s discrimination slope) from the old
model to the new model [35]. The IDI for the aforemen‐
tioned example was 0.0064 [36].

5.  IMPLEMENTING A CLINICAL PREDICTION
MODEL IN ACTUAL PRACTICE

In recent years, there has been an increase in the number
of studies on clinical prediction models. Most of these
have developed and validated a clinical prediction model.
However, for successful implementation of a clinical pre‐
diction model in actual clinical practice, more efforts
may be needed to show that patients and/or clinicians
can change their behaviors based on the results of clinical
prediction. On the one hand, there has been little evi‐
dence indicating that informing patients of their risk
score can directly change their health-related behaviors
[37, 38]. On the other hand, there has been certain
evidence that clinical prediction models can change
physicians’ decision making on examinations and treat‐
ments [38]. It is also possible that public health workers
can use a clinical prediction model to identify people at
risk for a certain outcome (e.g., initiation of long-term
care) in the community and allocate limited health care
resources or preventive opportunities to them efficiently.
Additional analyses such as a decision-curve analysis and
relative utility would offer insights on the clinical conse‐
quences or net benefits of using a prediction model at
specific thresholds [11].

Fig. 3 Hypothetical example of a calibration curve

Note: The five dots suggest five groups with similar number of people
according to the size of each individual’s predicted probability or risk
score. In this example, the probability of an event in high-risk
patients is underestimated.
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6.  CONCLUSION

This paper provided an overview of how to develop and
validate clinical prediction models—including a diagnos‐
tic prediction model and prognostic prediction model—
by applying traditional regression models or emerging
machine learning models to real-world data. At the deri‐
vation stage, researchers select candidate variables based
on the literature review and clinical knowledge, as well as
predictor variables used in the final model using pre-
defined criteria (e.g., thresholds in the size of relative risk
and p-value) or approaches such as the stepwise or
LASSO regression. At the validation stage, performance
of a clinical prediction model is evaluated in terms of
goodness of fit, discrimination, calibration, and reclassifi‐
cation. Model validation should be performed for the
original data to examine internal validity, and it may be
performed using other participant data than that used for
model development to examine external validity. Ulti‐
mately, a clinical prediction model is expected to change
patient behaviors and/or clinicians’ decision making as
well as improve patient outcomes and/or public health.
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