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Background and PurposeaaConventional therapies for ischemic stroke include thrombolytic 
therapy, prevention of inappropriate coagulation and thrombosis, and surgery to repair vascular 
abnormalities. Over 10 years have passed since the US Food and Drug Administration approv-
ed intravenous tissue plasminogen activator for use in acute stroke patients, but most major 
clinical trials have failed during the last 2 decades, including large clinical trials for secondary 
prevention and neuroprotection. These results suggest the presence of heterogeneity among stroke 
patients. Neuroimaging techniques now allow changes to be observed in patients from the acute 
to the recovery phase. The role of MRI in stroke evaluation and treatment is discussed herein. 

Main ContentsaaThree MRI strategies are discussed with relevant examples. First, the fol-
lowing MRI strategies for acute ischemic stroke are presented: diffusion-perfusion mismatch, 
deoxygenation (oxygen extraction and cerebral metabolic rate of oxygen), and blood-brain 
barrier permeability derangement in selected patients for recanalization therapy. Second, mul-
timodal MRI for identifying stroke mechanisms and the specific causes of stroke (i.e., patent 
foramen ovale, infective endocarditis, and nonbacterial thrombotic endocarditis) are presented, 
followed by MRI strategies for prevention of recurrent stroke: plaque images and flow dynamics 
for carotid intervention. 

ExpectationsaaThe studies reviewed herein suggest that using MRI to improve the understand-
ing of individual pathophysiologies will further promote the development of rational stroke ther-
apies tailored to the specifics of each case. J Clin Neurol 2009;5:107-119
 
Key Wordsaaatherosclerosis, stroke, perfusion, personalized treatment, MRI. 
 

 

Introduction: Lessons from  
Recent Failures 

 

Stroke is a leading cause of death, along with cancer and cor-
onary heart disease, and is the most common cause of physical 
disabilities in adults. Conventional therapies for ischemic 
stroke include thrombolytic therapy, prevention of inappro-
priate coagulation and thrombosis, and surgery to repair vas-
cular abnormalities. Over 10 years have passed since the US 
Food and Drug Administration approved intravenous tissue 
plasminogen activator (tPA) for use in acute stroke patients. 
Most major stroke trials have failed during the last 2 decades, 
including the following: 

1) Large clinical trials of secondary prevention (enrolling 
up to tens of thousands of patients in each study), such as the 
Warfarin-Aspirin Symptomatic Intracranial Disease Study,1 

the Management of Atherothrombosis with Clopidogrel in 
High-Risk Patients with Recent Transient Ischemic Attack or 
Ischemic Stroke, and Clopidogrel for High Atherothrombotic 
Risk and Ischemic Stabilization, Management and Avoidance 
studies.2 

2) Recent randomized trials of new thrombolysis agents, 
such as the Desmoteplase In Acute Ischemic Stroke (DIAS)-
II and Abciximab in Emergent Stroke Treatment-II trials.3 

3) Stroke Therapy Academic Industry Roundtable criteria-
guided Neuroprotection Trial (NXY-059).4 

These results indicate the need for measuring patient het-
erogeneity in stroke (i.e., individualization of the patient).5 
Unlike coronary heart disease, strokes are caused by numerous 
etiologies, including large-artery atherosclerosis, cardioem-
bolism, and lacunar stroke. Neuroimaging techniques now 
allow changes to be observed in patients from the acute to 



 
 
 
 
 
Multimodal MRI for Ischemic Stroke 

 108 J Clin Neurol 2009;5:107-119

the recovery phase. The role of MRI in stroke evaluation and 
treatment is discussed herein. 

 
MRI Imaging for the Acute  

Treatment of Ischemic Stroke 
 

Brains in the general population, but not isolated 
cases 
In the setting of acute ischemic stroke, arterial recanalization 
to restore antegrade perfusion to the ischemic territory remains 
the principal therapeutic approach. In the current era of evi-
dence-based medicine, clinical benefit is measured by the 
number needed to treat (NNT).6,7 It has been reported that 
the NNT for tPA to avert one case of dependence or death 
after stroke is 8.4.8 In other words, for every 100 patients 
with acute stroke treated with tPA, approximately 32 have a 
better final outcome, 3 have a worse final outcome as a result 
of treatment,9 and approximately 1 will experience a severely 
disabling or fatal outcome because of tPA-related symptoma-
tic intracerebral hemorrhage.10 

Evidence-based medicine requires standardized therapy 
rather than idiosyncrasy.11 However, individual patient out-
comes need to be considered in acute stroke for several rea-
sons. First, individual hemodynamic characteristics are highly 
variable,12 potentially reducing the validity of the NNT. Se-
cond, the few effective acute stroke treatments (including 
intravenous or intra-arterial fibrinolysis, and endovascular 
mechanical therapy) do not provide a gold-standard treatment. 
Last, but not least, the NNT is limited by the narrow indica-
tion for recanalization therapy (“not too late” and “not too 
large”), which is a relatively small percentage of the total 
population. The approval of tPA was based on the patient re-
ceiving it within 3 h of stroke symptom onset,8 which limits 
the number of patients who can receive it.13,14 Thus, stroke 
treatment represents an important opportunity for personaliz-
ed medicine. 

 
The “MRI-based” clock 
Thrombolysis must be performed quickly because the benefit 
diminishes and the risk of bleeding increases as time ela-
pses.15,16 Until now, the time elapsed from the clinical onset 
of stroke to the start of treatment (“onset-to-treatment” clinical 
clock) has been an important concept in stroke treatment.15 
Efforts to administer tPA quickly have included education on 
stroke identification, telemedicine, and emergency room re-
organization.17,18 

Prior to attempted recanalization, the prediction of final 
infarct volume should recanalization not occur may facilitate 
candidate selection. Neuroimaging techniques have now pro-
vided the concept of the “MRI-based clock.” MRI can provide 

information on tissue status (diffusion-restriction and hemo-
dynamic compromise), anatomical aspects [integrity of the 
blood-brain barrier (BBB) and the site of vascular occlusion], 
and metabolic conditions (oxygen extraction and cerebral 
metabolic rate of oxygen), which allows the tailored appli-
cation of recanalization therapy. These techniques could then 
increase the NNT and reduce the number needed to harm, ex-
pand the current narrow (<3 h) therapeutic window for acute 
stroke therapy, and enable more patients to be candidates for 
recanalization strategies.19 

 
Diffusion-perfusion mismatching 
Within minutes of an ischemic insult, a core region of tissue 
exhibits profound loss of blood flow and becomes irreversi-
bly damage, even if blood flow is rapidly restored. However, 
the surrounding zone (penumbra) of moderate blood flow may 
still be rescued for several hours or more after symptom onset, 
and hence represents a suitable target for therapy. 

The most common technique for imaging the ischemic 
penumbra in acute ischemic stroke patients is combined dif-
fusion-weighted imaging (DWI) and perfusion-weighted im-
aging (PWI). DWI detects decreases in the self-diffusion of 
water molecules within minutes of onset; these changes are 
probably related to cellular energy failure and early cytotoxic 
edema, reflecting the physiologic consequences of ischemic 
injury. PWI provides a map of relative cerebral blood flow 
(CBF), permitting the identification of hypoperfused tissues. 
MRI characterization of the ischemic penumbra, as defined by 
the diffusion-perfusion mismatch, can delineate penumbral 
and irreversibly infarcted fields with a similar degree of re-
liability to the gold standard, positron-emission tomography 
(PET).20 A significant diffusion-perfusion mismatch may be 
present up to 24 h or more after symptom onset, but mismatch 
volume progressively decreases over time.21 The presence of 
a diffusion-perfusion mismatch could justify recanalization 
therapy beyond 3 h. For example, the phase II desmoteplase 
trials demonstrated that thrombolysis beyond 3 h works in 
patients with a significant penumbral area on pretreatment 
imaging.22,23 Multiparametric MRI, including DWI and PWI, 
has increasingly been used in clinical practice,24,25 although 
many uncertainties still exist.26 

 
Patients Likely to Have  

a Favorable Clinical Response  
to Recanalization Therapy 

 
In a prospective, multicenter study, pretreatment MRI could 
be used to differentiate between subgroups of stroke patients 
likely to benefit from reperfusion therapies given 3-6 h after 
stroke onset.27 The study also provided a simple but valuable 
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MRI categorization strategy with profiles that are strongly 
associated with clinical outcomes after reperfusion therapy 
(i.e., mismatched vs. matched vs. small vs. malignant). Using 
30-day fluid-attenuated inversion recovery (FLAIR) images, 
the Diffusion-weighted Imaging Evaluation For Understand-
ing Stroke Evolution (DEFUSE) trial group reported a signi-
ficant association between recanalization and reduced infarct 
growth in patients with mismatch who were treated with tPA 
within 3-6 hours after stroke onset.28 Patients who exhibited 
a target mismatch pattern had a favorable clinical response to 
recanalization therapy (Fig. 1). However, diffusion-perfusion 
mismatch is only one contributor to tissue fate, even when 
recanalization is complete.29 

Two variables characterize the extent of hypoperfusion: the 
volume of hypoperfused tissue and the intensity or severity 
of hypoperfusion within these regions.27 Most studies have 
focused on the extent of hypoperfusion. The hemodynamic 
effects of the collateral circulation are important in maintain-
ing perfusion in the penumbral regions.30 Using pretreatment 

angiographic and MRI data in acute stroke patients, we have 
shown that pretreatment collaterals may influence the severity 
of ischemic injury over the hypoperfused region.29 Patients 
with good collaterals had larger areas of mildly hypoperfus-
ed tissue than those with poor collaterals,29 and infarct growth 
within the penumbral zone was smaller when collaterals were 
better, irrespective of the degree of recanalization.29,31 

The collateral supply can be visualized using a dedicated 
MRI method (subtracting the image of the first movement 
map).32 We found that, compared to the large cortical DWI 
pattern, the deep-infarcts pattern exhibited less severe hypo-
perfusion related to good collateral flows.33 In addition, the 
perfusion status may largely depend on the stroke subtype; 
stroke patients with large intracranial atherosclerosis had dif-
ferent mismatch profiles, which were related to better collat-
erals, compared to other subtypes.34 

The penumbra area is defined as a region of hypoperfusion 
but with some remaining metabolic activity. Thus, metabolic 
conditions such as the oxygen extraction fraction (OEF) and 

Fig. 1. Pretreatment DWI and PWI findings and final DWI findings of three patients with the target mismatch pattern (a PWI lesion that was
≥10 mL and ≥120% of the DWI lesion). A: Patients showing a favorable clinical response and no infarct growth after complete recanaliza-
tion. B: Patients with good collaterals, showing minimal or no marked infarct growth after recanalization. C: Infarct growth was observed in
patients with poor recanalization, despite recanalization. Figure modified from Bang et al.29 DWI: diffusion-weighted imaging, PWI: perfusion-
weighted imaging, TTP: time to peak. 
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the cerebral metabolic rate of oxygen also influence tissue 
fate after recanalization. Metabolic conditions in the ischemic 
penumbra may be predicted more accurately than simple dif-
fusion-perfusion mismatch (which frequently overestimates 
the final lesion). They can enable visualization of the area of 
stage II hemodynamic failure (increased OEF).35 Although 
PET measurement of cerebral blood volume (CBV), CBF, 
OEF, and regional cerebral metabolic rate of oxygen can iden-
tify stage II hemodynamic failure, its clinical use is limited, 
especially in acute stroke settings. MRI can detect misery 
perfusion (increased brain OEF in an area with reduced CBF 
but preserved oxygen metabolism).36,37 T2*-weighted gra-
dient-echo (GRE) imaging can also assess brain tissue via-
bility.36,38-40 GRE imaging is extremely sensitive to magnetic 
field inhomogeneities, since acute decreases in GRE imaging 
occur in animal models and stroke patients due to blood de-
oxygenation and increased OEF.36,41,42 The paramagnetic effect 
of deoxyhemoglobin produces blood-oxygen-level-dependent 
(BOLD) contrast.43 OEF values from MRI and PET are gen-

erally consistent.39 By applying either quantitative BOLD im-
aging36,39,44 or directly demonstrating intravascular deoxygena-
tion changes on T2*-weighted GRE imaging,40,45 increased 
OEF can be measured as an increase in deoxyhemoglobin. 
These measures offer an estimation of the oxygen utilization 
and provide additional information concerning the metabolic 
state of the threatened brain. 

Fig. 2 shows a case with prominent hypointense lepto-
meningeal vessels. Although mismatch areas showed an ex-
tensive, severe delay in time-dependent PWI [time to peak 
after deconvolution (Tmax) delayed by 8 s or more], suggest-
ing an ischemic core, increased CBV and GRE-hypointense 
vessels within the hypoperfused area suggested the presence 
of viable tissue.36,39 CBV was increased in these areas, re-
flecting an efficient collateral blood flow soon after arterial 
occlusion, which may indicate the ability of ischemic tissue 
to compensate for a decreased CBF.40 Hypointense vessels 
were correlated with a larger perfusion defect and a larger 
perfusion delay, but an increased CBV.45 These hypointense 

Fig. 2. DWI performed 4 h after symptom onset, disclosing multiple acute cortical and basal ganglia infarcts. A more extensive perfusion
abnormality with mismatch was noted throughout the right middle cerebral artery (MCA) bed. However, CBV sustained the ischemic regions,
and hypointense leptomeningeal and periventricular vessels were observed on GRE imaging. Recanalization with intra-arterial thrombolysis
at 6 h resulted in complete reperfusion. No new lesions developed, as observed on the 90th day FLAIR imaging. Figure modified from Bang
et al.103 DWI: diffusion-weighted imaging, CBV: cerebral blood volume, GRE: gradient-echo, FLAIR: fluid-attenuated inversion recovery.
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areas on GRE imaging became infarcted during the subacute 
and chronic phases.36,46 Brain areas with hypointense signal-
ing on GRE imaging may be targets for acute therapy to im-
prove compromised cerebral circulation.36 However, further 
validation of GRE imaging for assessing brain tissue viabi-
lity is necessary, and it is limited by susceptibility artifacts.38 

No parameters among CBV, CBF, mean transit time (MTT, 
first movement of the signal intensity curve), time to peak 
(TTP), and time to maximum tissue residue function (Tmax, 
time to peak after deconvolution), is superior in predicting 
tissue fate after recanalization. The size of a perfusion lesion 
differs markedly depending on which of the ten PWI post-
processing methods are used.47 The time-domain perfusion 
parameters (e.g., MTT, TTP, and Tmax) are being used increas-
ingly in clinical practice, but may have considerable draw-
backs in certain situations. For example, PWI may yield in-
consistent data from time-dependent and nondependent do-
mains; patients with severe delays in perfusion may a have 
preserved CBV (Fig. 2). Prominent dispersion and CBV pres-
ervation or augmentation might sustain the ischemic regions. 
A multiparameter approach has been suggested to help define 
the PWI abnormalities, by combining data from relative CBF, 
regional CBV, and time-domain maps.48 In certain clinical 
settings of acute ischemic stroke with prominent collaterals 
at the time of PWI acquisition (such as populations in which 
intracranial occlusive disease is prevalent), time-domain PWI 
parameters may overestimate the perfusion severity and extent 
and should be interpreted with caution; a non-time-domain 
PWI parameter may be needed.48 

Patients who are Unlikely to  
Exhibit a Favorable Clinical Response  

to Recanalization Therapy 
 

Patients who do not exhibit mismatch patterns are unlikely 
to have a good clinical response to recanalization therapy, 
because it has been shown that in the presence of reperfusion, 
an increasing mismatch ratio was associated with a higher 
response rate (Fig. 3).49 The DEFUSE trialists exhibited the 
current mismatch ratio of 1.2 to 1.8-2.6, although this may 
reduce the number of patients with mismatch (eligible for re-
perfusion therapy) by 15-25%.49 Overestimation of the pen-
umbra area may have contributed to the failure of the recent 
reported DIAS-II trial to document benefits of recanalization 
therapy in mismatch patients.50 Thus, reperfusion in patients 
with a mismatch ratio below these cutoffs may have no ben-
eficial effects, and may in fact be harmful. Further studies are 
needed to determine the optimal definition of a target mis-
match pattern, as well as the mismatch ratio, PWI parameter, 
and each threshold.26,50 

Hemorrhagic transformation (HT)-which is a much-feared 
complication of recanalization therapy for acute ischemic 
stroke-and hemorrhagic stroke can be visualized with high 
sensitivity and specificity. GRE imaging accentuates the par-
amagnetic properties of blood products such as deoxyhemo-
globin, intracellular methemoglobin, and hemosiderin, and 
can detect hemorrhage and intravascular clots. A prospective 
multicenter trial has shown that GRE imaging is as accurate 
as CT at detecting acute hemorrhage in patients with acute 

Fig. 3. DWI (A) and PWI (B) findings of 
a patient who exhibited the no-match 
pattern (a PWI volume <120% of the
DWI lesion volume). The lesion was lo-
cated on a relatively silent brain area.
(C) Relationship between the number
of patients with mismatch and the odds
of a favorable clinical response follow-
ing early reperfusion, and the mismatch
ratio (the volume ratio of Tmax ≥2 s over 
the DWI lesion).49 DWI: diffusion-weight-
ed imaging, PWI: perfusion-weighted im-
aging. 
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stroke.51 
Fig. 4 shows a case with HT, and demonstrates the rela-

tionship between the severity of tissue damage and the devel-
opment of subsequent HT. A recent multicenter study found 
that the risk of symptomatic intracranial hemorrhage after 
thrombolytic therapy increased with increased DWI lesion 
volume.52 The DEFUSE trial defined this malignant profile 
as extensive severe hypoperfusion with a large DWI lesion 
volume.27 In that study, early reperfusion was associated with 
fatal intracranial hemorrhage in patients with a malignant 
profile. 

There have been numerous efforts to predict HT using 
MRI. Diffusion-perfusion characterization of the ischemic 
territory may help identify patients at increased risk for HT 
after recanalization therapy: DWI lesion volume,52 apparent 
diffusion coefficient (ADC),53 and degree of hypoperfusion.27,54 

Additional MRI parameters may also reflect an increased risk 
for HT after thrombolysis: leukoaraiosis,55 cerebral micro-
bleeds, early parenchymal enhancement,56 and early cerebro-
spinal fluid hyperintensity.57 

BBB permeability dysfunction often precedes HT. Gado-
linium (Gd) contrast agents are routinely used to detect BBB 
opening in patients with strokes or tumors, although routine 
Gd enhancement does not detect modest changes in BBB 
permeability. Suboptimal delivery of the contrast agent to the 
affected region due to a lowered CBF may result in these 
subtle changes in BBB permeability being missed.58 Permea-
bility assessment methods have shown permeability deran-
gement in patients with ischemic stroke or malignant brain 
tumors,59,60 and recently with ischemic stroke that could not 
be demonstrated by simple postcontrast spin-echo imaging 
alone.61,62 We have applied a novel MRI permeability assess-

Fig. 4. A case showing the malignant profile on baseline MRI (a DWI lesion ≥100 mL and/or a PWI lesion of Tmax delay ≥8 s and ≥100 mL).
A: DWI performed 1 h after symptom onset, disclosing small acute cortical and basal ganglia infarcts. B: A more extensive perfusion ab-
normality with severe delay (Tmax ≥8 s, >100 mL) was noted throughout the right MCA distribution. C: Pretreatment permeability slope image
showing breakdown of the BBB. The white line delineates the slope of increasing Gd concentration after bolus passage and expected de-
creasing concentration during later times. The green line represents the slope of increasing Gd concentration during later times in patients
with a dysfunctional BBB. Figure modified from Bang et al.62 D: The patient showed clinical worsening with hemorrhagic transformation
during follow-up. DWI: diffusion-weighted imaging, PWI: perfusion-weighted imaging, BBB: blood-brain barrier, MCA: middle cerebral artery,
Gd: gadolinium. 
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ment technique that employs perfusion scan source data to 
assess BBB dysfunction in acute ischemic stroke and evaluate 
the association between permeability changes and subsequent 
HT after recanalization therapy.62 In this study, some degree 
of HT occurred in 12 of 32 patients. Permeability image ab-
normalities at baseline were present in 7 of 12 patients with 
HT and in none of 20 patients without HT on follow-up ima-
ges. These preliminary data suggest that permeability images 
derived from pretreatment perfusion MRI data identify pa-
tients at risk of HT with high specificity. MRI guidance of 
interventional decision-making may be improved by supple-
menting standard penumbral imaging (indicating the poten-
tial to benefit from recanalization) with the use of slope ima-
ging (which identifies individuals with BBB disruption who 
are at high risk of harmful treatment effects due to HT). Ex-
cluding patients at high risk of HT may improve the safety 
profile and risk: benefit ratio. 

Permeability derangement is a dynamic process associated 
with ischemic stroke pathophysiology and recanalization ther-
apy. Although disruption of the BBB is a necessary (albeit 
not sufficient) condition for intracerebral hemorrhage, it can 
be benign in certain conditions.63,64 Even if BBB leakage is 
present, the patterns and destiny of permeability derangement 
vary. Moreover, predictors of permeability derangement may 

be different pre- and posttreatment.64 
Finally, the clinical features and lesion site are also im-

portant; location may be more important than the volume of 
salvageable tissue. Patients with a similar infarct volume may 
show variable severity of neurologic deficits; some patients 
may have lesions in critical regions such as the corticospinal 
area, versus less critical areas such as the association cortex 
(e.g., the case presented in Fig. 3). The latter patients might 
not be candidates for potentially harmful recanalization the-
rapy. Dr. Lev indicated the importance of “location-weight” 
scoring over simple volumetric data in penumbra areas.65 
Locating the mismatch before treatment may help to predict 
the potential benefits of reperfusion.66 

 
Identification of Stroke Mechanisms 
 

Multimodal MRI can identify the age and vascular territories 
involved in infarcts (Fig. 5). In most centers, the diagnosis of 
ischemic stroke subtype is performed during the first few 
days or weeks after hospitalization. Multimodal MRI, includ-
ing DWI and magnetic resonance angiography (MRA), per-
formed within a few hours of arrival at the hospital allows 
the rapid and accurate identification of early ischemic sub-
types.67,68 In particular, a cardioembolism can easily be esta-

Fig. 5. A case of multiple small infarcts within multiple vascular territo-
ries, suggesting cardioembolism or other causes. A transesophageal 
echocardiogram revealed mobile thrombi on the heart valve. A nodular 
lesion was found on chest examination, and the final diagnosis was 
established as nonbacterial thrombotic endocarditis caused by non-
small-cell lung cancer. A: DWI, ADC, and T2-weighted images show-
ing cerebral infarcts of varying ages, which suggest very active early 
recurrence over time and portends a high risk of further ischemic 
events.73 The patient was treated with anticoagulation. B: Signal in-
tensities of different MRI parameters vary differently after the onset of 
ischemic stroke. DWI: diffusion-weighted imaging, ADC: apparent dif-
fusion coefficient. 
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blished when patients exhibit acute lesions in multiple vas-
cular territories, enabling the physician to consider early anti-
coagulant use.67 

The infarct pattern on DWI is correlated with the patho-
genic mechanisms underlying the stroke and may predict 
stroke recurrence and outcome.69 Small acute lesions in 
multiple vascular beds on DWI provide insight into the stroke 
mechanism by predicting the proximal source of the embo-
lism.70,71 In addition, the ADC may be useful for estimating 
the lesion age and distinguishing acute from subacute DWI 
lesions.72 Acute ischemic lesions can be divided into hype-
racute lesions (low ADC and DWI-positive) and subacute le-
sions (normalized ADC). Chronic lesions can be differentiat-
ed from acute lesions by normalization of ADC and DWI. 
The presence of multiple DWI lesions of varying ages sug-
gests active early recurrences over time and portends a higher 
early risk of future ischemic events.73 

Multimodal MRI may also indicate stroke mechanisms. 
Silent cerebral microbleeds that are visible on T2*-weighted 
imaging may be seen as corticomeningeal microbleeds in 
patients with infective endocarditis,74 enabling the provision 
of appropriate antimicrobial therapy and avoiding antithrom-
botic treatment, which could cause increased mortality. In 
contrast, it has been shown that patients with nonbacterial 
thrombotic endocarditis exhibit multiple disseminated infarc-
tions of varying size, with at least one medium or large lesion 
on DWI.75 Large thrombi that are fragile (i.e., lacking an 

inflammatory reaction and with little cellular organization) 
could underlie this DWI pattern, distinguishing it from infec-
tive endocarditis or cardioembolic stroke.75 Finally, patent 
foramen ovale is a potential risk factor for ischemic stroke 
and shows different infarct patterns on DWI. Patients with 
patent foramen ovale showed embolic infarcts, especially 
multiple lesions in the posterior circulation,76 which may re-
flect the finding of higher blood flow in the posterior circu-
lation than the anterior circulation during the Valsalva ma-
neuver.77 

Small-vessel disease resulting from hypertension is the 
most common cause of stroke, and has characteristic clinical 
features and a good prognosis. DWI allows the detection of 
silent infarctions at different sites from the symptomatic, 
small, deep infarction, and concomitant small lesions outside 
the striatocapsular distribution could be identified. We have 
reported that proximal middle cerebral artery lesions are a 
common cause of small deep infarcts,78 and that patients with 
parental arterial disease (by branch atherosclerosis) are more 
likely to have recurrent strokes and a poor long-term progno-
sis.79 These results emphasize the importance of performing 
vascular studies in intracranial vessels, as indicated in Fig. 6. 

The traditional criterion of an infarct size of <15 mm has 
recently been challenged.80,81 The infarct size in patients with 
symptomatic small arterial occlusions varied from 3.1 to 38.7 
mm.81 A new stroke classification (Scandinavian Stroke Scale-
Trial of Org 10172 in Acute Stroke Treatment)82 that used an 

Fig. 6. Three cases with small, deep in-
farcts. A: Small, deep infarcts suggesting
lacunar stroke, but MRA revealed MCA 
atherosclerosis, suggesting the pres-
ence of mural thrombi occluding the or-
ifices of the lenticulostriate arteries. B:
A relatively large, deep infarct but normal
parent arteries, suggesting common trunk
occlusion. High-resolution MRA (7.0 T)
showing an example of four lenticulost-
riate arteries branching from a single 
trunk of the left MCA. Figure modified 
from Cho et al.83 C: A patient with pre-
vious lacunar stroke who developed ps-
eudobulbar palsy during aggressive an-
tiplatelet and anticoagulation therapy. 
DWI was negative, but GRE imaging 
showed multiple microbleeds in the bi-
lateral basal ganglia and thalamus, and 
periventricular leukoariosis. MCA: mid-
dle cerebral artery, MRA: magnetic res-
onance angiography, DWI: diffusion-
weighted imaging, GRE: gradient-echo.
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infarct size criterion of 20 mm rather than 15 mm was de-
signed for the diagnosis of lacunar stroke. The large variation 
of infarct size may be related to the branching patterns of 
perforating arteries (Fig. 6); Cho et al.83 recently showed an 
atypical branch pattern using high-resolution MRA. 

It has been shown that recurrent intracranial hemorrhage 
is more frequent following lacunar vs. nonlacunar infarction.84 
Another study has shown that the prevalence of microbleeds 
was higher in lacunar stroke (62%) than in other infarct sub-
types (21-30%),85 which may be attributable to the increased 
risk of subsequent intracranial hemorrhage. These results 
suggest the importance of performing GRE imaging to avoid 
aggressive antithrombotic therapy and possible bleeding com-
plications in patients with multiple microbleeds. 

 
Stroke Prevention and Recovery 

 
Atherosclerosis is an inflammatory disease. Coronary and ca-
rotid histology show that inflammatory cells such as macro-
phages mediate the development and progression of athero-
sclerosis. In addition, inflammatory markers such as C-reac-
tive protein are associated with the progression of atheroscle-
rosis and stroke recurrence. Vulnerable plaques typically have 
a substantial lipid core and a thin fibrous cap. Thrombotic 
coronary artery occlusion usually follows rupture of an un-
stable atherosclerotic plaque; the at-risk or vulnerable asymp-
tomatic atherosclerotic coronary artery plaque is not asso-

ciated with high-grade stenosis. Carotid atherosclerosis has 
many identical clinical and pathological features to coronary 
atherosclerosis. 

Plaque vulnerability is identified by MRI86 in three ways 
(Fig. 7): 1) multicontrast MRI, 2) commercially available 
nonspecific contrast agents, and 3) molecular imaging probes 
(for details see the review by Briley-Saebo et al.86). Multi-
contrast MRI characterizes the key structures (e.g., the lipid 
core, fibrous cap, and intraplaque hemorrhage) using signal 
variation after pulse sequences (with T1-, T2-, and proton-
density-weighted images being the most commonly used) to 
identify plaque composition. MRI-based tissue quantification 
is accurate and reproducible; when compared with carotid 
endarterectomy specimens, in vivo multicontrast MRI could 
distinguish advanced lesions from earlier atherosclerotic pla-
ques.87,88 Commercially available nonspecific contrast agents 
(i.e., Gd-diethylenetriamine penta-acetic acid) can reveal 
plaque structures that are indicative of vulnerability (e.g., 
necrotic lipid cores and fibrous caps) and allow the assessment 
of plaque neovascularization.86 Contrast agents that charac-
terize thrombi are under development.89,90 

Molecular imaging probes targeted to biochemical and/or 
cellular targets (such as macrophages, matrix metalloprotein-
ase) can indicate plaque vulnerability.86 Ultrasmall superpa-
ramagnetic particles of iron oxide (USPIO) are the best stud-
ied in stroke patients.91,92 USPIO are nanoparticles of iron 
oxide that can be taken up by macrophages, thus decreasing 

Fig. 7. A case with carotid atherosclerosis. A: CT angio-
gram showing a stenotic lesion at the carotid bifurcation, 
as a result of an atherosclerotic plaque (low-density area)
with surrounding foci of calcification. B: T1-weighted image 
obtained 7 and 14 min after administration of 0.2 mmol 
Gd/kg of Gd-diethylenetriamine penta-acetic acid (Gd-
DTPA) in a human carotid artery (at 1.5 T). Following in-
jection of Gd-DTPA, the necrotic lipid core and fibrous cap 
are clearly identified relative to the precontrast images. 
Figure from Briley-Saebo et al.86 C: MRI measurement of 
the wall shear stress vectors in normal subjects. The shape 
and location of wall surfaces that are subject to low wall 
shear stress differ from subject to subject. Figure modi-
fied from Zhao et al.100,102 Gd: gadolinium.  
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the MRI signal. Macrophage accumulation in the carotid 
plaque can be visualized using GRE imaging (as a signal 
decrease in part of the vessel wall after USPIO administra-
tion).91 Both histological analysis and MRI of symptomatic 
patients who have undergone carotid endarterectomy have 
shown that macrophage accumulation (shown by USPIO) was 
more prevalent in the ruptured and rupture-prone lesions than 
in the stable lesions.91 Areas of reduced signal intensity were 
observed in 24 out of 27 patients (89%) with symptomatic 
carotid stenosis.92 

Thrombogenicity is related to hemorheology (e.g., high 
shear stress, oscillatory shear stress, and local stasis) as well 
as local (i.e., plaque structure) or systemic (e.g., inflammation) 
conditions.93-97 Clinical studies of intra-aneurysmal hemo-
dynamics have shown that specific flow patterns may be 
related to risk of aneurysm rupture.98 Similarly, the greatest 
atherosclerotic plaque accumulation typically occurs on the 
outer wall of the proximal segment of the sinus of the in-
ternal carotid artery, in the region with the lowest wall shear 
stress.99 MRI can measure wall shear stress vectors in normal 
subjects or in patients with carotid atherosclerosis.100,101 The 
shapes and locations of low-shear-stress wall surfaces differ 
between individuals,100,102 which may explain why strokes 
recur in some patients and not in others. Although the degree 
of stenosis is the key factor to consider before intervention, 
patients with the same degree of stenosis on the carotid bi-
furcation or intracranial vessels do not have the same rate of 
progression of stenosis or stroke recurrence. Measurement of 
the role of flow pattern (i.e., wall shear stress and oscillation) 
on the development and progression of atherosclerosis using 
angiographic or noninvasive imaging merits further study. 

The evaluation of changes in motor function can be achiev-
ed with functional MRI, diffusion tensor imaging, and mo-
lecular MRI. This research is outside the scope of the present 
review. 

 
Conclusions 

 
The American Stroke Association/American Heart Association 
Stroke Council has issued the statement that multimodal CT 
and MRI data may improve the diagnosis of ischemic stroke 
(class I, level A).17 Using MRI techniques to understand 
individual case pathophysiologies will allow the future de-
velopment of rational stroke therapies that are tailored to the 
specifics of each case. Measuring salvageable tissue and per-
meability derangements on MRI may help select patients for 
recanalization therapy.104 MRI can also guide decision-making 
in stroke intervention, such as stenting and carotid endarter-
ectomy, by providing information on plaque characteristics 
and the rheological aspects of atherosclerotic stenosis. 

We are living in an era in which stroke physicians have 
difficulty keeping up with developments in imaging techni-
ques. Multimodal MRI has significant potential for improving 
treatments and outcomes in stroke, as well as improving de-
cision-making algorithms and estimates of the NNT or the 
number needed to harm. 
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