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Abstract: Aimed at overcoming the problems of cumulative errors and low positioning accuracy in
single Inertial Navigation Systems (INS), an Optimal Enhanced Kalman Filter (OEKF) is proposed in
this paper to achieve accurate positioning of pedestrians within an enclosed environment. Firstly,
the errors of the inertial sensors are analyzed, modeled, and reconstructed. Secondly, the cumulative
errors in attitude and velocity are corrected using the attitude fusion filtering algorithm and Zero
Velocity Update algorithm (ZUPT), respectively. Then, the OEKF algorithm is described in detail.
Finally, a pedestrian indoor positioning experimental platform is established to verify the performance
of the proposed positioning system. Experimental results show that the accuracy of the pedestrian
indoor positioning system can reach 0.243 m, giving it a high practical value.
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1. Introduction

An indoor pedestrian positioning system is a system for real-time access to pedestrian location
information in an enclosed environment [1]. The widely used Global Positioning System (GPS) can
obtain highly precise positioning information outdoors. However, within enclosed environments,
the satellite signal is easily disturbed by the building, and the GPS fails to provide accurate pedestrian
positioning information [2]. At present, indoor positioning technology is roughly categorized into
wireless and inertial positioning technology. Wireless positioning technologies include infrared [3],
ultrasonic [4], Bluetooth [5], Wi-Fi [6], ZigBee [7], Radio Frequency Identification (RFID) [8],
Ultra Wideband (UWB) [9], visual [10], and wireless network positioning technology [11]. These
positioning technologies are affected by external factors such as non-line-of-sight factors and multipath
factors [12]. Therefore, the accuracy of wireless positioning is not high enough and the stability is
poor. Inertial positioning technology [13] obtains pedestrian velocity, position, and attitude based on
an accelerometer and a gyroscope. The errors of inertial navigation are unaffected by the external
environment, but the inertial navigation system is prone to cumulative errors over an extended period
of time. Inertial navigation systems based on Microelectromechanical-Inertial Measurement Units
(MEMS-IMU), which has advantages in terms of price, structure, volume, and weight, have drawn
much attention in recent years [14].

A gait detection mode [15–19] and adaptive filter [20–22] have been designed to study the
regularity of pedestrian kinematics and walking gaits to offset positioning errors. Integrated
positioning systems are introduced to offset errors [23], including IMU/UWB [24], IMU/WSN (Wireless
Sensor Networks) [25], INS/WIFI [26], and INS/RFID [27]. When the pedestrian is in an unknown
enclosed environment, some integrated positioning systems will be ineffective. If the pedestrian is
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running or jumping, the errors in the pedestrian attitude cannot be effectively offset and, in turn, affect
the accuracy of the velocity and position measurements [28].

In the filtering algorithm of the inertial navigation system, a two-stage filter is designed to
effectively reduce the cumulative errors [29]. In practical applications, the characteristics of the noise in
the positioning system which affect the positioning accuracy cannot be determined. Adaptive filtering
algorithms have been adopted to reduce the drifts and errors, including the fuzzy logic adaptive
filter [30], Sage–Husa Adaptive Filter (SHAF) [31], and Strong Tracking Filter (STF) [32]. The SHAF
can estimate the statistical characteristics of noise in real time, but cannot identify outliers within the
measurement data; this reduces the fault tolerance of the positioning systems.

To detect the outliers within the measurement data, least squares estimation, time polynomial
extrapolation, and differential algorithms are introduced. However, these algorithms are vulnerable
to false positives, false negatives, and delays. The threshold-based wavelet denoising algorithm
is designed to detect outliers [33]. Aimed at the outliers in the dynamic measurement process,
a self-adaptive five-point linear prediction data detection method was introduced, in which only the
data of a single measurement can be selected and the error of slow change in the system cannot be
effectively identified [34]. An anti-outlier filter based on orthogonality of innovation was used [35] to
eliminate outliers and track the moving targets effectively. An Optimal Enhanced Kalman Filter (OEKF)
algorithm, based on the simplified Sage–Husa adaptive filtering algorithm and the anti-outlier filter,
is proposed in this paper. In the filter, orthogonality of innovation is used to detect outliers, covariance
matching is adopted to judge divergence of filtering, and the activation function is taken to weight the
measurement vector. This paper is organized as follows: Section 2 begins by modeling, analyzing, and
reconstructing the errors of the inertial sensors using wavelet variance and the wavelet decomposition
algorithm. Section 2 continues by correcting the cumulative errors in attitude and velocity using the
attitude fusion filtering algorithm and Zero Velocity Update algorithm (ZUPT), respectively, and finishes
by developing the proposed OEKF algorithm. The experimental results of the proposed algorithm are
presented and discussed in Section 3. Section 4 draws the conclusions of this paper.

2. Materials and Methods

2.1. System Modeling

2.1.1. Pedestrian Indoor Positioning System Model

The pedestrian indoor positioning system model is shown in Figure 1, which shows the whole
process from the data acquisition to the output of position and attitude. The MEMS-IMU obtains
information on acceleration, angular rate, and magnetic field intensity. The initial information is
prefiltered to reduce measurement noise. Then, the information on angular rate and magnetic field
intensity is used to determine the attitude through the quaternion method, and the information on
angular rate and acceleration is used to determine the velocity and position through two integrals.
The zero velocity intervals determined by the zero velocity update algorithm are used to improve the
accuracy of the velocity. In OEKF, the errors of angular rate, acceleration, velocity, and position are
taken as state vectors, and the updated velocity and position are taken as measurement vectors.
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Figure 1. Pedestrian indoor positioning system model. Figure 1. Pedestrian indoor positioning system model.
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2.1.2. Analysis of Pedestrian Kinematics

As the pedestrian walks, the left and right feet move alternately. Each stride can be modeled
as a process of acceleration and deceleration. As shown in Figure 2, the foot accelerates as
the heel leaves the ground and decelerates as the heel touches the ground again. A cycle of
“acceleration–deceleration–zero velocity–acceleration–deceleration” occurs within each stride.
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2.1.3. Inertial Sensor Error Model

Affected by the manufacturing process and the application environment, a low signal-to-noise
ratio limits the accuracy of the inertial navigation system. The errors in inertial sensors mainly consists
of random errors. Analyzing random errors in inertial sensors is feasible for improving the accuracy of
inertial navigation systems. The traditional methods of analyzing random errors include the power
spectral density [36], autocorrelation analysis [37], and the Allan variance [38]. The Allan variance
is widely used because it is able to distinguish different error sources and can be calculated and
separated easily. However, the Allan variance suffers from energy leakage in constructing the error
model [39] and low accuracy of estimation [40]. The wavelet decomposition algorithm can decompose
random errors and reduce energy leakage effectively [41]. Wavelet variance can be obtained using the
following equation:

σ2
x(τ) =

var
{

∑
t

xtψ(t/2τ−jτ)√
2τ

}
τ

(1)

where xt represents a sequence of n samples, τ = 1, 2, . . . , n/2 represents a scaling factor, j = 0, 2τ,
4τ, . . . , n − 2τ represents a time offset, and ψ(·) represents scaling and translation functions of the
basic wavelet.

The wavelet decomposition algorithm is used to process and reconstruct the inertial signal.
The signal is decomposed into different components according to the frequency characteristics in the
wavelet domain and is reconstructed without the random error. The wavelet decomposition algorithm
is shown in Figure 3. The signal S is decomposed into one low-frequency and p-many high-frequency
components by the wavelet decomposition:

WT(S) = Ap +
p

∑
i=1

Di (2)

where AP represents the low-frequency component and Dp represents the high-frequency components.
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2.1.4. Attitude Fusion Filter Algorithm

The accuracy of the attitude matrix plays a key role in inertial navigation systems, and directly
affects the accuracy of attitude, velocity, and position. The gyroscope is vulnerable to static drift,
so errors are accumulated when calculating attitude. On the other hand, the accelerometer and
magnetometer have poor dynamic response, without accumulated errors. Therefore, the gyroscope,
accelerometer and magnetometer can be used to complement each other where the accelerometer and
magnetometer are used to determine attitude information under static conditions and the gyroscope is
used to determine attitude information under dynamic conditions.

The attitude fusion filter algorithm, shown in Figure 4, is used to improve the accuracy of the
attitude. The principle is that the difference between the initial and final attitude angles is Proportional
Integral (PI) controlled, then the balance filtering algorithm is used to fuse the attitude to improve the
attitude accuracy and dynamic response.
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In Figure 4, Kp and Ki are the proportional and integral coefficients in the PI controller and are
used to decrease the errors in the attitude angle calculated by the accelerometer and the magnetometer.∫

represents the integral operation, τ
/

τ + dt represents a high-pass filter, and dt
/

τ + dt represents a
low-pass filter. The accelerometer and magnetometer measurements are filtered through the low-pass
filter to attenuate the high-frequency jitter in the attitude measurement; the gyroscope measurements
are filtered through the high-pass filter to attenuate the accumulated drift errors.

The following equations can be obtained from Figure 4:

δθ = θr − θ (3)

θr = Kpδθ +
∫ t

0
Kiδθdt (4)

θ =
dt

τ + dt
θr +

τ

τ + dt
θa (5)
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where δθ represents the error between the initial and final attitudes, θr represents the initial attitude
calculated by the magnetometer and the accelerometer, θr represents the updated attitude after the PI
controller, and θ represents the attitude angle after fusing and filtering.

2.1.5. Zero Velocity Update Algorithm

Based on the above analysis of pedestrian kinematics, there are two times during a movement
cycle when the pedestrian’s feet are in complete contact with the ground; these are called zero velocity
intervals. It is necessary to determine the zero velocity intervals accurately to improve the accuracy
of the pedestrian inertial navigation and positioning algorithm. When the pedestrian’s foot is in full
contact with the ground, the angular rate and horizontal acceleration of the foot are approximately
equal to zero, while the vertical acceleration is approximately equal to gravitational acceleration g.
The information about the acceleration and angular rate is used to determine the zero velocity intervals
of a pedestrian’s movement cycle [33–35]. This paper uses a multicondition threshold discriminant
algorithm to determine the zero velocity intervals as follows:

C1(t) =

{
1
0

Ta_min < |at| < Ta_max

otherwise
(6)

C2(t) =

{
1
0

σ2
at < Ta_σa

otherwise
(7)

C3(t) =

{
1
0
|ωt| < Tω_max

otherwise
(8)

where |at| and |ωt| are the amplitudes of acceleration and angular rate at time t. σ2
at represents the

acceleration variance at time t and can be expressed as

σ2
a (t) =

1
n− 1

i+n−1

∑
t=i

(at − an)
2 (9)

where an is the average value of acceleration within the window and n is the width of the window.
According to the logical operation “and”, the results of (6)–(8) at time t are processed; that is,

ZUPT(t) = C1(t) & C2(t) & C3(t), and the zero velocity intervals are accurately determined.
If the zero velocity state is detected, the acceleration errors δat should be reset. This is done

as follows:
δat =

[
ax,k ay,k az,k

]T
−
[

0 0 g
]T

(10)

where ax,k, ay,k, az,k are the acceleration values at moment k.

2.2. The Optimal Enhanced Kalman Filter

Based on the simplified Sage–Husa adaptive filtering algorithm, an enhanced adaptive filter
is proposed in which orthogonal Kalman filters, covariance matching techniques, and activation
functions are used to improve the accuracy of pedestrian indoor inertial positioning systems. In the
filter, the errors of angular rate, velocity, acceleration, and position are taken as state vectors, the velocity
and position by calculation are taken as the measurement vectors.

Due to the fact that it is difficult to obtain the exact mathematical model of the system and the
statistical properties of the noise, the accuracy of the Kalman filter is reduced and the filter diverges.
The Sage–Husa adaptive filtering algorithm can estimate and correct the statistical characteristics of
noise. However, the Sage–Husa adaptive filtering algorithm cannot precisely estimate both process
noise Q and measurement noise R. It is generally considered that process noise in the pedestrian
inertial positioning system is stable and only the measurement noise needs to be estimated. Assuming
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that Q is known, a simplified Sage–Husa adaptive filtering algorithm is used to estimate R. The specific
algorithm is shown as follows:

X̂k = X̂k/k−1 + Kkvk (11)

X̂k/k−1 = Φk/k−1X̂k−1 (12)

vk = Zk − HkX̂k/k−1 (13)

Kk = Pk/k−1HT
k

[
HkPk/k−1HT

k + Rk

]−1
(14)

Pk/k−1 = Φk/k−1Pk−1ΦT
k/k−1 + Qk (15)

Pk = [I − Kk Hk]Pk/k−1[I − Kk Hk]
T + KkRk−1KT

k (16)

Rk = (1− dk)Rk−1 + dk

{
[I − HkKk−1]vkvT

k [I − HkKk−1]
T + HkPk−1HT

k

}
(17)

where dk = (1 − b)/(1 − bk+1) and b is the forgetting factor ranging from 0.95 to 0.99.
The simplified Sage–Husa adaptive filter needs to estimate the noise characteristics of each filter

process. When there are problems with the positioning system such as high order, short sampling
time, and increased calculations, the accuracy of the simplified Sage–Husa adaptive filter is reduced or
even diverges.

In order to solve the above problems, we first judge whether the outliers exist in the measurement
data according to orthogonality of innovation. Then, the activation function is used to suppress
outliers, and the strong tracking filter is introduced to suppress filter divergence.

2.2.1. Determining Outliers

Because innovation vk has orthogonality, the orthogonality of vk changes when outliers appear
in the measurement data. Therefore, the orthogonality of vk is analyzed to detect outliers in the
measurement values.

According to the orthogonality of innovation,

E
(

ZkZT
k

)
= HkPk/k−1HT

k + Rk + HkXk/k−1XT
k/k−1HT

k (18)

and we denote the right-hand side of Equation (18) as

Gk = HkPk/k−1HT
k + Rk + HkXk/k−1XT

k/k−1HT
k (19)

From the diagonal elements of the matrices in (18), a judgement is made as to whether the
component Zi,k of Zk is the outlier, and the discrimination is shown as follows:

Mi,k ∈ [Gi,k − εi, Gi,k + εi] (20)

where Mi,k and Gi,k represent the ith diagonal element of E
(
ZkZT

k
)

and Gk. If the above equation is
valid, the measurement Zk is considered as the normal value, whether Zk is an outlier. Because the
above equation has calculation errors, a disturbance value εi is added.

After detecting the outliers, the activation function is used to weight Zk to exclude outliers and
maintain the orthogonality of vk. The activation function is shown as follows:

fi =


1

√
Mi,k <

√
Gi,k + εi√

Gi,k+εi
Mi,k

√
Mi,k ≥

√
Gi,k + εi

(21)
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If
√

Mi,k <
√

Gi,k + εi, then the weight value is a unit value, which does not change the sequence
of innovation. If

√
Mi,k ≥

√
Gi,k + εi, then

√
Gi,k + εi/Mi,k, which is less than 1, is used as the weight

to maintain the orthogonality of vk.
Note that if εi is too large, some outliers may go undetected. Conversely, if εi is too small, the false

detection of outliers may occur. In practical applications, εi needs to be determined according to the
requirements of the application and the required accuracy of the measurement values.

2.2.2. Determining Filter Divergence Using a Covariance Matching Algorithm

The covariance matching algorithm checks residuals and determines whether they are convergent.
The criterion for determining filter convergence is

vT(k)v(k) > λtr(E[v(k)vT(k)]) (22)

where λ is the reserve coefficient and tr is the trace of the matrix. When λ > 1, the actual error exceeds
the expected value and the filter has diverged.

The strong tracking filter has advantages of strong robustness against model uncertainty, strong
tracking capability, and low calculation requirements. When the simplified Suge–Husa adaptive filter
diverges, a strong tracking filter can be used to prevent the filter from diverging and to achieve good
tracking performance in an environment with a low signal-to-noise ratio.

The strong tracking filter adopts a time-varying fading factor to fade the previous data, and
adjusts the predictive error covariance matrix and the corresponding gain matrix in real time so that
the residual sequences are always orthogonal to each other:

E
[
vk+jv

T
k

]
= 0 (23)

where k = 0, 1, 2, . . . , j = 1, 2, . . . . The fading factor µk is introduced to adjust the prediction covariance
matrix Pk,k−1:

Pk,k−1 = µkΦk/k−1Pk−1ΦT
k/k−1 + Qk. (24)

The fading factor µk can be determined using the following equations:

µk =


tr(Wk)
tr(Nk)

tr(Wk)
tr(Nk)

≥ 1

1 tr(Wk)
tr(Nk)

< 1
(25)

Wk = vkvT
k −ΦkQkΦT

k −Rk (26)

Nk = ΦkFk/k−1Pk/k−1FT
k/k−1ΦT

k . (27)

Figure 5 shows an optimal enhanced Kalman filter algorithm. Firstly, the initial state, covariance
matrix, and the innovation matrix are set. Then, the innovation orthogonal discriminant is used to
determine whether outliers exist in the measurement values. If the measurement values have outliers,
then the measurement values are filtered. If the filter is divergent, a strong tracking filter is introduced
to suppress the divergence.
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3. Results

3.1. Experimental Device and Data Acquisition

To assess the performance of the pedestrian inertial navigation system in this paper, a micro-inertial
navigation module was used. The data refresh rate of the micro-inertial navigation module was 100 Hz
and a 32-bit ARMCortexM3 Microcontroller Unit (MCU) was used for calculations. Specific parameters
are shown in Table 1.

Table 1. MEMS-IMU Performance Parameters.

Senor Standard Full Range Noise Density Band Width Voltage

Accelerometer 50 m/s2 80 µg/
√

Hz 375 Hz 4.5 V
Gyroscope 450◦/s 0.01◦/s/

√
Hz 450 Hz 4.5 V

Magnetometer ±80 µT 200 µG/
√

Hz N/A 4.5 V

The structure and installation of the pedestrian inertial navigation system are shown in Figure 6.
The accelerometer, gyroscope, magnetometer, and other sensors were mounted on the Inter-Integrated
Circuit(I2C) bus and data were transmitted from the serial port to the host computer through the Digital
Signal Processing (DSP). The inertial navigation module was tied on the foot to obtain pedestrian
movement information.
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3.2. Experimental Environment Settings

The pedestrian walking route is shown in Figure 7. The red square represents the starting point,
the blue square represents the ending point, and the arrow represents the walking direction. It is clear
that the pedestrian starts from point (0, 2.5) and traverses through points (−2.9, 3.5) and (1.04, 5.55),
eventually stopping at point (0.1, 2.6).
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3.3. Analysis of Experiments

3.3.1. Analysis of Errors of Inertial Sensor

To analyze the error sources of the accelerometer and gyroscope, the wavelet variance method
is used, as shown in Figures 8 and 9. It can be seen that the output value of the accelerometer is
affected by acceleration random walk, instability of bias, velocity random walk, and quantization noise.
The output value of the gyroscope is affected by angle random walk, bias instabilities, and quantization
noise. Results of the wavelet analysis of variance are shown in Tables 2 and 3. It can be seen that
random noise in the accelerometer and gyroscope measurements consists of white noise and colored
noise, before and after 10 s, respectively.
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Figure 8. Analysis of accelerometer with variance.
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Figure 9. Analysis of gyroscope with variance.

Table 2. Analysis of accelerometer with wavelet variance.

Error Item AccX AccY AccZ

Acceleration random walk m/s/h3/2 80.953 7.8644 6.5712
Instability of bias m/s/h 4.3845 0.73242 1.0858

Velocity random walk m/s/h1/2 0.040361 0.044576 0.043489
Quantization noise m/s 0.035239 0.040676 0.040221

Table 3. Analysis of gyroscope with wavelet variance.

Error Item GyroX GyroY GyroZ

Angle random walk ◦/h1/2 0.43234 0.46484 0.43525
Instability of bias ◦/h 16.296 10.872 13.737

Quantization noise µrad 1.2229 1.5065 1.3845
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The wavelet decomposition algorithm is used to reconstruct the output value of the inertial sensor.
Taking the output value of acceleration as an example, the “db6” wavelet basis function, threshold
criterion of “rigrsure”, and soft threshold method are used to obtain the comparison between the
original signal and the colored noise and the wavelet variance comparison between them, respectively,
as shown in Figures 10 and 11.
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3.3.2. Experimental Analysis of Attitude Information

The initial attitude measurement is shown in Figure 12a. It can be seen that there are measurement
noise and cumulative errors in the measurement values. The output of the attitude fusion filter is
shown in Figure 12b. It can be seen that the measurement noise and cumulative errors are attenuated,
the output is free of glitches, and the accuracy of the attitude is improved.
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Figure 12. Comparison chart of gestures. (a) The initial attitude measurement; (b) The output of the
attitude fusion filter.

3.3.3. Experimental Analysis of Zero Velocity Update

As shown in Figure 13, according to the outputs of the accelerometer, magnetometer, and
gyroscope, the pedestrian zero velocity interval is obtained. The velocity of the pedestrian is corrected
based on the zero velocity intervals, as shown in Figure 14. It can be seen that the cumulative errors in
velocity and position decrease.
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Figure 14. Velocity corrections in the Zero Velocity Update algorithm (ZUPT).

3.3.4. Analysis of Different Positioning Systems

In order to verify the performance of the optimal enhanced Kalman filtering algorithm, the
positioning of pedestrians using different filtering algorithms is shown in Figure 15. It can be seen
that the INS system directly using the outputs of accelerometer, gyroscope, and magnetometer has
cumulative errors, showing a positioning track far away from the actual track. By contrast, the KF and
OEKF algorithms eliminate the accumulated errors, and the performance of OEKF is better. Specific
position errors in east and north directions are shown in Figures 16 and 17. The figures show that the
filtering effect of OEKF is better, and the cumulative errors in position are effectively offset.

The comparison between OEKF and KF is shown in Table 4. It can be seen that the east position
error using KF is −0.1847 m to 0.2455 m, the root mean square error is 0.66 m, and the confidence
is 97.144%. The east position error using OEKF is -0.1241m to 0.1738 m, the root mean square error
is 0.0987 m, and the confidence level is increased by 1.3309%. The north position error using KF is
−0.1688 m to 0.1222 m, the root mean square error is 0.0816 m, and the confidence level is 97.1855%.
The north position error using OEKF is −0.1251 m to 0.0879 m, the root mean square error is 0.0360 m,
and the confidence level is increased by 1.2522%.
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Table 4. Comparison of error in different trajectory positions.

KF OEKF

East North East North

Range of error (m) −0.1847 to 0.2455 −0.1688 to 0.1222 −0.1241to 0.1738 −0.1251 to 0.0879
Root mean square error (m) 0.66 0.0816 0.0987 0.0360

Residual rate (%) 2.8560 2.8145 1.5251 1.5623
Confidence (%) 97.144 97.1855 98.4749 98.4377

4. Conclusions

The traditional inertial navigation system has problems such as low signal-to-noise ratio,
cumulative errors, and outlier interference, and therefore cannot meet the requirements of accuracy in
pedestrian positioning systems. To address these problems, an inertial positioning system based
on OEKF is proposed in his paper. Firstly, wavelet decomposition is used to filter the inertial
signal effectively. Then, the zero velocity update algorithm and the attitude fusion algorithm are
used to suppress the accumulative errors of speed and attitude. Finally, the OEKF algorithm is
proposed and compared with the INS and Kalman filter. The experimental results show that the OEKF
filter algorithm is suitable for a pedestrian inertial positioning system, and effectively improves the
pedestrian positioning accuracy. Further work will be done to study the impact of process noise on the
positioning system, and process noise more accurate than a fixed value should be incorporated into
the system.
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