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Majorana fermion (MF) excitations in solid state system have non-Abelian statistics which is essential for
topological quantum computation. Previous proposals to realize MF, however, generally requires
fine-tuning of parameters. Here we explore a platform which avoids the fine-tuning problem, namely a
ferromagnetic chain deposited on the surface of a spin-orbit coupled s-wave superconductor. We show
that it generically supports zero-energy topological MF excitations near the two ends of the chain with
minimal fine-tuning. Depending on the strength of the ferromagnetic moment in the chain, the number of
MFs at each end, n, can be either one or two, and should be revealed by a robust zero-bias peak (ZBP)
of height 2 ne2/h in scanning tunneling microscopy (STM) measurements which would show strong (weak)
signals at the ends (middle) of the chain. The role of an approximate chiral symmetry which gives an
integer topological invariant to the system is discussed.

M
ajorana fermions (MFs), which are also their anti-fermions by definition, were originally introduced
almost 80 years ago in the context of understanding neutrinos. As real solutions of the Dirac equation
they are therefore self-conjugate, thus representing both particles and anti-particles by the same real

wavefunction. Whether neutrinos are MFs or not is still an open question being vigorously investigated in high-
energy physics. A completely novel incarnation of MFs appeared more recently1–3 in condensed matter physics as
zero-energy neutral bound states in the subgap excitation spectrum of topological superconductors (TS). The
exact particle-hole symmetry characteristic of the excitation spectrum in superconductors usually sharply dis-
tinguishes states as either electron-like or hole-like in accordance with whether their energy is positive or negative,
respectively. In s-wave superconductors the fermion-doubling theorem prevents the appearance of any zero-
energy subgap excitations, and so MFs can only appear in effectively spinless p-wave superconductors, which are
the canonical example of TS with a bulk gap and topologically protected gapless edge states. Such Majorana bound
states (i.e. MFs in TS) in low-dimensional condensed matter systems obey anyonic non-Abelian braiding statistics
and are in general anyons, not ordinary fermions, which makes them ideal for fault-tolerant quantum computa-
tion1–3. These MFs in TS systems typically arise at defect sites (e.g. vortex cores, interfaces and edges) as localized
excitations, and are topologically protected against local perturbations by the bulk superconducting gap.
Although spinless p-wave superconductors do not seem to exist in nature, there have been many recent propo-
sals4–12 for artificially creating two- and one-dimensional systems which behave effectively as spinless p-wave
superconductors which support MFs at their boundaries. There are even experimental claims of the possible
observation13–18 of MFs in spin-orbit-coupled semiconductor-superconductor heterostructures following theor-
etical proposals7,8, but the situation is not definitively conclusive. Given the great fundamental and practical
significance of MFs, it is desirable to have platforms where MFs could easily emerge for experimental observation
and investigation.

In this paper we study theoretically a relatively simple scheme for realizing MFs in a condensed matter setting,
involving ferromagnetic (presumably metallic, e.g. Fe or Co or Ni) chains placed on the surface of standard
superconductors (e.g. Pb or Nb or Al) in an STM-type measurement set up19. The advantage of this scheme is that
MFs in the proposed system generically occur in a wide range of parameter space, thus requiring little fine-tuning
of system parameters (e.g. tuning the applied magnetic field appropriately as in the semiconductor heterostruc-
ture scheme7,8) although for some values of the parameters more than one MFs are spatially superimposed on
each other. Consequently, a zero-bias tunneling peak (ZBP), which is a hallmark of the zero-energy MFs20,21, is
robust and generic in the proposed system. Our work significantly extends the robustness of previous proposals
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to realize MFs in superconductor-ferromagnet heterostructures9,10,
thus making such devices an attractive alternative to spin-orbit-
coupled semiconductor-superconductor platforms.

In a conventional Z2 topological superconductor22–25, e.g., the
spin-orbit-coupled semiconductor-superconductor heterostruc-
ture7,8, a pair of MFs spatially superimposed on each other mix
and split to finite energies, thus essentially becoming low-energy
fermionic subgap states26. In this class of TS systems, therefore, the
number of MFs (n) at any point in space can be either zero or one.
This topological restriction on n results in a greatly reduced para-
meter space in which to look for experimental signatures of MFs. In
the semiconductor-superconductor nanowire heterostructure, for
example, ZBPs are expected in the presence of an externally applied
magnetic field – the so-called semiconductor Majorana wire – only
when the number of semiconductor bands crossing the Fermi energy
is odd27,28, a condition difficult to control experimentally. Similarly,
proposals for realizing a Majorana fermion in ferromagnet-super-
conductor heterostructures9,10 have the stringent requirement that
only one of the spin-split bands in the ferromagnet has a Fermi
surface. In the experimental system we explore in this paper, strictly
speaking, there is no topological restriction on the number of MFs
that can be localized at a given point in space. As we show below, the
absence of a restriction on n, resulting from a topological chiral
symmetry22–25, results in a greatly enhanced parameter space in
which MFs are realized. We emphasize, however, that only when n
is odd does the Majorana multiplet follow non-Abelian braiding
statistics although a robust ZBP in STM experiments should occur
generically for any value of n. Of course, for the purpose of establish-
ing topologically protected degenerate states that may be used to
establish non-Abelian braiding3, it is necessary for the Majorana to
be non-degenerate i.e. n 5 1, and therefore the generic ZBP signature
here cannot necessarily be identified with a non-Abelian Majorana
‘‘particle’’. Our conceptual new finding that robust Majorana
fermions may reside generically (i.e. with no fine-tuning) in super-
conductor-ferromagnet heterostructures, protected by a hitherto
undiscovered chiral symmetry, is the important new result presented
in this theoretical work.

Results
Ferromagnetic chain on a spin-orbit coupled superconductor. A
ferromagnetic (FM) chain (e.g. Fe), which is a single atom in width
(although a few atoms should work too), is placed on the surface of a
bulk s-wave superconductor, as shown schematically in Fig. 1. We
emphasize that, in contrast to arrays of magnetic atoms on the
surface of a superconductor, the FM chain is expected to have a
bandwidth that is orders of magnitude larger than the super-
conducting pairing potential. We ignore the spin-orbit coupling
within the FM chain (which plays no role in the scheme whether it
exists or not, in sharp contrast to the semiconductor heterostructure-
based Majorana schemes), but instead account for the existence of
strong inversion-symmetric spin-orbit coupling in the bulk of the
host superconductor. By integrating out the bulk superconductor we
show that the effective Hamiltonian of the FM chain [equation (5)
below] is in the chiral BDI class with an integer invariant, allowing an
integer number n of MFs localized at the chain ends. If the FM chain
has only one pair of spin-split sub-bands, n can be equal to zero, one,
or two, but for any non-zero n (a condition that is realized in most of
the parameter space (Fig. 2)) STM measurements at the chain ends
should reveal a pronounced ZBP. The ZBP is in fact generic in our
model, occurring in a wide region of the experimentally-accessible
parameter space as shown in Fig. 2 and 3. No such peak is expected
from the regions of the chain away from the ends where the MFs are
localized. In practice the effective chiral symmetry in the FM chain
should only be approximate, resulting in a finite energy width of the
ZBPs for n . 1.

Effective Hamiltonian of the chain. The superconductor used in
our device must satisfy two key conditions: (i) there is strong spin-
orbit coupling29, although inversion symmetry is not necessarily
broken in the bulk, and (ii) orbitals of different parity both make a
significant contribution to the states near the Fermi surface. The
requirement that the orbitals have opposite parity can be relaxed,
but this condition makes the following argument more transparent.
The first condition implies that spin is not a good quantum number
in the superconductor, but the presence of time-reversal (T ) and
inversion (I) symmetry means that the doubly-degenerate eigen-
states at each momentum k can be labeled by a pseudospin index
z 5 6, such that T k,zj i~z {k,{zj i and I k,zj i~ {k,zj i. A
conventional s-wave superconducting gap then corresponds to a
pseudospin-singlet pairing state. To satisfy the second condition,
we assume that the states near the Fermi surface are composed
from two orbitals, say s and p, which are symmetric and anti-
symmetric under inversion, respectively. The general form of the
pseudospin state is then

k,zj i~
X

s~:,;

Bs
z,s kð Þ s,k,sj izBp

z,s kð Þ p,k,sj i
n o

: ð1Þ

Due to the different parities of the two orbitals, the coefficients of the
s and p states are even and odd in k, respectively. Expressed in the
orbital basis using equation (1), one generally finds that the
pseudospin-singlet pairing potential includes both intra-orbital
spin-singlet and inter-orbital spin-triplet terms. The latter play a
critical role in generating the topological state in the magnetic chain.

The tunneling between the magnetic chain and the superconduc-
tor is assumed to be local and independent of spin, and is therefore
most transparently formulated in terms of tunneling between the
chain atoms and the adjacent orbitals of the superconductor. We
assume the form

Htun~
X

r[chain

X
s

f {r,s tssr,sztppr,s

� �
zH:c:

n o
ð2Þ

where ts and tp are the tunneling matrix elements for the two orbitals,
assumed real, and fr,s, sr,s and pr,s are the annihilation operators for
the site r in the chain and in the superconductor’s s and p orbitals,
respectively. The tunneling Hamiltonian implicitly accounts for the
surface inversion-symmetry breaking: if the odd-parity orbital is odd
with respect to mirror reflection in the surface plane, then tunneling
from the chain sites into both the even- and odd-parity orbitals of the
underlying superconductor can have a local component (see Fig. (1)).
Since we are interested in the physics of the chain, our strategy is now
to ‘‘trace out’’ the superconductor from the description of the prob-
lem. After standard manipulations as detailed in the Methods sec-
tion, we obtain the self-energy correction for the chain

S x,x’;vð Þ~TGorb x,x’;vð ÞT{, ð3Þ

where the matrix T describes the tunneling between the chain and the
superconductor, while Gorb(x, x9; v) is the Green’s function of the
superconductor expressed in the orbital-spin basis, and is related to
the pseudospin Green’s function by

Gorb k,vð Þ~
B
_ T

k 0

0 B
_ T

k

0
@

1
AGpseudo k,vð Þ

B
_ �

k 0

0 B
_ �

k

0
@

1
A, ð4Þ

where B
_

k~ B
^ s kð Þ,B

^ p
kð Þ

� �
is the matrix of coefficients in equation

(1). The self-energy contains a complicated proximity-induced pair-
ing term. Crucially, we find a p-wave spin-triplet pairing due to the
tunneling of inter-orbital Cooper pairs from the superconductor. We
generally expect that there will be triplet Cooper pairs with spin
parallel to the magnetization, and so a gap appears in the spin-split
states of the FM chain, see Fig. 1(b). By contrast, the spin-singlet
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pairing due to tunneling of intra-orbital Cooper pairs is unable to
overcome the large exchange splitting. The proximity effect also
renormalizes the bare dispersion and produces a spin-orbit coupling,
but these effects are small and will be ignored.

The general expressions for the self-energy is unenlightening and
presented in the Methods section. To make progress we write the
general forms of the coefficient matrices B̂s kð Þ~as

k 1̂zibs
k
:ŝ and

B̂t kð Þ~a
p
kek

:ŝzb
p
k
: ek|ŝð Þziªp

k
:ek , where ek is the unit vector in

the direction of k, and the coefficients are all real and even functions
of the momentum. The presence of mirror symmetries along three
directions in the bulk, and two on its surface, further constrains the
possible forms for Bs and Bp. To be concrete, we choose as

k~ap and
b

p
k~bpez which lead to terms consistent with the mirror symmetry

requirements. We further assume that the coupling between the
chain and the superconductor is small compared with the chain’s

bandwidth so that the induced gap is much less than the other energy
scales of the system. We then obtain an effective Hamiltonian by
adding the self energy [equation (3)] evaluated at v 5 0 to the bare
chain Hamiltonian. Neglecting corrections beyond nearest-neighbor
pairing, we obtain the effective Hamiltonian of the chain

Hef f
chain kxð Þ~ {2t cos kx{mð Þt̂zzC:ŝ

z Dz~D cos kx

� �
t̂xz~D tð Þ sin kxŝy t̂x,

ð5Þ

where ŝm and t̂m are the Pauli matrices in spin and Nambu space,
respectively. The first line of the Hamiltonian describes the bare FM
chain with direct inter-atom hopping t, chemical potential m, and a
Zeeman splitting C:ŝ due to ferromagnetism which is comparable to
the Fermi energy in the wire. The last line gives the induced super-
conducting gaps with both singlet (D and ~D) and triplet (~D tð Þ) pairing
potentials. The latter corresponds to a state where the triplet pairs
have vanishing spin component along the y-axis which can gap the
spin-split bands as long as C has a component in the x-z plane.

The key experimentally-relevant quantity is the local density of
states (LDOS), which can be directly measured using STM. The
LDOS at position x is defined as

n x,vð Þ~ {1
2p

ImTr vzid{Hef f
chain x,xð Þ

� �{1
1zt̂zð Þ: ð6Þ

Throughout this paper we fix t 5 10D and ~D~~D tð Þ~0:2D, and study
how the topology of the system varies as a function of m and C. We
emphasize that our results are generic and qualitatively independent
of the precise choice of these parameters.

Topological properties of the chain. For obtaining the topological
classification of Hef f

chain we note that it satisfies the particle-hole
symmetry Hef f

chain,Ĵ
� �

~0, where Ĵ~sytyK and K is the complex-
conjugate operator. If we further assume that the y component of C

is zero, Hef f
chain is real and hence it has the chiral symmetry

Hef f
chain,Ĉ

n o
~0 where Ĉ~syty . In this case, Hef f

chain belongs to the

BDI topological class and is endowed with a topological index Q

Figure 1 | (a) Schematic diagram of our device. A ferromagnetic (FM) chain is placed on the surface of an s-wave superconductor, in which strong

spin-orbit coupling and mixing of orbitals of opposite parity produce a pairing state with intra-orbital spin-singlet Cooper pairs and inter-orbital

spin-triplet pairs. Tunneling of these pairs into the chain generates effective spin-singlet and spin-triplet pairing potentials, respectively, as shown in

(b). For a FM chain with spin-splitting that exceeds the spin-singlet pairing potential, only the induced triplet pairing potential can gap the spectrum. In

this case the system is in a topologically nontrivial state characterized by two unhybridized Majorana fermions at each end, which can be imaged by

scanning tunneling microscopy (STM). When the FM chain is in the half-metal regime as shown in panel (c), however, only a non-Abelian single

Majorana fermion is realized at each end. If the spin-splitting of the chain states is much smaller than their bandwidth, however, the situation (b)

dominates the parameter space.

Figure 2 | Topological phase diagram of the chain. The BDI topological

index Q is defined in equation (8) calculated for Heff
chain as a function

of the Zeeman splitting Cz and the chemical potential. The Green region

(roughly Czw~m=2) has Q 5 1 while the blue region (roughly Czv~m=2)

has Q 5 2, indicating the existence of one and two Majorana fermions at

each end of the chain, respectively.
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equal to the number of zero-energy MF modes (n 5 Q) localized at its
ends. To compute Q, we first rotate Hef f

chain to the basis in which Ĉ is
diagonal, by Û~e{ip4txsy , such that

~Hef f
chain~Û Hef f

chainÛ{~
0 Akx

AT
{kx

0

 !
, ð7Þ

whence Q is computed by

Q~
1
p

ðp
0

dkx
d arg det Akxð Þ

dkx
: ð8Þ

In Fig. 2 we plot Q against ~m and Cz, where C is taken as C 5 Czez

such that the chiral symmetry is respected (the chiral symmetry is
respected as long as C is in the (x-z) plane), and ~m~ mz2tzCzð Þ is
defined from the bottom of the spin-split sub-bands. Note that for
approximately DvCzv~m=2, we have Q 5 2 while for D, ~m=2vCz we
have Q 5 1, indicating, in both cases, the existence of MFs at the chain
ends. This can be understood in the following way: in the large
Zeeman spin-splitting (‘‘half-metal’’) limit, the effects of the singlet
pairing terms D and ~D on the Bogoliubov-de Gennes spectrum are
suppressed due to a large Fermi momenta mismatch between the two
spin species. Then, with the triplet pairing ~D tð Þ, the system becomes
effectively an equal-spin-pairing triplet superconductor with non-zero

D"" and D##, which can be viewed as two copies of the Kitaev p-wave
chain spatially superimposed on each other30. If ~m is such that both
spin channels are occupied, we get Q 5 2 (two MFs at each end of the
chain), while if ~m is such that only one channel is occupied, we get Q 5

1 (an MF at each end). Since most itinerant ferromagnets are not half
metals, and the induced singlet gap D is likely much smaller than ~m, we
expect that the Q 5 2 phase is of greatest practical relevance.

In Fig. 3(a,b) we plot the LDOS at the ends of the semi-infinite FM
chain as a function of ~m and Cz, respectively. It can be seen that the
LDOS generically has a pronounced zero-energy peak that can be
accessed in STM measurements near the chain ends. For the Zeeman
splitting ~mw2Cz the ZBP is due to a pair of MFs localized at the same
ends and protected from splitting by the topological chiral symmetry.
For ~mv2Cz the zero-energy peak implies a single MF that should
follow non-Abelian braiding statistics. No such zero-energy peak is
observed in LDOS calculated for the middle of the chain, although
the superconducting gap in the chain closes at the topological transi-
tions at which the integer Q (and thus the number of MFs at the chain
ends) changes, see the inset of Fig. 3(a,b).

Discussion
While the above results demonstrate that it is not necessary to fine-
tune the chemical potential or Zeeman spin-splitting to generate a
zero-energy peak in LDOS (and consequently a ZBP in STM mea-
surements) at the ends of the FM chain, a component of C perpen-
dicular to the x-z plane breaks the chiral symmetry. To assess the
effects of misalignment of the Zeeman splitting (which can, for
example, be generated by a suitably applied external magnetic field),
we plot in Fig. 4 the LDOS against h where now we choose C 5 3D
(sin hey 1 cos hez). The zero-energy LDOS peak at the end of the
chain splits into two peaks at finite energy by a non-zero h only in the
phase Q 5 2. As h is tuned up, the magnitude of the splitting first
increases, then decreases, and finally vanishes with a concomitant
disappearance of the localized peak. This can be understood from the
observation that the y-component of C has an additional effect of
suppressing the spectral gap of the system and since the splitting is
bounded by the size of the spectral gap, the size of the splitting can
never reach a large value. Therefore the splitting of the zero-energy
LDOS peak due to a misalignment of the Zeeman term is always
small. No such splitting should be observable in the phase with Q
5 1. This is because in these regions of the phase diagram the ends of
the chain host a single MF at each end, and thus the ZBP persists.
Although the system is no longer in class BDI, it reduces to a class-D
topological superconductor with zero or one MF at each end.

Before concluding, we comment on the connection to previous
works. Our platform bears a superficial resemblance to proposals
where the impurity band formed by a chain of magnetic impurities
deposited on the surface of an s-wave superconductor naturally resides
in a topological phase11,12, due to the self-tuned formation of a spin
helix resulting from the RKKY interaction mediated by the quasipar-
ticles in the superconductor29,31–34. Our system nevertheless differs
from this class of proposals in several fundamental ways: (i) due to
large direct hopping between the atoms in the chain, we are focused on
the electronic states on the chain itself, and not on the impurity band
in the superconductor; (ii) we assume a large direct exchange inter-
action between the impurities such that they are in a ferromagnetic
arrangement and RKKY interactions play no role; and (iii) the topo-
logical state in our system follows from spin-orbit coupling in the
superconductor which induces a triplet pairing term in the chain.
Our work has much closer connection to previous proposals9,10 in
which half-metals are proximity-coupled to spin-orbit coupled super-
conductor surface. These can be considered as the special case of our
device where only one band of the ferromagnetic chain is occupied
and a single MF is present at each end of the chain. Our crucial
improvement over these schemes is that we have demonstrated that
a different topological phase with two MFs at each end can be realized

Figure 3 | (a) The local density of states (LDOS) at the ends of the

semi-infinite ferromagnetic (FM) chain as a function of the chemical potential

~m from the bottom of the bands, for Cz 5 3D. The LDOS has a strong zero-

energy peak that for roughly ~mv2Cz indicates a single Majorana fermion

(MF) from the chain ends, while for ~mw2Cz the zero-bias peak implies a pair

of MFs localized at each ends protected by chiral symmetry. (b) the LDOS at

the chain ends as a function of the Zeeman splitting for ~m~10D. For roughly

Czv~m=2 (Czw~m=2) the zero-energy peak in LDOS signifies two (one) MFs

at each end that can be accessed in scanning tunneling microscopy

experiments. The insets shows the LDOS at the middle of the chain, which has

a spectral gap in the topological regions. We indicate the transitions between

the different topological sectors by the vertical dashed lines, and use arbitrary

units for the LDOS in these plots.
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when both bands of the chain are occupied, which is certainly much
less restrictive than requiring a half-metal chain. We also note the
relation to semiconductor-superconductor heterostructure proposals7,8

where the spin-orbit coupling is in the Majorana wire itself and the
spin-splitting is produced by an explicit external magnetic field in
sharp contrast to our system. There has actually been one published
experiment35 (and a related theoretical analysis36) involving transport
studies on a somewhat related system with a Co nanowire sandwiched
between superconducting electrodes although the specific MF issues of
interest in the current paper were not investigated in these works. A
possible experimental verification of our predictions has recently been
reported in measurements of robust ZBPs at the end of ferromagnetic
Fe chain on superconducting Pb37. While very suggestive, the actual
relation to our proposal is unclear [see Ref. 38] and requires detailed
modelling which is well beyond the scope of the current work.

In conclusion, we consider a FM chain deposited on the surface of a
bulk s-wave superconductor with strong spin-orbit coupling. We estab-
lish the generic existence of a zero-energy peak in the LDOS at the ends
of the chain in this system. The zero-energy peak in the LDOS should be
accessible in STM experiments which should reveal a pronounced ZBP
from the chain ends but not from the regions away from the ends. We
show that the ZBP is due to the existence of one (odd) or two (even)
MFs localized at the same end protected by a topological chiral sym-
metry. In this picture an STM experiment on the ends of a FM chain
deposited on the surface a bulk superconductor (with strong spin-orbit
coupling) will almost always show a pronounced ZBP, indicating the
existence of one or two MFs at each end depending on the relative
magnitudes of the ferromagnetic moment and the chemical potential.

Methods
Here we present a derivation of the effective chain Hamiltonian. Starting from the
general expression for the pseudospin states, we derive the Green’s function in the
orbital-spin basis. We then use this to evaluate the lowest-order self-energy correc-
tion to the chain states due to the proximity effect. Evaluated in the static limit, we
add the self-energy to the bare chain Hamiltonian to obtain the effective model
studied in the main text.

Pseudospin basis. The pseudospin state is expressed in terms of the orbital-spin
states as

k,zj i~
X

s~:,;

Bs
z,s kð Þ s,k,sj izBp

z,s kð Þ p,k,sj i
n o

: ð9Þ

The pseudospin index z 5 6 transforms as a spin under time-reversal (T ) and
inversion (I ) symmetries. From

T s,k,sj i~s s,{k,{sj i, I s,k,sj i~ s,{k,sj i, ð10Þ

T p,k,sj i~s p,{k,{sj i, I p,k,sj i~{ p,{k,sj i, ð11Þ

we deduce the relations obeyed by the coefficients

inversion : [ Bs
z,s kð Þ~Bs

z,s {kð Þ,

Bp
z,s kð Þ~{Bp

z,s {kð Þ,
ð12Þ

time-reversal : [ Bs
z,s kð Þ~zs Bs

{z,�s {kð Þ
h i�

,

Bp
z,s kð Þ~zs Bp

{z,�s {kð Þ
� ��

:

ð13Þ

Expressed as a matrix, we have the general forms of B̂s kð Þ and B̂p kð Þ

B̂s kð Þ~as
kzibs

k
:ŝ, ð14Þ

B̂p kð Þ~a
p
k ŝ:ekzb

p
k
: ŝ|ekð Þziªp

k
:ek , ð15Þ

where ek is the unit vector in the direction of k, and the coefficients as
k , bs

k , a
p
k , b

p
k , and

ªp
k are real and even functions of k.

We can further constrain the forms of B̂s kð Þ and B̂p kð Þ by considering mirror
symmetries. We assume that the crystal has mirror planes perpendicular to the x, y,
and z axes. We assume that the pseudospin transforms like a spin under mirror
reflection, i.e.

Mm k,sj i~ŝm {k,sj i: ð16Þ

We assume that this also hold for the orbital states, except that the odd-parity orbital
is odd under mirror reflection in the plane perpendicular to the z axis. It can then be
shown that

B̂s kð Þ~as
k ŝ0zisgn kykz

� 	
bs

k ŝxzisgn kxkzð Þcs
k ŝyzisgn kxky

� 	
ds

k ŝz ð17Þ

B̂p kð Þ~sgn kzð Þ iap
k ŝ0zsgn kykz

� 	
bp

k ŝxzsgn kxkzð Þcp
k ŝyzsgn kxky

� 	
dp

z,k ŝz
h i

ð18Þ

where the coefficients as
k , etc. are real functions and even under mirror reflection.

Green’s function in orbital-spin basis. Expressed in the basis

Ypseudo kð Þ~ ck,z,ck,{,c{k,{,{c{k,z

� �T
, where ck,z is the annihilation operator for the

state with momentum k and pseudospin z, the pseudospin Green’s function of the
bulk superconductor is the 4 3 4 matrix

Gpseudo k,vð Þ~ vt̂0zjk t̂zzD0 t̂x

v2{j2
k{D2

0

ð19Þ

where jk is the normal state dispersion, D0 is the superconducting gap, and t̂m are the
Pauli matrices in Nambu space. From equation (9) we have the relation

Ypseudo kð Þ~
B
_ �

k 0

0 B
_ �

k

0
@

1
AYorb kð Þ ð20Þ

where

Yorb kð Þ~ sk,:, sk,;, pk,:, pk,;, s{{k,;, {s{{k,:, p{{k,;, {p{{k,:

� �T
ð21Þ

is the spinor of creation and annihilation operators in the orbital-spin basis, where sk,s

(pk,s) destroys an electron with momentum k and spin s in the s (p) orbital, and

Figure 4 | (a) The local density of states (LDOS) at one end of the

semi-infinite ferromagnetic (FM) chain as a function of h in the phase Q 5

2, where ~m~15D and C 5 3D (sin hey 1 cos hez). Since the y-component of

C breaks chiral symmetry, the pair of MFs at each end mix and split for

finite h, but the splitting is small and visible only on a small energy scale

shown in the inset. (b) The LDOS at the chain end plotted against h for Q 5

1 where ~m~2:5D and C is the same as above. Since there is now a single

Majorana fermion (MF) at each end the zero-bias peak does not split.

Although the system is no longer in class BDI, it is still a class-D topological

superconductor with zero or one MF at each end. We use arbitrary units for

the LDOS in these plots.
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B
_

k~ B̂s kð Þ B̂p kð Þ
� 	

ð22Þ

is a 2 3 4 matrix, with B̂s kð Þ and B̂p kð Þ as defined above. Using equation (20), we
express the Green’s function in the orbital basis as

Gorb k,vð Þ~
B
_

T
k 0

0 B
_

T
k

0
@

1
AGpseudo k,vð Þ

B
_ �

k 0

0 B
_ �

k

0
@

1
A, ð23Þ

where Gorb(k, v) is an 8 3 8 matrix. It is important to note that since this Green’s
function is obtained from the pseudospin Green’s function Gpseudo(k, v), it is only
valid close to the Fermi energy. The full orbital-spin Green’s function contains terms
from the additional band composed from the s and p orbitals, but since this band is
assumed to lie far away from the Fermi surface we ignore them.

Proximity effect. The proximity effect in the chain due to the tunneling into the
superconductor is accounted for by the self-energy

S x,x’;vð Þ~TGorb x,x’;vð ÞT{ ð24Þ

where the 4 3 8 matrix T describes the tunneling between the orbital-spin states of the
superconductor and the ferromagnetic chain

T~
ts1̂ tp1̂ 0 0

0 0 {ts1̂ {tp1̂

 !
: ð25Þ

For simplicity, we approximate the Green’s function of the superconductor at the
surface by the bulk Green’s function equation (23). This is a reasonable
approximation for the conventional superconductors considered here. We hence
obtain

S x,x’;vð Þ~
ð

d3k

2pð Þ3
TGorb k,vð ÞT{eikx x{x’ð Þ

~

ð
d3k

2pð Þ3
S k,vð Þeikx x{x’ð Þ

ð26Þ

After straightforward manipulation, we find

S k,vð Þ~ 1

v2{j2
k{D2

0

vzjkð ÞĴ kð Þ {D0Ĵ kð Þ
{D0Ĵ kð Þ vzjkð ÞĴ kð Þ

 !
ð27Þ

where

Ĵ kð Þ~t2
s B̂s kð Þ
� �T

B̂s kð Þ
� ��

zt2
p B̂p kð Þ
� �T

B̂p kð Þ
� ��

ztstp B̂s kð Þ
� �T

B̂p kð Þ
� ��

ztstp B̂p kð Þ
� �T

B̂s kð Þ
� ��

:

ð28Þ

The first two terms in Ĵ kð Þ describe tunneling processes involving only one
of the orbitals in the superconductor. Using the properties Eqs.(12) and (13),
the matrix products here can be shown to be proportional to the unit matrix,
and to be even functions of k. The last two terms, on the other hand, arise
from tunneling processes involving both orbitals, where the matrix
products are proportional to the Pauli matrices and are odd in k. In particular,
this introduces spin-triplet pairing correlations into the ferromagnetic
chain.

Effective Hamiltonian. To obtain an effective Hamiltonian for the ferromagnetic
chain including the proximity effect, we add the self-energy term evaluated at v 5 0 to
the bare chain Hamiltonian, i.e.

Hef f
chain x,x’ð Þ~H 0ð Þ

chain x,x’ð ÞzS x,x’;v~0ð Þ ð29Þ

where the original chain Hamiltonian is written

H0
chain x,x’ð Þ~t x,x’ð Þt̂zzC:ŝdx,x’: ð30Þ

Here t(x, x9) 5 2mdx,x9 2 t(dx,x911 1 dx,x921) describes the normal state dispersion,
while C:ŝ is the Zeeman splitting due to the ferromagnetism. The proximity effect
renormalizes the dispersion, and also introduces an antisymmetric spin-orbit
coupling, and spin-singlet and spin-triplet pairing potentials,

S x,x’; v~0ð Þ~dt x,x’ð Þt̂zzg x,x’ð Þ:ŝt̂z

zDs x,x’ð Þt̂xzd x,x’ð Þ:ŝt̂x ,
ð31Þ

where we have the general expressions

dt x,x’ð Þ~{

ð
d3k

2pð Þ3
eikx x{x’ð Þ jk

j2
kzD2

0

t2
s B̂s kð Þ
� �T

B̂s kð Þ
� ��

zt2
p B̂p kð Þ
� �T

B̂p kð Þ
� ��n o

, ð32Þ

g x,x’ð Þ:ŝ~{

ð
d3k

2pð Þ3
eikx x{x’ð Þ jk

j2
kzD2

0

tstp B̂s kð Þ
� �T

B̂p kð Þ
� ��

ztstp B̂p kð Þ
� �T

B̂s kð Þ
� ��n o

,ð33Þ

Ds x,x’ð Þ~
ð

d3k

2pð Þ3
eikx x{x’ð Þ D0

j2
kzD2

0

t2
s B̂s kð Þ
� �T

B̂s kð Þ
� ��

zt2
p B̂p kð Þ
� �T

B̂p kð Þ
� ��n o

, ð34Þ

d x,x’ð Þ:ŝ~

ð
d3k

2pð Þ3
eikx x{x’ð Þ D0

j2
kzD2

0

tstp B̂s kð Þ
� �T

B̂p kð Þ
� ��

ztstp B̂p kð Þ
� �T

B̂s kð Þ
� ��n o

ð35Þ

Although these expressions are quite omplicated, we can nevertheless make some generic
observations. Firstly, we note that the renormalization of the dispersion and the singlet
pairing potential arise only from the intra-orbital tunneling processes. On the other hand,
the inter-orbital processes are responsible for the spin-orbit coupling and the triplet gap.
The opposite parity of the s and p orbitals is crucial in obtaining these terms; tunneling into
orbitals of the same parity could only give even-parity contributions to the self-energy.
Furthermore, we observe that the induced spin-orbit coupling vector is always parallel to
the triplet d vector, i.e. g(x, x9)jjd(x, x9). We expect that the pairing terms are generally
much larger than the normal-state corrections, however, due to the factor of jk in the
integrals of the latter. We henceforth ignore dt(x, x9) and g(x, x9) in constructing the
effective Hamiltonian.

To derive a tractable model for the chain, we first assume that the proximity-effect
corrections S(x, x9; v 5 0) are negligible for x and x9 further apart than nearest
neighbors. We then choose coefficient matrices B̂s kð Þ and B̂p kð Þ. For simplicity we
take as

k~as, b
p
k~bpez , and all other coefficients vanishing in Eqs. (14) and (15); this is

equivalent to as
k~as , bp

k~ ky



 

bp , cp
k~{ kxj jbp in Eqs. (17) and (18). Other choices of

coefficients can only change the orientation of d(x, x9). We then find

t2
s B̂s kð Þ
� �T

B̂s kð Þ
� ��

zt2
p B̂p kð Þ
� �T

B̂p kð Þ
� ��

~t2
s asð Þ2zt2

p bpð Þ2 k̂2
xzk̂2

y

� �
, ð36Þ

tstp B̂s kð Þ
� �T

B̂p kð Þ
� ��

ztstp B̂p kð Þ
� �T

B̂s kð Þ
� ��

~2tstpasbp ŝxk̂yzŝy k̂x

� �
, ð37Þ

where k̂n~kn= kj j. We hence obtain the gap functions

Ds x,x’ð Þ~Ddx,x’z
1
2

~D dx,x’z1zdx,x’{1ð Þ, ð38Þ

d x,x’ð Þ:ŝ~
1
2

~D tð Þ dx,x’{1{dx,x’z1f gŝy , ð39Þ

where

D~

ð
d3k

2pð Þ3
D0

j2
kzD2

0

t2
s asð Þ2zt2

p bpð Þ2 k̂2
xzk̂2

y

� �n o
, ð40Þ

~D~

ð
d3k

2pð Þ3
eikx a D0

j2
kzD2

0

t2
s asð Þ2zt2

p bpð Þ2 k̂2
xzk̂2

y

� �n o
, ð41Þ

~D tð Þ~

ð
d3k

2pð Þ3
eikx a D0

j2
kzD2

0

2tstpasbpk̂x

n o
: ð42Þ

Here a is the lattice spacing of the chain.
Finally, we insert the pairing potentials equations (38) and (39) into equation (29)

and transform to momentum space to obtain the effective Hamiltonian which is
studied in the main text

Hef f
chain kxð Þ~ {2t cos kx{mð Þt̂zzC:ŝ

z Dz~D cos kx

� �
t̂xz~D tð Þ sin kxŝy t̂x :

ð43Þ
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