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Protein ubiquitination is a key post-translational modification that regulates
diverse cellular processes in eukaryotic cells. The specificity of ubiquitin
(Ub) signalling for different bioprocesses and pathways is dictated by the
large variety of mono-ubiquitination and polyubiquitination events,
including many possible chain architectures. Deubiquitinases (DUBs)
reverse or edit Ub signals with high sophistication and specificity, forming
an integral arm of the Ub signalling machinery, thus impinging on
fundamental cellular processes including DNA damage repair, gene
expression, protein quality control and organellar integrity. In this review,
we discuss the many layers of DUB function and regulation, with a focus
on insights gained from budding yeast. Our review provides a framework
to understand key aspects of DUB biology.
1. Introduction
Ubiquitination is a reversible post-translational modification (PTM) that
governs a wide variety of cellular processes including protein degradation
and sorting, cell signalling and gene expression [1]. Ubiquitination of target
substrates occurs through the sequential activity of three enzymes, a ubiquitin
(Ub)-activating enzyme (E1), a Ub-conjugating enzyme (E2) and a Ub ligase
(E3) [1–5]. This enzyme cascade directs the attachment of Ub chains onto
target proteins—the length and specific configuration of Ub chains dictates
their functional consequences [1–5]. The ubiquitination state of protein
substrates is also determined by deubiquitinases (DUBs) which hydrolyse
Ub-substrate and Ub–Ub isopeptide bonds [1–5]. DUBs have three major cellu-
lar functions: (i) the generation of free Ub moieties from linear fusions of
Ub [1–5]; (ii) trimming of existing polyubiquitin chains; and (iii) reversal
of Ub signalling by removal of Ub chains from target proteins [1–5]. Thus,
like ubiquitination enzymes, DUBs are master regulators within the Ub
system, and impinge on diverse cellular processes. Importantly, mis-regulation
of DUB function has been associated with the onset or progression of numerous
diseases, including some cancers and Alzheimer’s disease [6–9]. Owing to the
importance of DUBs in eukaryotic cell biology, there has been a concerted
effort to understand their structure, mechanisms of substrate and polyubiquitin
chain-type recognition and modes of regulation.

Key insights into DUB biology have emerged fromwork in model organisms
such as the budding yeast, Saccharomyces cerevisiae. The yeastmodel system offers
several key advantages for studyingDUB function, including a compact genome,
the conservation of the proteome among eukaryotes and the ease of maintenance
under laboratory conditions [10]. In addition, yeast is highly amenable to a var-
iety of genetic manipulations and exists in stable haploid and diploid states. In
this review, we focus on the current state of knowledge about the structure
and function of yeast DUBs and discuss the implications of insights gained
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Figure 1. The yeast DUBs. Shown are schematics of the DUB proteins in S. cerevisiae categorized by family, illustrating key functional domains (legend at base of the
figure). Any human homologues are noted to the right of the protein diagrams. The size of the DUB proteins is indicated on the left of the schematics and domain
sizes are indicated according to scale. ‘aa’ refers to amino acids.
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from work in yeast for understanding DUB function in more
complex organisms such as humans.
2. Deubiquitinase families in
Saccharomyces cerevisiae

The yeast genome encodes 22 putative DUBs that are subdi-
vided into classes based on their sequence and structural
similarity. The roster of DUBs encoded by the human
genome is more extensive with approximately 100 DUBs
that are divided into seven families: the ubiquitin-specific
proteases (USP/UBP); ubiquitin C-terminal hydrolases
(UCHs); ovarian tumour proteases (OTUs); JAB1/MPN/
MOV34s (JAMMs); Josephins, zinc finger with UFM1-specific
peptidase domain protein protease (ZUFSP) and the recently
discovered MINDY. These families are further subcategorized
according to their mode of catalysis: USPs, UCHs, OTUs and
MINDYs are cysteine proteases while the JAMMs are metal-
loproteases. Five of the seven DUB families (USP/UBP,
UCH, OTU, JAMM and MINDY) are conserved in yeast
(figure 1) [11–13], and below we summarize our
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understanding of the functions and mechanisms of action of
these conserved DUB families.

2.1. Ubiquitin C-terminal hydrolases
As noted above, the majority of yeast DUBs, including USPs,
UCHs, OTUs and MINDY, are cysteine proteases, which in
general have a catalytic triad comprising Cys, His and
Asp/Asn residues [5]. The nearby His residue lowers the
pKa of the catalytic Cys facilitating a nucleophilic attack,
with the Asp/Asn residue functioning to stabilize the catalytic
His residue [5].

UCHs were the first DUB family to be structurally charac-
terized. The UCH DUBs possess a catalytic domain spanning
230 amino acid residues that adopts a core fold and catalytic
triad resembling papain [14]. UCHs frequently contain
additional C-terminal extensions that may assist in substrate
or target recognition [14–16]. In yeast, Yuh1 is the sole
member of the UCH family and closely resembles UCH-L3,
a small human DUB (figure 1) [17]. Yuh1 preferentially pro-
cesses small leaving groups and is inactive against larger Ub
fusions [17]. Yuh1 appears to play a key role in the processing
of the Ub-like protein Rub1p/NEDD8, a function that is con-
served in its human counterpart [17].

2.2. Ubiquitin-specific proteases
The USP/UBPs constitute the largest family of DUBs, with 16
members in yeast and 56 members in humans (figure 1 and
table 1). USP/UBPs have a core catalytic domain and often
possess insertions or terminal extensions that assist in sub-
strate and/or target recognition [1,25,26]. Although the
USP/UBP catalytic domains vary considerably in size and
sequence, they all adopt a highly conserved structure resem-
bling a right hand with three subdomains, including a finger,
palm and thumb [1]. A cleft formed between the palm and
thumb subdomains forms the catalytic centre with the
thumb and palm containing the catalytic Cys and His,
respectively [1], while the finger subdomain interacts with
Ub to facilitate its positioning in the catalytic centre. Substrate
recognition by USP/UBPs typically involves either their vari-
able sequence regions or scaffolds and substrate adaptors in
multi-protein complexes [1]. The overall complexity and
diversity seen in the USPs underlies their diverse substrate
profile and cellular roles.

2.3. Ovarian tumour proteases
The OTU family of DUBs were identified based on their hom-
ology to the ovarian tumour gene (OTU) in fruit flies. In
yeast, the OTU DUB family contains two members, Otu1
and Otu2, while in humans, there are 16 (figure 1 and
table 1). Crystal structures of yeast Otu1, and several
human OTUs, reveal a conserved catalytic OTU domain con-
sisting of five β-strands sandwiched between helical domains
that vary in size [1,5,27]. The active site of the OTU domain
contains an unusual loop not seen in other thiol-DUBs, and
may lack the catalytic Asp/Asn residue, such that several
human OTU DUBs are predicted to be catalytically inactive
[3,5]. OTUs display remarkable specificity for different
poly-Ub-chain linkages. For example, the human OTU,
OTUB1 is highly specific for K48-linked chains, while
OTUD2 [1,5] shows specificity for atypical Ub chains such
as K11, K27 and K33 [28,29]. Some evidence suggests that
the substrate and target specificities of OTU DUBs are evolu-
tionarily conserved. For example, the yeast orthologue of
OTUD2, Otu1, shares substrate preference and specificity
for atypical Ub-chain linkages with OTUD2, and both
DUBs function in endoplasmic recticulum-associated protein
degradation (ERAD) [28].

2.4. MINDY
The recently discovered MINDY family of DUBs is highly
conserved, with a core catalytic domain distinct from other
DUBs [29]. Structural analysis of the human MINDY-1 in
complex with Ub revealed that the C-terminus of Ub sits in
the MINDY-1 catalytic groove in a highly conserved hydro-
phobic pocket. Like many other DUBs, the L73 residue of
Ub is required for this interaction and thus catalysis.
MINDY-1 has a strong specificity for longer K48-linked Ub
chains and prefers to trim Ub from the distal end of chains
[30]. Several MINDY DUBs exist in humans, with only two
family members in yeast, one of which, Miy1, has demon-
strated catalytic activity (figure 1 and table 1). Although
Miy1is the yeast orthologue of MINDY-1, it does not discrimi-
nate between positions for Ub-chain cleavage and, unlike
human MINDY-1, is capable of cleaving shorter Ub chains
[30]. The Ub-binding domains of MINDY, motif interacting
with Ub (MIU), are responsible for MINDY chain preference
and are discussed in further detail below.

2.5. JAB1/MPN/MOV34 metalloenzymes (JAMM/MPN±)
JAMM DUBs are conserved metalloproteases with a Glu-x
[N]-His-x-His-x[10]-Asp motif which coordinates binding of
two Zn2+ ions [1,3]. Catalysis requires a nucleophilic attack
by the DUB on the carbonyl carbon of the isopeptide
bond in the Ub chain, mediated by an activated water mol-
ecule [3]. Rpn11, a proteasome-associated DUB, is the sole
representative of the JAMM DUBS in yeast [31,32] (figure 1
and table 1). By contrast, the human genome encodes 14
putative JAMM DUBs.
3. Substrate recognition
DUBs select their targets through binding to a protein sub-
strate that they deubiquitinate, enabling regulation of
specific cellular pathways and processes, or by direct recog-
nition of select Ub-chain types, allowing control of the
abundance of distinct Ub linkages (figure 2). For example,
several DUBs in the UBP/USP family bind target proteins
through additional protein–protein interaction (PPI) domains
and will cleave an Ub chain from a specific target regardless
of chain architecture [33,34]. By contrast, other DUBs, as dis-
cussed in more detail below, display remarkable chain
specificity and in some cases will cleave only one linkage
type [28,29,33,34].

3.1. Linkage specificity
Ubiquitination is a highly versatile PTM because it occurs as
eight distinct types of multi-Ub chains, which convey unique
structural and functional information. To form multi-Ub
chains, Ub moieties are linked to the C-terminal Gly of
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another Ub protein via one of seven Lys residues (Lys6,
Lys11, Lys27, Lys29, Lys33, Lys48, Lys63) or the amino termi-
nus (Met1) (figure 2b) [35]. Poly-Ub chains have specific
conformational and dynamic properties that are recognized
by distinct Ub-binding domains; for example, K48, K6, K11
and K29-linked Ub chains are generally thought to adopt a
compact conformation, while M1 and K63-linked Ub chains
have an open conformation (figure 2b) [35]. These varied lin-
kages help determine specific functions for Ub chains within
the cell, including roles for the typical Lys48- and Lys63-
linked chains in protein degradation and cell signalling
respectively, with atypical chain linkages more likely to be
involved in a wide variety of cellular processes including
cell cycle regulation and transcription, among others [35].

A significant factor in the diversity of Ub-chain function
reflects the selectivity of DUBs for Ub chains of varying
lengths and linkages. For example, in yeast, the Ubp8 DUB
strongly prefers the mono-ubiquitinated histone component,
H2B, Ubp12 and Ubp15 favour K48-linked Ub chains
[36–39], while the proteasome-associated Rpn11 DUB,
shows little substrate preference [31,32]. All DUBs contact
Ub through at least one Ub-binding site called the S1 site in
the catalytic domain (figure 2c–h). The S1 site is considered
a major determinant of DUB specificity as it contacts
20–40% of Ub’s surface and contributes significantly towards
correct positioning of the Ub C-terminal tail in the DUB’s
catalytic core [3]. Other Ub contacts may occur through the
so-called S10 site of some DUBs, which further aids in
correctly orienting the modified Lys or Met residue towards
the catalytic centre (see below, figure 2c) [33,34]. Other Ub-
binding sites (S2, S20, S3, S30 etc.) may also be present in
the catalytic domain or on other Ub-binding domains in
specific DUBs. Together, these diverse Ub-binding sites con-
tribute to the mode of binding of an individual DUB to its
substrate and as such its specificity [33,34].
3.2. Substrate specificity via the catalytic domain
One simple mechanism for DUB substrate specificity involves
interactions with the proximal Ub on the target substrate,
which determines the Lys linkage presented to the catalytic
centre. This mechanism is beautifully illustrated by structural
studies of Rpn11, a proteasomal-associated DUB that displays
promiscuity towards Ub chains, and a related DUB, AMSH-
LP, which displays specificity to K63-linked di-Ub chains
(figure 2c,d) [31,32,40]. AMSH-LP forms extensive contacts
with residues that neighbour K63 in the proximal Ub [40]
only when K63 linkage occurs, thus ensuring that AMSH-
LP is specific to K63-linked Ub chains (figure 2) [40]. Rpn11
does not contact the proximal Ub and instead appears to con-
tact the distal Ub exclusively (figure 2) [31,32], a property that
is thought to contribute to its lack of substrate specificity
[31,32,40].
3.3. Substrate specificity via ubiquitin-binding domains
As previously mentioned, DUBs can contact Ub through sites
outside of their catalytic domain, and we discuss key
examples of this class of DUBs below.
3.3.1. Ubp14/IsoT

The Ubp14 DUB disassembles unanchored poly-Ub and
recognizes K29, K48 and K63-linked Ub chains. The loss of
Ubp14 function in S. cerevisiae results in defects in proteaso-
mal degradation and the accumulation of unanchored Ub.
While the mechanism of action of Ubp14 remains poorly
understood, its general function and substrate preference is
conserved in its human orthologue, IsoT, which has been
studied extensively [41–44]. IsoT contains four putative Ub-
binding domains, a ZnF-UBP domain, a USP/UBP domain
and two UBA domains, which are inserted into the catalytic
domain, and each of these domains form extensive inter-
actions with different Ubs in a Ub chain [45]. The ZnF-UBP
contains the S10 site and as such recognizes the C-terminus
of the proximal Ub, while the S1 pocket in the USP/UBP,
the UBA1 and the UBA2 domains recognize the second,
third and fourth Ubs in the chain, respectively (figure 2h)
[45]. Interestingly, it appears that the ZnF-UBP and UBP
domain enable discrimination of K48-linked Ub chains,
while the UBA domains cannot [44,45]. Taken together,
these studies offer insight into how a DUB can use different
Ub-binding domains to determine substrate specificity.
3.3.2. MINDY-1

Members of the MINDY family of DUBs are thought to recog-
nize Ub chains through tandem MIU motifs (tMIU) that
function cooperatively to mediate substrate recognition.
Like the Ubp14 example above, the substrate specificity of
the yeast MINDY DUB, MIY1, remains unexplored relative
to its human orthologue, MINDY-1, which specifically
binds K48-linked Ub chains with a preference for longer
chains [30,46]. MINDY-1 contains two tandem MIU domains,
tMIU1 and tMIU2, that are separated by a linker sequence
(figure 2) [30,46]. tMIU2 imparts substrate specificity to
MINDY-1 by interacting with three Ub moieties in a K48-
linked chain through distinct side chains [46], while tMIU1
has no poly-Ub-binding capacity but instead appears to
enhance the affinity of tMIU2 domain for Ub [46]. Recent
crystal structures of the MINDY-1 tMIUs in complex with a
cyclic K48-tetra Ub chain revealed that the K48-tetra Ub is
wrapped around two helices [46]. In this arrangement, a
single tMIU2 makes simultaneous interactions with three
Ub moieties through three distinct binding sites (figure 2)
[46]. The first is formed through hydrophobic interactions
and hydrogen bonds between tMIU2 and the middle Ub in
the Ub chain [46]. The second occurs between tMIU2 and
the proximal Ub and is mediated through hydrophobic inter-
action between tMIU2 and the I44 hydrophobic patch of Ub.
However, this interaction strategy may not be broadly used,
as the residue mediating this interaction is poorly conserved
among the tMIUs [46]. The third binding interface is formed
between tMIU2 and the hydrophobic patch of the distal Ub
[46]. The MINDY-1 structure further revealed that tMIU2
binds Ub in an orientation that is exhibited only by longer
K48-linked Ub chains, thus explaining its linkage specificity
(figure 2).

Taken together, the mechanism of substrate recognition
by MINDY-1 demonstrates how Ub-binding domains can
work in together in tandem to achieve substrate recognition
and specificity [46].
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3.3.3. Otu1/OTUD2

As previously discussed, the OTU DUBs display remarkable
specificity for their target substrates. The two yeast OTU
DUBs, Otu1 and Otu2, are both orthologues of human
OTUD2. Otu1 cleaves atypical Ub linkages (K11, K27, K29
and K33), as well as K48-linked Ub chains [28]. Unlike the
examples discussed above, crystal structures of Otu1 failed
to reveal the mechanism by which Ub-linkage specificity is
achieved, although other evidence suggests that Otu1 sub-
strate specificity may be mediated through interactions with
one of its targets, Cdc48, and its associated adaptors [28].

Like Otu1, human OTUD2 also cleaves atypical Ub lin-
kages with a preference for longer K11 Ub chains, but
differs from Otu1 in that it fails to act on K48 linkages [28].
OTUD2 contacts Ub chains using its S1 and S10 sites which
are located in its catalytic domain. The S10 site appears to
be particularly important for the activity of OTUD2 on K11
linkages, as mutations in this region abolish the K11 linkage
specificity of the enzyme (figure 2) [28]. OTUD2 additionally
binds Ub chains using an S2 site in its catalytic domain, in an
orientation that favours longer K11 Ub chains (figure 2) [28].
While this site is conserved in higher eukaryotes, it is not con-
served in S. cerevisiae, and whether Otu1 uses a similar
mechanism to achieve substrate specificity remains to be
determined [28].
4. Regulation of deubiquitinase activity
Because DUBs have a wide range of roles in the cell, a
series of different regulatory mechanisms have evolved to
tightly control DUB activity. In this section, we discuss how
PTMs, regulatory domains and PPIs regulate DUB activity
in yeast.
4.1. Substrate-mediated activation
Several DUBs have evolved allosteric mechanisms to regulate
their activity. For example, structural analysis of UCH-L3, the
human orthologue of the yeast DUB Yuh1, revealed that the
active site undergoes significant conformational changes
upon Ub binding. When unbound, UCH-L3 contains a disor-
dered loop that covers its active site, which is stabilized upon
Ub binding into an α-helix which forms contacts with Ub.
This loop is conserved in several DUBs including Yuh1
[44,45], suggesting that a similar allosteric mechanism may
be a feature of a subset of DUBs. Comparisons of Ub-
bound Otu1 to the OTU domain of human DUB Otubain 2
alone revealed a disordered loop, which is positioned to steri-
cally clash with a bound Ub. In Ub-bound Otu1, this region
forms an ordered β-strand, suggesting that Ub binding to
Otu1 may induce a conformation change that stabilizes the dis-
ordered region in a β-strand, removing this steric hindrance [47].

Another common mechanism of DUB regulation involves
the catalytic residues of DUBs adopting a non-active state.
For example, binding of Ub to MINDY-1, the human homol-
ogue of Miy1, induces the movement of its Cys loop and
allows the catalytic residues to adopt an active conformation.
When not bound to Ub, the catalytic His residue in MINDY is
flipped away from the catalytic Cys residue, producing an
inactive state [30]. Whether this mechanism is conserved in
Miy1 is currently unknown.
4.2. Complex-mediated activation
Several DUBs are activated through complex binding, includ-
ing the yeast DUBs Ubp8 and Ubp6. Ubp8 is part of the
histone-modifying complex, SAGA, and is specifically
responsible for the deubiquitination of mono-ubiquitinated
histone component H2B chains [35–38]. Free Ubp8 is gener-
ally in an inactive state and activation is induced through
interactions with three SAGA complex components, Sgf73,
Sgf11 and Sus1. Sgf11 and Sgf73 use their ZnF domains to
interact with two distinct regions of the catalytic domain of
Ubp8 to promote an active catalytic core, while Sus1 func-
tions to stabilize interactions involving Ubp8, Sgf11 and
Sgf73 [35–38]. Strikingly, Sgf11 forms part of the Ubp8 cataly-
tic lobe, creating a highly conserved extended interface with
the Ubp8 catalytic domain that aides in target and substrate
recognition [35–38]. Crystal structures of Ubp8 bound to a
mono-ubiquitinated nucleosome suggest that Ubp8 may
have evolved a histone-specific S10 site in its catalytic
domain [37] (figure 2e). The Ubp8 complex with mono-ubi-
quitinated nucleosomes provides one of the first views of a
DUB-non-Ub substrate complex and may serve as a model
for how other mono-Ub targeting DUBs might recognize
their substrates.

Ubp6 is a proteasome-associated DUB, whose activity is
dramatically increased upon binding to the 26S proteasome
[26]. Structural analysis of free Ubp6 revealed two surface
loops blocking access to the catalytic site [26], leading to
the hypothesis that binding to the proteasomal component
Rpt1 induces an active conformational state by relieving
this steric hindrance [26]. Human proteasome-associated
DUBs, UCH37, USP14 and POH1, all demonstrate similar
proteasome-induced activation.
5. Deubiquitinase functions in protein
turnover and ubiquitin homeostasis

Selective spatio-temporal regulation of unwanted or damaged
protein is central to cellular homeostasis, adaptation to stress
conditions and development of multicellular organisms.
Cells have evolved multiple Ub-dependent machineries and
processes for protein degradation, including the proteasome,
selective autophagy and endocytosis. Below, we review
how DUBs function within these proteostasis bioprocesses
(summarized in figure 3).

5.1. Proteasome-associated deubiquitinases
The proteasome is an approximately 2.5 MDa protein com-
plex consisting of two large subcomplexes, a barrel-shaped
core particle (CP) and the regulatory particle (RP) that
binds to the axial end of the CP. The RP in turn comprises
two subcomplexes of its own, the lid and the base [48],
which is proximal to the CP and contains six ATPases that
form a ring structure that abuts the CP (figure 3b). The pro-
teolytic active sites of the proteasome are buried within the
barrel-shaped CP [49], with access restricted by narrow
gates at either end of the CP, which are modulated by the
Rpt2 subunit of the base [50]. While this ‘restricted access’
arrangement may help prevent the unregulated destruction
of intracellular proteins, it also imposes a requirement for
substrate unfolding to pass through the narrow opening of
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the translocation channel leading to the CP, effected by the six
ATPases of the base [51]. The Ub chain(s) on substrates being
targeted for proteasomal degradation impose a steric con-
straint preventing translocation through the narrow opening
into the catalytic core and must be removed to facilitate sub-
strate degradation. Two DUBs, Rpn11 and Ubp6, are
responsible for DUB activity at the proteasome [52–59] and
have an interesting functional interplay. Mutation of RPN11
causes decreased rates of substrate degradation, while the
loss of UBP6 is reported to result in the stabilization of
some substrates and destabilization of others, thus indicating
distinct and shared function at the proteasome [50,53–57,60–
62]. Ubp6 and its human orthologue Usp14 was recently
shown to interact preferentially on Ub–cyclin B conjugates
with multiple sites of ubiquitination in a chain type-
independent fashion and this might explain the differential
effects of Ubp6 on substrate degradation [59]. Ubp6 non-cat-
alytically and allosterically affects the rates of proteasomal
degradation by interfering with critical substrate deubiquiti-
nation by Rpn11, stimulating 20S gate opening, thus
increasing access to the degradation chamber and enhancing
the rates of ATP hydrolysis by the base ring [58,60,63,64].
While Ubp6 was believed to trim Ub chains at the protea-
some, recent evidence indicates that like Rpn11, Ubp6 is
also able to cleave Ub chains en bloc [59,60] (figure 3a).

Ubp6 and Rpn11 also play a key role in the biogenesis and
stability of the RP subcomplex of the proteasome [65,66]. RP
biogenesis is an elaborate process involving dedicated cha-
perones [67]. However ubiquitinated substrates, with or
without substrate shuttling factors, compete with RP
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subunits for interaction surfaces on precursor RPs that are en
route to form a functional complex [66]. The deubiquitinating
activity of proteasome- associated Ubp6 (and perhaps other
DUBs) destabilizes such unproductive interactions thus
promoting proteasome maturation [66] (figure 3b).

5.2. Deubiquitinase-mediated regulation of the core
endocytic machinery and cargo turnover

Ub-dependent sorting of plasma membrane (PM) proteins is
an important and conserved regulatory mechanism. In yeast,
the Rsp5 E3 ligase targets PM proteins for ubiquitination
(mono-ubiquitination or K63-linked polyubiquitination) and
subsequent internalization by endocytosis (figure 3c). The
resulting vesicles containing ubiquitinated proteins then
mature into multi-vesicular bodies before their contents are
degraded after fusion with the vacuole [68]. Endocytosis
requires the coordinated actions of more than 60 different pro-
teins at the PM [69,70] and several core endocytic adaptors,
including Ent1, Ent2, Ede1 and Sla1, harbour Ub-binding
domains or interaction motifs [71] and many others are ubiqui-
tinated by the Nedd4-family ligase, Rsp5 [72–76]. Two DUBs,
Ubp7 and Ubp2, deubiquitinate Ede1, which is functionally
important as ubp2Δubp7Δ cells exhibit extended endocytic
coat lifetimes and abnormal trafficking of endocytic proteins to
early endosomes. Thus, DUBs facilitate initiation of endocytosis
and subsequent recruitment of the endocytic coat [77].

The Rsp5 ubiquitin ligase also targets defective PM
proteins for degradation [78,79], and promotes the down-
regulation of properly folded transporters and receptors in
response to specific biological stimuli. A family of adaptor
proteins termed arrestin-related trafficking adaptors (ART)
target specific PM proteins by recruiting Rsp5, which mod-
ifies both the cargoes and the ARTs (figure 3c). Thus, ARTs
and Rsp5 together provide a cargo-specific quality control
pathway that mediates endocytic downregulation of diverse
PM proteins in response to specific stimuli [80], maintaining
the integrity of PMs.

The Ubp2 DUB interacts with Rsp5 via the adaptor protein
Rup1 [81], to regulate Rsp5 activity at multiple levels. First,
Ubp2 positively regulates Rsp5-mediated ubiquitin signalling
by removing the inhibitory autoubiquitination of Rsp5 [82].
Second, Ubp2, together with Ubp15, deubiquitinates ARTs,
thus preventing their degradation via the proteasome
(figure 3c). Third, Ubp2 deubiquinates Rps5 substrates at
the PM and thereby antagonizes the degradation of Rsp5
substrates both in vivo and in vitro [81,83,84]. Which of the
opposing effects that Ubp2 has on Rsp5 activity dominates
to determine whether a substrate is degraded is probably
substrate-dependent and modulated by other cellular factors
or stress conditions.

5.3. Deubiquitinase regulation of multi-vesicular body
formation and function in ubiquitin homeostasis

Ubiquitinated PM protein cargoes are processed through the
endocytic pathway through a complex system that involves
the ESCRT 0-III complexes which bind and sort ubiquitinated
substrates into multi-vesicular bodies (MVBs) that ultimately
fuse with the vacuole [85]. However, prior to being engulfed
in the MVBs, Bro1, an ESCRT III adaptor protein, recruits the
DUB Doa4 to endosomes, and stimulates its enzymatic
activity resulting in deubiquitination of the targets aiding in
the formation of MVBs [86–89]. MVBs in turn fuse with the
vacuole to empty their contents and facilitate degradation
of their cargo in the vacuole [86–89] (figure 3d ). This example
illustrates a key role for a DUB in determining the cargoes of
the MVBs and thereby their degradation.

The endosome-associated Doa4 DUB discussed above, as
well as the proteasome-associated DUBs Ubp6 and Rpn11,
also have major roles in trimming and/or en bloc removal
of Ub chains from target substrates, thereby promoting
the recycling of Ub [90,91]. In logarithmically growing
cells, Ub exists in a mixed population of: (i) monomers;
(ii) unanchored chains; and (iii) anchored chains of different
linkages on substrates [3,92]. Given the short half-life of
Ub (2 h) [93], recycling of Ub from unanchored and anchored
polyubiquitin chains is key for restoring the ubiquitination
capacity of cells, particularly under stress conditions
such as heat shock [41,54,90]. Ub depletion leads to specific
transcriptional upregulation of UBP6 as a compensatory
mechanism to replenish Ub levels by increasing the proteaso-
mal capacity to deubiquitinate its substrates prior to
degradation [94]. Similarly, under heat shock conditions
that necessitate increased Ub recycling, DOA4 transcription
is upregulated. Doa4 activity is further enhanced by selective
downregulation of a Doa4 inhibitor, Rfu1, both at the tran-
scriptional level and at the protein level by Rsp5-mediated
selective degradation by the proteasome (figure 3, inset)
[87,90,95]. Thus, the Ubp6 and Doa4 DUBs regulate Ub
recycling using a highly coordinated and regulated
circuitry (figure 3, inset). Other DUBs also contribute to Ub
homeostasis. In particular, Ubp14 cleaves unanchored
polyubiquitin chains to replenish cells with monomers of
Ub [41], while Ubp3, Ubp8 and Ubp10 contribute to recycling
of ubiquitin from polyubiquitin chains, though the signifi-
cance of their action in Ub homeostasis remains poorly
understood [90,96].
6. Deubiquitinase-mediated regulation of
protein quality control

As discussed above, proteotoxic stress caused by heat or other
environmental insults induces global protein unfolding/mis-
folding [97] which causes a profound and multi-component
cellular response. First, quality control systems mediated by
chaperones and the Ub proteasome or autophagy systems are
triggered, to either refold or degrade toxic non-native species.
Alternatively, proteins may remain in an unfolded state, and
accumulate as protein aggregates at discrete sites in the cell
[98–102]. Finally, as a compensatory mechanism, translation is
shut down upon severe heat shock to prevent accumulation
of additional misfolded species [103–105]. Thus, living systems
have evolved elaborate mechanisms for protein quality control
(PQC), and DUBs contribute to these mechanisms in several
ways, as outlined below.

6.1. Regulation of cytosolic protein quality control
Upon proteasomal inhibition, misfolded proteins tend to
partition into two compartments—the juxta/intra-nuclear
quality control compartment (JUNQ/INQ), and the insoluble
protein deposit (IPOD) that is situated near the vacuole
and colocalizes with the pre-autophagosomal structure
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[106–108]. A variety of studies implicate DUBs in PQC
involving these compartments. First, over-expression
of Doa4 causes partitioning of a reporter for misfolded
proteins, Ubc9ts-GFP, to the IPOD upon proteasomal inhi-
bition, while the reporter normally localizes to both the
JUNQ/INQ and IPOD compartments in wild-type cells
[106]. This phenotype may reflect the direct action of
Doa4 on the misfolded model substrate or may be an
indirect consequence of the role of Doa4 in Ub recycling.
Second, overproduction of Ubp3 also positively regulates
the degradation of Ubc9ts-GFP and can offset a deficiency
in Hsp70 chaperone activity both during heat shock and
ageing [109]. Ubp3 and its cofactor Bre5 are recruited to
heat-induced protein aggregate–stress granule complexes
[103,104] and stationary phase-induced stress granules
[110,111], consistent with a direct role of Ubp3 in quality con-
trol of functional and misfolded aggregates. Third, the E3
ligase Rsp5, with assistance from the Hsp70 co-chaperone
Ydj1, recognizes interaction motifs in misfolded proteins
upon severe heat shock that are otherwise hidden resulting
in their K63 polyubiquitination [112]. However, K63-
polyubiquitinated substrates are poorly recognized by the
proteasome and thereby not efficiently degraded [113].
Ubp3, along with Ubp2, associates with Rsp5 to reverse the
K63 polyubiquitin chains that Rsp5 builds on its misfolded
substrates and instead promotes K48 polyubiquitination by
an unknown E3 ligase, targeting them for proteasomal degra-
dation [114]. Thus, the chain editing functions of DUBs can
facilitate the degradation of misfolded proteins (figure 4a),
in collaboration with other enzymes. The mechanism of
recognition of the severity of protein aggregation/damage
by DUBs, and the interplay with the Hsp70/Hsp40/
Hsp104 tri-chaperone system and the proteasome, remains
largely unexplored.

6.2. Regulation of quality control of tail-anchored
proteins

While misfolded proteins represent a major class of PQC
substrates, a substantial fraction of the secretome transi-
ently resides in the cytosol before translocating into the
ER, and represents another class of substrates that needs
to be controlled by the proteostatic machinery. Cells have
evolved a mechanism termed pre-insertional endoplasmic
reticulum-associated degradation that involves recognition
of the C-terminal hydrophobic glycosylphosphatidylinositol
(GPI) anchoring sequences of non-inserted tail-anchored
proteins that have a prolonged residence time on the cyto-
solic leaflet of the ER by the Doa10 E3 ligase, which targets
them for degradation via the proteasome [115]. Ubp1, an
ER-associated DUB [116], antagonizes the activity of
Doa10 by deubiquitinating its substrates and thus extend-
ing their residence time at the cytosolic leaflet of the ER
[115]. Thus, the interplay between Doa10 and Ubp1 acts
as a ‘timer’ determining the fate of secreted proteins
(figure 4b, left panel).

6.3. Regulation of endoplasmic reticulum-associated
protein degradation

Protein homeostasis in the ER is maintained by a quality
control system called the ERAD pathway that retains
misfolded proteins in the ER, and promotes their ultimate
retrotranslocation into the cytosol, where they are polyubi-
quitinated, and degraded by the proteasome [117,118]. The
recognition of a misfolded protein in the ER lumen is best
understood for misfolded glycoproteins [117,119]. The
N-linked glycan on these proteins is trimmed to generate
α-1,6-mannose residue that is recognized by the multi-sub-
unit HRD complex, which includes the Hrd1 ubiquitin
protein ligase. Once a segment of the substrate reaches
the cytoplasmic side of the ER membrane, it is polyubiquiti-
nated by Hrd1 in concert with the E2, Ubc7 and its activator
Cue1 [118]. A complex containing the Cdc48 ATPase
is recruited to the Hrd1 complex via recognition of the poly-
ubiquitin chain by its cofactor Ufd1/Npl4, and the
polyubiquitinated substrate is then pulled through the central
pore of Cdc48. The DUB Otu1 interacts with Cdc48 to trim
the polyubiquitin chain (but does not completely remove
the chain) facilitating further threading of the substrate
through the central pore of Cdc48. Thus, Otu1 assists
Cdc48 in the extraction of misfolded proteins across the ER
membrane and targets the substrates that continue to be
ubiquitinated for proteasomal degradation [120]. The
relationship between Otu1 and Cdc48 provides another
illustration of how DUB-mediated polyubiquitin chain edit-
ing plays a crucial regulatory role in coordinating protein
turnover (figure 4b, right panel).
7. Deubiquitinase-mediated regulation of
ribophagy and proteaphagy

Ribophagy is an autophagic mechanism in which the 60S
ribosomal subunits are selectively degraded upon nitrogen
starvation [121]. In normal conditions, the 60S ribosomal sub-
units are protected from degradation by ubiquitination of the
Rpl25 component by the ribosome-associated E3 ligase, Ltn1
[122]. Upon nutrient limitation, the DUB Ubp3 deubiquiti-
nates L25 and targets 60S subunits for degradation via
autophagy in a Cdc48-Ufd3-dependent manner [123]
(figure 5a). Hence, in this context, Ubp3 activity favours
degradation of its substrate. Additionally, under conditions
of nitrogen starvation, Ubp3 confers selectivity in the degra-
dation of other factors involved in translation (eIF4GI,
eRF3) and mRNA degradation (Dcp2, and Pop2) via autop-
hagic and proteasomal degradation, respectively [124].
Therefore, by regulating the fate of both the translational
and mRNA-degradation apparatus, Ubp3 seems to play a
key role in reprogramming protein expression in response
to nutritional stress.

Nitrogen starvation also induces selective autophagy of
the both the RP and CP subunits of the proteasomes, a
process termed proteaphagy [125,126]. Nitrogen starvation-
induced proteaphagy is dependent on Atg1, a serine–threo-
nine kinase and master regulator of autophagy as well as
the core autophagy machinery [125,126]. However,
degradation of the CP alone seems to be further fine-tuned
by Ubp3 [126], placing Ubp3 at the crossroads of two major
proteolytic pathways in the cell—proteasome-mediated
degradation and autophagy (figure 5b). While the mechanis-
tic details remain to be explored, these results highlight the
pivotal roles for DUBs in maintaining protein homeostasis.
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membrane. The complex of Cdc48 ATPase and substrate leaves the membrane, and the DUB Otu1 trims the Ub chain, allowing release of the substrate from
Cdc48, and its subsequent degradation by the proteasome.
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8. Roles for deubiquitinases in regulation
of organelle morphology

8.1. Mitochondrial homeostasis

Mitochondria form a dynamic network that is constantly
remodelled by their fusion and fission. While fusion
promotes mixing of mitochondria, protects against loss of
mitochondrial DNA and supports an optimal bioenergetic
activity, their fission promotes their distribution and
inheritance [127,128]. The mitofusin Fzo1 is a conserved
dynamin-related GTPase that resides in the mitochondrial
outer membrane and mediates the fusion of mitochondria.
guanosine triphosphate (GTP)-binding promotes Fzo1
homodimerization and further oligomerization occurs upon
tethering of two mitochondria [127]. Subsequent GTP
hydrolysis probably triggers a conformational change in
Fzo1 allowing initial ubiquitylation of Fzo1 at K464,
mediated by the SCFMdm30 E3 ligase [129–132]. This
modification induces Ub chain formation on K398 of a
neighbouring Fzo1 molecule that further promotes outer
membrane fusion by enhancing intermolecular interactions.
The DUB Ubp12 deubiquitinates Fzo1 at K398 resulting in
reduced oligomerization of Fzo1, thus antagonizing mito-
chondrial fusion. Fzo1 is degraded by the proteasome
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drial homeostasis by the Ubp3, Ubp2 and Ubp12 DUBs is illustrated. The left panel illustrates deubiquitination of mitochondrial proteins by Ubp3 in complex with
cofactor Bre5, preventing autophagic degradation of the mitochondria or mitophagy. The right panel diagrams the role of DUBs Ubp2 and Ubp12 in mitochondrial
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histone chaperones and/or other regulatory complexes, and activation of transcription by RNAPII (RNA PolII).
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through ubiquitination at other lysine residues, whose modi-
fications are antagonized by the deubiquitinating activity of
Ubp2. Thus, by acting through two independent pathways,
Ubp2 and Ubp12 regulate Fzo1 stability and oligomerization
to control mitochondrial fusion and integrity [132] (figure 5c).

Recently, a method termed synthetic quantitative array
technology was developed to identify modulators of selective
autophagic degradation of mitochondria, a process termed
mitophagy, on a genome-wide level [133]. The DUB, Ubp3,
complexed with its cofactor, Bre5, was identified as a negative
regulator of mitophagy. Additionally, the Ubp3–Bre5 com-
plex, which is typically cytosolic, translocates dynamically
to mitochondria under conditions that trigger mitophagy
(target of rapamycin inhibition by rapamycin treatment)
[133–135]. The molecular mechanism by which Ubp3–Bre5
exerts its influence on mitophagy is unknown.

8.2. Regulation of COPI and COPII vesicles
Trafficking of proteins and lipids between the ER and Golgi
takes place through the COPII and COPI vesicles, respect-
ively. Regulated polymerization of COPII coatomers
including Sec23 onto the ER deforms the lipid bilayer and
results in formation of COPII-coated vesicles. Likewise,
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COPI vesicles are formed at the Golgi by polymerization of
COPI coatomers that include Sec27 [136]. Both Sec23 and
Sec27 are ubiquitinated and targeted to the proteasome by
the Rsp5 E3 ligase and the Cdc48 complex, and this activity
is antagonized by the Ubp3–Bre5 DUB [137–139]. The bio-
logical importance of this DUB activity is illustrated by a
massive expansion of the ER seen in ubp3Δ and bre5Δ
mutant cells. Hence, efficient protein trafficking involves a
regulatory balancing act between the E3 Rsp5 and the DUB
complex, Ubp3–Bre5.
rnal/rsob
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9. Deubiquitinase-mediated regulation of
chromosome segregation

Cse4 is a centromere-specific histone variant, which contrib-
utes to the unique attributes of centromeric chromatin that
enable attachment to the mitotic spindle. Mislocalization of
Cse4 to regions outside the centromere is deleterious and
causes aberrant chromosome behaviour and mitotic loss.
Non-kinetochore Cse4 is ubiquitinated by the Psh1 E3 ubiqui-
tin ligase and targeted for degradation via the proteasome. At
kinetochores, the stability of Cse4 is modulated by the Ubp8
DUB [140]. In ubp8Δ cells, Cse4 accumulates a short oligo-
meric chain of Ub (that is Psh1 independent) and is rapidly
degraded. Moreover, Cse4 seems to be massively misloca-
lized in ubp8Δ cells leading to chromosomal instability
[140]. The E3 ligases Ubr1, Slx5 and SCF (through the Rcy1
F-box protein) also regulate the ubiquitination and degra-
dation of Cse4 [141]. How these multiple E3 ligases work
with the DUB Ubp8 to ensure appropriate Cse4 degradation
remains poorly understood.
10. Roles for deubiquitinases in regulation
of transcription

10.1. Proteolytic regulation of RNA polymerase II
Stalling of RNA polymerase II (RNAPII) transcription causes
polyubiquitination of Rpb1, the largest subunit of RNAPII,
and its subsequent degradation by the proteasome leading
to disassembly of the RNAPII complex and cessation of
RNAPII stalling. The machinery used for ubiquitination of
Rbp1 depends on whether or not the RNAPII stalling reflects
the cellular response to DNA damage [142–149]. RNAPII stal-
ling induced by DNA damage involves association of the
Elc1–Cul3 E3 ligase with Def1, an RNAPII degradation
factor, to ubiquitinate Rbp1. By contrast, during DNA
damage-independent RNAPII stalling, there is an interplay
between the Rsp5 and Elc1/Cul3 E3 ligases along with
Def1 to ubiquitinate Rpb1 [144]. In addition, the Cdc48/
Ufd1/Npl4 complex and its Ub-binding adaptors Ubx5
and Ubx4 are required for ultraviolet-induced DNA
damage-dependent degradation of Rbp1 in stalled RNAPII
[149]. Whether this group of regulators is also involved in
DNA damage-independent degradation of Rbp1 is not
known.

In both DNA damage-dependent and -independent cases,
Rbp1 is degraded as a ‘last resort’, when RNAPII is persist-
ently stalled. As a first line of defence, the Ubp3 and
Ubp6/Ubp2 DUBs [144] deubiquitinate Rbp1 during DNA
damage-dependent and -independent RNAPII stalling,
respectively, allowing RNAPII to recover from stalling.
Also, Ubp2/Ubp6 action helps reverse K63 polyubiquitin
chains built on Rbp1 by Rsp5, and instead promotes Elc1/
Cul3-mediated K48 polyubiquitination, targeting it for
proteasomal degradation. Thus, the DUBs Ubp2/Ubp6 coor-
dinate the ‘tag-teaming’ of two E3 ligases via their Ub chain
editing functions to overcome transcriptional stalling of
RNAPII [143].

10.2. Regulation of RNA polymerase I and transcription
factor stability

The stability of Rpa190, the largest subunit of RNAPI, is regu-
lated by Ubp10. Ubp10 deubiquitinates Rpa190 preventing its
proteasomal degradation, thus controlling rRNA production
and coordinating cell growth [150]. Also, Tbp1, the TATA-
binding protein, is essential for transcriptional activation
mediated by Gal4 and Gcn4. The Ubp3–Bre5 complex deubi-
quitinates Tbp1 directly at promoters, antagonizing its
proteasomal degradation [151]. Thus, Ubp3 is required for
transcriptional activation of Tbp1-dependent genes.

10.3. Regulation of chromatin dynamics (histone H2B
ubiquitination)

Chromatin plays a crucial role in regulating transcription and
Ub modification of histones plays a significant role in chro-
matin compaction [152,153]. Histone H2B is ubiquitinated
at K123 by the Rad6/Bre1 E3 ligase which in turn primes
H3 for repressive methylation (H3K4me3 and H3K76me3)
via recruitment of the COMPASS and Dot1 histone methy-
lases [154]. Ubp8 and Ubp10 are both histone H2B DUBs
[155–157], but they have very different functions. Ubp8 cata-
lyses H2B deubiquitination in vitro and loss of Ubp8 increases
the global level of H2B ubiquitination in vivo [155,156],
suggesting that Ubp8 is the major H2B DUB. Ubp8 coloca-
lizes with H3K4me3, while Ubp10 binds to H3K79me3-
enriched sites, as well as telomeres and the rDNA locus
[157,158]. Furthermore, as a component of the SAGA acety-
lation complex, Ubp8 is required for the transcription of
SAGA-regulated genes [154]. H2B-Ub deubiquitination by
Ubp8 promotes Pol II CTD phosphorylation, which is a hall-
mark of transcription elongation and is required for
co-transcriptional mRNA processing [159] (figure 5d). Thus,
Ubp8 and Ubp10 act as modulators of crosstalk between
different PTMs on histones.
11. Cell signalling: interplay
between deubiquitination and
other post-translational modifications

Multiple interconnected signalling networks allow yeast cells
to adjust their metabolism, gene expression, mating and
developmental programmes in response to internal and exter-
nal stimuli [160]. DUBs are versatile components of signalling
networks in yeast, often influencing the activity of key regu-
lators such as protein kinases. For example, Ubp8 positively
regulates signalling by deubiquitinating the AMP-activated
protein kinase, Snf1, and promoting its stability [161].
Additionally, via an obscure mechanism, Ubp8 and Ubp10
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together influence the activity of Snf1 through modulation of
its phosphorylation status [162]. By contrast, deubiquitination
of other kinases and their regulators by Ubp3 promotes their
proteasomal degradation, causing inhibition of downstream
signalling events including: (i) the cell wall integrity pathway
kinase Pkc1 during cell wall stress [163]; (ii) the mating acti-
vated protein kinase Ste7 [164,165] during the pheromone
response and; (iii) the RasGAP, Ira2, that functions in the
protein kinase A pathway [166].

The yeast Hog1 protein is a stress-activated protein kinase
that physically interacts with and phosphorylates Ubp3 at
Ser695. Phosphorylated Ubp3 is recruited to osmo-responsive
genes and facilitates efficient initiation of transcription by
deubiquitinating Rpb1, the largest subunit of RNAPII [167].
Several additional phosphorylation sites have been identified
in other yeast DUBs (summarized in table 1) whose func-
tional relevance remains to be explored. The DUB Ubp2 is
modified by oxidation of its catalytic cysteine following
exposure to hydrogen peroxide, inactivating its DUB activity.
This inactivation leads to accumulation of K63-linked polyu-
biquitin chains on ribosomal proteins and stabilization of the
assembled 80S ribosome and the polysome to help cells cope
with oxidative stress [168]. As noted earlier, several DUBs
have cysteine as their catalytic residue, thus signalling-
based redox regulation of DUBs may be a widespread
theme in DUB biology.
12. Roles of deubiquitinases in regulation
of the cell cycle

Ubiquitination of cell cycle regulators is integral to ensuring
appropriate regulation of cell division, and specific roles for
DUBs in cell cycle control have been discovered. For example,
ubiquitylation of proliferating cell nuclear antigen (PCNA), a
sliding clamp protein with many roles in DNA replication,
plays a key role in the tolerance toDNAdamage in eukaryotes.
Ubp10 forms a complex with PCNA resulting in its
deubiquitylation during S-phase and loss of UBP10 differen-
tially alters the interaction of PCNA with DNA polymerase
ζ-associated protein Rev1 and with an accessory subunit
Rev7. Specifically, while mutation of UBP10 enhances
PCNA–Rev1 interaction, it decreases Rev7 binding to the slid-
ing clamp [169]. Additionally, Ubp10 prevents degradation of
Dbf4, the regulatory subunit of the Cdc7 kinase complex that
initiates DNA replication [62]. The G1/S-phase transition of
the cell cycle is also regulated by Ubp15, which stabilizes the
S-phase cyclin Clb5, thus promoting entry into S-phase.
13. Perspectives
We are beginning to understand the general principles of
DUB function, but many questions about the mechanisms
of substrate and polyubiquitin chain recognition by DUBs
and their condition-specific functions remain to be explored.
Also, the extensive PTM of DUBs, including ubiquitination,
sumoylation and phosphorylation, suggest that DUBs are
regulated by and involved in many signalling pathways in
the cell, yet the function of most PTMs on DUBs is unknown.
Advances in mass spectrometric methods for detecting PTMs
on proteins promise to help advance our understanding of
DUB regulation and help in the identification of new DUB
targets. Given the high degree of conservation of biological
processes between yeast and humans, systematic studies in
yeast should provide a reference map for unravelling
human DUB function.
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