
REVIEW
published: 08 December 2020

doi: 10.3389/fchem.2020.610481

Frontiers in Chemistry | www.frontiersin.org 1 December 2020 | Volume 8 | Article 610481

Edited by:

Xiaomin Li,

Fudan University, China

Reviewed by:

Xiaoji Xie,

Nanjing Tech University, China

Yong Fan,

Fudan University, China

*Correspondence:

Lining Sun

lnsun@shu.edu.cn

Specialty section:

This article was submitted to

Nanoscience,

a section of the journal

Frontiers in Chemistry

Received: 26 September 2020

Accepted: 09 November 2020

Published: 08 December 2020

Citation:

Pei S, Ge X and Sun L (2020) Metal

Ions Doping for Boosting

Luminescence of Lanthanide-Doped

Nanocrystals. Front. Chem. 8:610481.

doi: 10.3389/fchem.2020.610481

Metal Ions Doping for Boosting
Luminescence of Lanthanide-Doped
Nanocrystals
Shihao Pei, Xiaoqian Ge and Lining Sun*

Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, China

With the developing need for luminous materials with better performance,

lanthanide-doped nanocrystals have been widely studied for their unique luminescence

properties such as their narrow bandwidth emission, excellent chemical stability, and

photostability, adjustable emission color, high signal-to-background ratio, deeper tissue

penetration with less photo-damage, and low toxicity, etc., which triggered enthusiasm

for research on the broad applications of lanthanide-doped nanocrystals in bioimaging,

anti-counterfeiting, biosensing, and cancer diagnosis and treatment. Considerable

progress has been made in the past few decades, but low upconversion luminescence

efficiency has been a hindrance in achieving further progress. It is necessary to

summarize the recently relevant literature and find solutions to improve the efficiency.

The latest experimental and theoretical studies related to the deliberate design of

rare earth luminescent nanocrystals have, however, shown the development of metal

ion-doped approaches to enhance the luminescent intensity. Host lattice manipulation

can enhance the luminescence through increasing the asymmetry, which improves

the probability of electric dipole transition; and the energy transfer modulation offers

a reduced cross-relaxation pathway to improve the efficiency of the energy transfer.

Based on the mechanisms of host lattice manipulation and energy transfer modulation,

a wide range of enhancements at all wavelengths or even within a particular wavelength

have been accomplished with an enhancement of up to a hundred times. In this mini

review, we present the strategy of metal ion-doped lanthanide nanocrystals to cope with

the issue of enhancing luminescence, overview the advantages and tricky challenges in

boosting the luminescence, and provide a potential trend of future study in this field.

Keywords: metal ion doping, host lattice manipulation, energy transfer modulation, lanthanide doped

nanocrystals, enhanced luminescence

INTRODUCTION

Fluorescence imaging has attracted increasing attention for observing a vast number of
biological structures due to high sensitivity, superior subcellular resolution, and ultrafast
real-time imaging (Weissleder and Pittet, 2008). The frequent fluorescent probes that are
exploited in imaging include fluorescent proteins (Ben et al., 2006), metal complexes
(Zhao et al., 2010, 2011), organic fluorescent dyes (Terai and Nagano, 2008; Beija
et al., 2009; Yuan et al., 2013), and semiconductor quantum dots (Zhou J. et al.,
2015; Xu et al., 2016; Hildebrandt et al., 2017). However, most of them are excited
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by ultraviolet or visible light, which leads to significant
background noise and low penetration depth (Fan and Zhang,
2019). Moreover, high-energy ultraviolet or visible light may
cause cell apoptosis or tissue damage.

Alternatively, lanthanide-doped nanocrystals (LDNCs) are
excited by near infrared (NIR) light, such as 980 or 808 nm,
offering lower scattering coefficients and autofluorescence, and
a higher penetration depth (Kobayashi et al., 2009; Yuan et al.,
2013). Besides the NIR light excitation, the LDNCs also have
several spectroscopic benefits: (1) a sharp emission band with a
full-width at half-maximum (FWHM) <10 nm and a long decay
lifetime (µs to ms) (Bünzli, 2010; Fan et al., 2018); (2) hundreds
of nanometers of anti-Stokes or Stokes shift (upconversion or
downshifting the luminescence process) (Su et al., 2017); and
(3) excellent photo and chemical stability (no photoblinking or
photobleaching) (Su et al., 2017). Although LDNCs possess such
excellent spectroscopic characteristics, the major drawback of
LDNCs is their low quantum yield (QY) due to the low extinction
coefficient of lanthanide ions in the NIR region and energy lost
during multi non-radiative electronic transitions (Wang et al.,
2011). In recent years, researchers have been devoted to solving
this drawback, such as constructing core-shell structures (Chen
et al., 2015; Zhuo et al., 2017) and anchoring NIR dyes on the
surface of nanocrystals (Wu X. et al., 2016; Hazra et al., 2018).
Among countless methods for improving the QY (Zhang et al.,
2010; Yin et al., 2016), metal ion doping is the simplest since it
is carried out in fewer modulation steps (Niu et al., 2012; Ding
et al., 2015), and it only weakly changes the shape of the LDNCs.
Moreover, metal ion doping can integrate with other methods to
simultaneously improve the QY of LDNCs.

Here, we aim to provide a summary regarding the recent
progress in metal ion doping for improving the QY of LDNCs.
In this mini review, we first discuss the two mechanisms
of metal ion doping: host lattice manipulation and energy
transfer modulation. More cases outlining how to carry out
metal ion doping are also included. Finally, we discuss the
challenges and future applications of LDNCs with metal ion
doping. We also hope that this mini review can serve as a
guide for researchers who are involved in metal ion doping for
LDNCs study.

MECHANISMS OF LUMINESCENCE
ENHANCEMENT BY DOPING METAL IONS

Host Lattice Manipulation
The optical characteristic of lanthanide NPs is derived from its
intrinsic trivalent lanthanide ions (Ln3+), which are considered
the most stable state of lanthanides. Ln3+ ions have the
configuration of [Xe]4fn, n= 0–14, and the electronic transitions
in the 4f orbital are diverse, resulting in the emissions from these
electronic transitions being distributed within wide wavelengths
(Hatanaka and Yabushita, 2014). There are several decisive
factors for the energy levels of free Ln3+ ions in their 4f orbitals,
like the Coulombic interaction and the spin-orbit coupling
between f electrons (Han et al., 2014), which are rather sensitive
to minor changes of the host lattice.

FIGURE 1 | The contraction (left) and expansion (right) of the host lattice after

adopting a small or large dopant. This figure was adopted from Han et al.

(2014).

As for metal ion doping, the lanthanide ions sites in the host
lattice are replaced, and the host lattice may be distorted and
its interplanar spacing will change due to the radius difference
between the metal ions and lanthanide ions. When using a
high metal ion concentration, the lattice gap will be filled with
metal ions (Dou and Zhang, 2011). Thus, the asymmetric host
lattice affects the environment of inner lanthanide ions, leading
to the increase of lanthanide luminescence. For example, the
probability of the electric dipole transition can be dramatically
increased by the asymmetric crystal field.

By disrupting the symmetric environment of the central ions,
the mixing of the opposite-parity configurations can break the
Laporte selection rule (Harris and Bertolucci, 1978), which was
applied to a centrosymmetric system where the electric dipole
transitions are barely allowed. Therefore, reasonably, with the
introduction of the asymmetric crystal field, the probability of
the electric dipole transition can be dramatically increased. Then
the luminescence intensity of the nanocrystal can be enhanced by
increasing the asymmetry around the lanthanides.

For doping metal ions with different radii, the host lattice
may undergo different changes. The host lattice will shrink
after doping metal ions with a small radius, whereas metal ions
with a large radius lead to the expansion of the host lattice
(Figure 1). The changing of the host lattice dramatically alters the
splitting of the crystal field and the coordination environment,
resulting in the increase of the probability of the electric
dipole transition, and then enhancing the luminescence intensity
(Han et al., 2014).

Energy Transfer Modulation
All fluorescence light usually follows the well-known Stokes’
law which illustrates that the energy level of the excitation
photons is higher than the emitted photons, whereas the
doping of lanthanides or transition metal ions can violate this
principle under a properly powered excitation, generating anti-
Stokes emission.

The anti-Stokes process is a multi-ions process. In principle,
the premise of energy transfer is that the absorption and emission
are not in the same center, and it can take place without
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charge transport. Moreover, energy transfer can be divided
into radiative, non-radiative, resonant, and phonon-assisted
energy transfer (Hatanaka and Yabushita, 2014). The energy
transfer process contains two steps, whose natural efficiencies
are ≤1. Therefore, finding a way to reduce the unwanted
cross-relaxation type of energy transfer and converting this
energy into a certain wavelength of emission improves the
luminescent intensity by energy transfer modulation. Higher
doping of activator ions could be a potential candidate that
can lead to the enhancement of luminescence, whereas the
quenching effect has been a hindrance in achieving this
goal. Therefore, owing to the macroscopic diffusion process,
the overall efficiency enhancement brought about by energy
transfer can only be obtained through spatial averaging
(Auzel, 2004).

The metal ion doping in the LDNCs can modulate the energy
transfer between the doped metal ions and other lanthanide ions
in the host lattice (Han et al., 2014). This modulation depends
on controlling the re-distribution of all ions in the host lattice
(Auzel, 2004). Specifically, the distance between activators and
sensitizers in the host lattice is changed by doping metal ions,
neither too long nor too short, which is crucial for boosting the
luminescence intensity. For example, the increase of doping ions
can facilitate the harmful cross-relaxation between dopants due
to their proximity (Qin et al., 2019). For another method of
manipulating the ion distribution reported by Qin et al. (2014),
they indicate that, in a particular host lattice, the lanthanide ions
tend to segregate in the form of chains or clusters upon host
cation substitution. As a result, the five-photon upconversion
(Wang et al., 2014) and single band emission (WuM. et al., 2016)
can be achieved.

Moreover, the re-distribution of activators decreases the
probability of cross-relaxation, and a photon energy depletion
pathway arises from activators or between an activator and
a defect in the host lattice. Thus, the lower cross-relaxation
probability allows us to use a higher activator concentration so
that the luminescence intensity enhances, which is also called
breaking the concentration quenching effect (Auzel, 2004). Most
importantly, the d-d electronic transition of metal ions may be
involved in the energy transfer between activators and sensitizers
in the host lattice, and it is an effective energy transfer pathway
(Han et al., 2014). So, if the energy transfer pathway produced
by the doped transition metal ions works out, the upconversion
luminescence of the LDNCs should be enhanced.

Unlike the normal f-f transition, the emission intensity of
the hypersensitive transition will change dramatically even if
its surrounding environment has a tiny change. By changing
the environment around the rare-earth ions, a hypersensitive
transition can be produced. The doping of different kinds of
metal ions should be an easy way to alter the environment around
the rare-earth ions. It is well-known that the upconversion
luminescence intensity of lanthanide ions is mainly dependent
on electronic transition probabilities (Hatanaka and Yabushita,
2014). Owing to their unique properties, increasing the
probability of hypersensitive transition will be beneficial in
increasing the luminescence intensity of LDNCs.

CASES OF METAL ION-DOPED
LANTHANIDE NANOCRYSTALS AND
THEIR BIOAPPLICATIONS

Li+ Ion Doping
The radius of metal ions has a significant impact on the
luminescent intensity of LDNCs through changing the symmetry
of its host lattice around the lanthanide ions (Figures 2A–D).
This impact was verified by doping ions, including Li+, Ca2+

(Zhao et al., 2020), and Bi3+ ions (Jiang et al., 2012; Niu et al.,
2012) into the host lattice. For example, the Li+ ion owns
the smallest alkali ionic radius, around 0.73–1.06 Å, enabling a
high doped concentration in the host lattice (Dou and Zhang,
2011). Chen et al. reported that 5% of Li+-doped Y2O3:Yb,Er
nanocrystals (NCs) (Chen et al., 2008) show 25 times and 8
times more luminescent intensity enhancements for the green
and red emissions, respectively, in comparison with Y2O3:Yb,Er
NCs without Li+ doping. The similar luminescence enhancement
was also found in Li+-doped ZrO2 (Liu et al., 2011), and
NaGd(MoO4)2 (Chen et al., 2020) host lattices. However, the
symmetry of the host lattice may undergo different changes
when using different synthesized temperatures. For example, at
1,073K, the Er3+-Li+ co-doped TiO2 NCs showed an accelerated
phase transition from anatase to rutile when increasing the
Li+ concentration, resulting in the decrease of luminescence
intensity. At 1,273K, the phase structure of Er3+-Li+ co-doped
TiO2 NCs was unchanged no matter what the Li+ concentration
was, yet the crystal field symmetry decreased, resulting in
significantly enhanced emission intensities (Cao et al., 2010).

Besides, it was reported that the doping of Li+ can achieve the
enhancement of luminescent intensity at a particular wavelength
range. Yin et al. (2012) reported that GdF3:Er,Yb co-doped with
Li+, with a color-tuned emission from yellow to red, showed a
slightly decreased green emission whereas the red emission had
a dramatic increase of up to 8-fold. And the red light displayed a
deep penetration depth, which was used for the in vivo imaging
(Figure 2E). This phenomenon can be attributed to the energy
back transfer process initiated by the doping of Li+ ions.

As for host lattice materials, a fluoride-based host lattice
is an excellent candidate for co-doped Li+ ions. In 2017, Hu
et al. (2017) reported 18 times and 7 times luminescence
enhancement of 478 and 804 nm emissions of NaLuF4:Yb,Tm
with a 7% Li+-doped concentration, respectively. Zhao C.
et al. (2013) developed 8 times luminescence enhancement of
the upconversion emission of 452 nm in NaYF4:Yb,Tm NCs
with a Li+ concentration of 7%. Furthermore, Ding et al.
(2015) studied different kinds of lanthanide ions co-doped
with Li+ in an NaGdF4 host lattice crystal, which all afford
large enhancement in lanthanide luminescence intensity. Dou
and Zhang (2011) have concluded the possible substitution
sites of Li+-doped and K+-doped ions in an NaYF4 host
lattice, respectively, in which the substitution and the interstitial
occupation both exist, only related to the concentration of
the doping ion. As shown in Figures 2F,G, with an increase
in Li+ concentration from 40 to 60%, the morphology of
nanocrystals changed from nanorods to nanospheres, and
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FIGURE 2 | The scheme shows the possible ways of doping alkali ions in the host lattice of NaYF4. (A) Substitution by a small atom. (B) Interstitial occupation by a

small atom. (C) Combination of substitution and interstitial occupation. (D) Substitution by a large atom. From Dou and Zhang (2011). (E) The digital image of an

anesthetized mouse under the irradiation of a 980 nm laser. The mouse was injected the GdF3:Er,Yb co-doped with Li+ dispersion in the back muscle. (E) was

adopted from Yin et al. (2012). And (F,G) are TEM images of Na(1−x)LixYF4:Er,Yb NCs. (F) x = 40 mol%, (G) x = 60 mol%. (F,G) were adopted from Dou and Zhang

(2011).

the phase changed from a hexagonal to a cubic phase
as well.

What also needs to be considered is the doping efficiency.
Wang et al. studied the doping efficiency of Li+ in the KSc2F7
host lattice, they indicated that Li+ doping efficiency is highly
related to its initial concentration (Wang et al., 2017). In general,
the actual amount of Li+ doped into the host lattice is much lower
than its initial concentration.

Fe3+ ion Doping
Similar to Li+, Fe3+ doping can also alter the symmetry of
the host lattice in LDNCs. In an NaGdF4 host lattice, the Fe3+

doping can meet the goal of boosting the luminescent intensity
through altering the asymmetry around the lanthanide ions, and
this enhancement is a general improvement for all emission
ranges around the luminescence center (Ramasamy et al., 2013).
Interestingly, the synthesis method of LDNCs influences the
crystal structure, and thus affects the symmetry of the host
lattice after doping Fe3+. For example, the hexagonal NaYF4
became tetragonal after increasing the Fe3+ concentration when
using a hydrothermal method (Tang et al., 2015). However,
the crystal structure of the NaGdF4 host lattice is inert to the
thermal decomposition even using a high Fe3+ concentration
(Figures 3A,B) (Ramasamy et al., 2013). In addition, the doping
of Fe3+ can tailor the crystal field environment of Er3+, which
helps the hypersensitive transition, leading to the enhancement
of upconversion luminescence (Ramasamy et al., 2013).

Besides, the Yb3+-Fe3+ dimer was formed in the host lattice,
which can be applied to modulate the energy transfer between
activators and sensitizers, in particular modulating the energy

transfer for the red emission (Tang et al., 2015; Du et al.,
2019). For the Fe3+-doped NaYF4:Yb,Er NCs (Figure 3C), the
existence of a Yb3+-Fe3+ dimer can be deduced from the much
lower n value (n represents the number of phonons process)
of green/red emissions of the hydrothermal method-synthesized
LDNCs compared with the traditional two-phonon process. The
energy level of |2F7/2, 4T1g > of the Yb3+-Fe3+ dimer receives
the photon energy from the energy level of 2H11/2 of Er3+, and
the received photon energy can partially return to the energy
level of 4F7/2 and 4S3/2 of Er3+. After the photon energy in
4F7/2 and 4S3/2 relaxes to the 4F9/2 level, the probability of the
electronic transition between 4F9/2 and 4I15/2 of Er3+ increases,
which contributes to increase the intensity of the red emission
of Er3+. Meanwhile, the green/red emission of Fe3+-doped NCs
synthesized by the thermal decomposition method has been
confirmed as a two-phonon process (Ramasamy et al., 2013),
which has less correlation with the Fe3+ concentration. However,
the Fe3+-doped NCs synthesized by the hydrothermal method
show the potential relationship between the concentration of
Fe3+ and the phonon process, suggesting that the formation of
the Yb3+-Fe3+ dimer might be related to the synthesis method
of the LDNCs. Furthermore, the Fe3+-doped NCs were used
in the upconversion luminescence (UCL) imaging of HeLa
cells (Figures 3D–F), which demonstrates a potential application
in bioimaging.

Mn2+ ion Doping
It was discovered that theMn2+ ion can also modulate the energy
transfer between activators and sensitizers in the host lattice of
LDNCs (Wang J. et al., 2011). With the example of Mn2+-doped
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FIGURE 3 | TEM images of NaGdF4:Yb,Er,Fe NCs, (A) 0mol % Fe3+ doping; (B) 30 mol% Fe3+. Adopted from Ramasamy et al. (2013) (C) Illustration of the

proposed energy transfer mechanism of Fe3+ co-doped NaYF4:Yb,Er NCs and NaYF4:Yb,Er NCs without Fe3+ doped. The color arrow in the below indicates the

Fe3+ content varied from 0 to 5–40 mol%. (C) was adopted from Tang et al. (2015); (D–F) NaGdF4:Yb,Er,Fe NCs were used for cellular luminescence imaging. (D)

The bright field image of HeLa cells incubated with NaGdF4:Yb,Er,Fe NCs. (E) The confocal fluorescence image. The HeLa cells were irradiated with a 980 nm laser.

(F) The merging of (D,E). (D,E) were adopted from Ramasamy et al. (2013).

NaYF4:Yb/Er NCs (Figures 4A,B), the single red emission can
be ascribed to the energy transfer from the 2H9/2 and 4S3/2
energy level of Er3+ to the 4T1 energy level of Mn2+, and then
the received photon energy in 4T1 transfers back to the 4F9/2
energy level of Er3+, which contributes to the red emission of the
NaYF4:Yb/Er NCs (4F9/2 → 4I15/2) (Tian et al., 2012). The single
red emission phenomenon was also confirmed in the Mn2+-
doped NaYF4 (Zeng et al., 2014), NaGdF4 (Li et al., 2015), and
NaLuF4 (Zeng et al., 2014) host lattices.

Owing to the sensitivity of Mn2+ to the ligand field (Zhou
et al., 2018), the energy level state of 4T1 is different in different
host lattices, such as NaGdF4 or LiYF4. The higher energy level
of 4T1 of Mn2+ in an LiYF4 host lattice matches the green
luminescence energy level of 4S3/2 of Er3+, and the lower energy
level of 4T1 of Mn2+ matches better with the red emission energy
level of 4F9/2 of Er3+ in theNaGdF4 host lattice, and thus explains
that the ratio of green and red emission intensity is not a fixed
value (Zhou et al., 2018). Thus, the sensitivity of Mn2+ endorses
the potential application of Mn2+ in modulating the energy
transfer of different lanthanide ions. Moreover, Mn2+ doping
can induce the phase transition of the NaYF4 host lattice, from
hexagonal to cubic, when using the hydrothermal method. In
spite of the fact that the cubic NaYF4 lattice was confirmed to
have a lower luminescence efficiency than the hexagonal one,
the asymmetry of the NaYF4 changed because the Y3+ sites
were replaced by Mn2+ ions with a smaller radius, then the
luminescence intensity increased. Fig. 4a shows the cubic phase of
NaYF4:Yb,Er doped with 30 mol% Mn2+ ions. The red emission

has a higher signal-to-noise ratio and lower autofluorescence
than the green emission. Therefore, lanthanide NCs with a single
red emission are beneficial for in vivo small-animal imaging
(Figures 4C–E).

RARE EARTH IONS DOPING

Besides activators and sensitizers, doping other rare earth
ions into a host lattice is also an efficient way to boost the
luminescence intensity. For example, Sc3+ has been widely
studied because it has the smallest radius among all the rare earth
ions, meaning it can be easily doped into a host lattice. With
a similar host lattice manipulation mechanism, the symmetry
of an NaYF4 host lattice was broken when doping Sc3+

into NaYF4:Er,Yb NCs; thus, the overall emission intensity of
NaYF4:Er,Yb NCs showed a 2-fold enhancement when doped
with 10% mol Sc3+ (Huang et al., 2010).

And other lanthanide ions, for example, activator ions with a
high doping concentration such as Er3+, Tm3+, and Ho3+, have
been used to accept photon energy from sensitizer ions. However,
the high concentration activator ions lead to the concentration
quenching effect that is generated from cross-relaxation between
activator ions. Zhao J. et al. (2013) built a combined system
with micro-structured optical fiber (Figure 5A), which confines
the high-power laser into a micrometer-sized circle. They
demonstrated that a 70-fold enhanced luminescence intensity
was obtained with high concentration doping of 8% mol Tm3+.
This method solved the quenching effect using a high-power
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FIGURE 4 | (A) The TEM image (inset: HRTEM image) of NaYF4:Er,Yb NCs doped with 30 mol% Mn2+ ions. (B) Schematic illustration of the mechanism of single red

emission of Mn2+-doped NaYF4: Yb/Er NCs. (C–E) Small animal imaging of Kunming mouse with irradiation of a 980 nm laser. The arrow indicates the injected site of

the LDNCs dispersion. (A–E) were adopted from Tian et al. (2012).

pump up to 2.5 106 W/cm2. The quenching effect is mainly
caused by the cross-relaxation of the 1G4 to 3H4 and 3H6 to
3H5 transitions, which usually occur under low-power irradiation
(Figure 5B). For the high-power laser, the 3H4 energy level is
more likely to be promoted to a higher level, which leads to
the absence of cross-relaxation and the enhanced upconversion
emission intensity as well. Other similar results were illustrated,
like the high doping level of Yb3+, to enhance the luminescence
of a sub 10 nmmatrix, and the authors claimed that the enhanced
upconversion emission intensity was endorsed by the energy
transfer from Yb3+ to Tm3+ (Zhai et al., 2014).

In addition, the overlap between the energy levels of different
rare earth ions was studied. Cheng et al. (2018) demonstrated
an energy level overlap of Er3+ and Ho3+, which lead
to enhanced upconversion luminescence. Figures 5C,D show
the TEM images of different concentrations of Ho3+-doped
NaYF4:Yb,Er. Because of the similar ion sizes of Er3+ and
Ho3+, the host lattice manipulation should be excluded. Under
excitation at 1,532 nm (the energy can only be absorbed by
Er3+), part of the energy is accumulated at the 2H11/2 and 4F9/2
energy levels of the over-doped Er3+ ion, then the energy could
be transferred to the 5F4/5S2 and 5F5 energy levels of the co-
doped Ho3+ ions. Then the emissions at 544/550 and 648 nm,
which are produced by Ho3+, overlapped with the emissions
of Er3+ at 525/545 and 660 nm (Figures 5F,G). Therefore, the

enhanced upconversion emissions of Er3+ and Ho3+ co-doped
nanocrystals can be ascribed to the dual contribution from both
Ho3+ and Er3+ ions.

As for the downshifting luminescence of lanthanide ions, the
gadolinium-based host lattice has been widely studied due to
its optically active Gd3+ sublattices (Wang F. et al., 2007). The
energy transfer between Ce3+ and Ln3+ (Ln = Tb, Eu, Sm, or
Dy) can be quickly achieved by a Gd3+ sublattice over a long
distance. One of the benefits that the Gd3+ sublattice affords
is that migrating energy can be trapped at a rather low doping
concentration. Also, Gd3+ can act as an intermediary state to
solve electron transfer quenching like the energy transfer from
Ce3+ to Eu3+ (Wang F. et al., 2007). Ce3+ can also promote the
energy transfer between activators and sensitizers. In 2019, Li
et al. (2019) reported an enhanced downshifting emission located
at ∼1,525 nm by doping Ce3+ into NaLuF4:Gd/Yb/Er nanorods.
The ∼1,525 nm second near-infrared (NIR-II) emission was
produced from the electronic transition between the excited state
4I13/2 to 4I15/2 of Er3+. However, the energy gap between the
ground state 2F5/2 and the excited state 2F7/2 of Ce3+ matches
well with the energy difference between the electronic transition
of 4I11/2 → 4I13/2 of Er3+. The excited state 4I11/2 of Er3+ could
suffer an efficient non-radiative phonon-assisted cross-relaxation
process, resulting in the significantly accumulated excited state
4I13/2 of Er3+. Therefore, the electronic transition of 4I13/2
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FIGURE 5 | (A) Schematic illustration of the integrated system with the micro-structured optical fiber with NaYF4:Yb/Tm nanoparticles and (B) the simplified

mechanism of the energy transfer between Yb3+ and Tm3+ under 980 nm excitation, 1 and 2 represent two subsequent energy-transfer processes from Yb3+ to

(Continued)
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FIGURE 5 | Tm3+ ions. From Zhang and Liu (2013). TEM images of (C) NaYF4:Er/Ho (10/0.2 mol%) NCs, (D) NaYF4:Er/Ho (10/1 mol%) NCs. (C,D) were adopted

from Cheng et al. (2018). (E) Schematic illustration of energy transfer in Ce3+-doped NaYbF4:Ce,Er NCs for boosting the ∼1,525 nm emission. (C) were adopted from

Cao et al. (2020). (F,G) Illustration of the scheme of the energy transfer process of Er3+ and Ho3+ under the irradiation of 1,532 and 1,150 nm, respectively. From

Cheng et al. (2018). (H) Blood vessels imaging using NaYbF4:Er,Ce@NaYF4:Yb@NaYF4:Nd NCs. (I) NIR region luminescence collected from different time points

(10min, 4 h, 10 h). The emission light was collected between the 1,490–1,580 nm regions, with the excitation of an 808 nm laser. (H,I) were adopted from Cao et al.

(2020).

TABLE 1 | The summary of doping different metal ions into suitable host lattices and their possible mechanism for enhanced luminescence.

Metal ions Host lattice Crystal phase Synthesized methods Possible mechanism

Li+ ZrO2 (Liu et al., 2011) Monoclinic phase

Tetragonal phase

Sol-gel process Host lattice manipulation

BaTiO3 (Sun et al., 2011) Cubic phase Sol-gel process

Y2O3 (Chen et al., 2008) Cubic phase –

NaYF4 (Dou and Zhang, 2011; Zhao C. et al.,

2013)

Hexagonal phase High temperature thermal-decomposition method

NaGdF4 (Ding et al., 2015) Hexagonal phase Co-precipitation method

NaLuF4 (Hu et al., 2017) Hexagonal phase Solvothermal method

TiO2 (Cao et al., 2010) Anatase phase

Rutile phase

Sol-gel process

GdF3 (Yin et al., 2012) Orthorhombic phase Hydrothermal procedure

Fe3+ NaBiF4 (Du et al., 2019) Hexagonal phase Chemical precipitation method Host lattice manipulation,

energy transfer modulation

NaGdF4 (Ramasamy et al., 2013) Hexagonal phase High temperature thermal-decomposition method

NaYF4 (Tang et al., 2015) Hexagonal phase

Cubic phase

Hydrothermal method

Mn2+ NaYF4 (Tian et al., 2012; Zeng et al., 2014) Hexagonal phase

Cubic phase

Solvothermal method Host lattice manipulation,

energy transfer modulation

NaLuF4 (Zeng et al., 2014) Hexagonal phase

Cubic phase

Hydrothermal method

NaGdF4 (Li et al., 2015) Cubic phase Thermal decomposition

NaYbF4 (Zeng et al., 2014) Hexagonal phase

Cubic phase

Hydrothermal method

NaMnF3 (Zhang et al., 2012) Cubic phase High temperature thermal-decomposition method

KMnF3 (Ning et al., 2020) Cubic phase High temperature thermal-decomposition method

LiYF4 (Zhou et al., 2018) Tetragonal phase Thermal decomposition

Zn2+ NaYbF4 (Zhong et al., 2019) Cubic phase High temperature thermal-decomposition method Host lattice manipulation

Ca2+ NaYF4 (Zhao et al., 2020) Cubic phase

Hexagonal phase

Co-precipitation method Host lattice manipulation

Bi3+ NaYF4 (Niu et al., 2012) Cubic phase

Hexagonal phase

Facial microwave reflux method Host lattice manipulation

Ce3+ NaYF4 (Li et al., 2019) Hexagonal phase Hydrothermal process Energy transfer modulation

NaYbF4 (Zhong et al., 2017; Li et al., 2019;

Cao et al., 2020)

Cubic phase Thermolysis method

NaLnF4 (Li et al., 2019) Hexagonal phase Hydrothermal process

NaGdF4 (Wang F. et al., 2007; Li et al., 2019) Hexagonal phase Hydrothermal process

Eu3+ NaErF4 (Shang et al., 2018) Hexagonal phase High-temperature co-precipitation method Energy transfer modulation

NaGd(MoO4)2 (Chen et al., 2020) Tetragonal phase Solid-state reaction method

Tb3+ NaYbF4 (Zhou B. et al., 2015) Hexagonal phase Co-precipitation method Energy transfer modulation

Ho3+ NaYF4 (Cheng et al., 2018) Hexagonal phase High-temperature co-precipitation method Energy transfer modulation

LiYF4 (Cheng et al., 2018) Hexagonal phase High-temperature co-precipitation method

Sc3+ NaYF4 (Huang et al., 2010) Hexagonal phase Hydrothermal method Energy transfer modulation

Tm3+ NaErF4 (Chen et al., 2017; Shang et al., 2018;

Zhang et al., 2019)

Hexagonal phase High-temperature co-precipitation method Energy transfer modulation
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→
4I15/2 of Er3+ is also promoted, which helps enhance the

∼1,525 nm emission intensity (Figure 5E). Cao et al. (2020)
reported a similar result when they synthesized a core-shell
structure of NCs, NaYbF4:Er,Ce@NaYF4:Yb@NaYF4:Nd. Under
808 nm excitation, the NaYbF4:Er,Ce@NaYF4:Yb@NaYF4:Nd
NCs showed a 10 times luminescence enhancement at 1525 nm
than the NCs without doping Ce3+. As the light in the NIR-II
window affords a superior signal to noise ratio and lower
autofluorescence than the light in the first NIR window,
the NIR-II emission gets increasing attention in deep tissue
imaging. In Figures 5H,I, the blood vessels can be clearly
observed by using the NaYbF4:Er,Ce@NaYF4:Yb@NaYF4:Nd
NCs, and the resolution can remain up to 0.25mm
even 10 h after the injection. Therefore, these excellent
properties provide a potential application for LDNCs in the
bioimaging fields.

SUMMERY AND PERSPECTIVES

Through summarizing the recent studies on how to improve
the luminescence of LDNCs, breakthroughs have been made in
some aspects. In this review, we summarize the recently reported
methods on how to boost the upconversion and even downshift
luminescence by doping metal ions, and introduce the related
two mechanisms of doping in detail (Table 1).

Through the manipulation of the host lattice, the metal
ions play a significant role in increasing the asymmetry around
the lanthanides, therefore, leading to the increase of dipole
transition. And for the energy transfer modulation, metal ions
improve the overall energy transfer efficiency and decrease the
quenching effect by providing an effective pathway in the process
of energy transfer.

On the basis of improving emission intensity, some problems,
still have not been explained clearly. For example, when
introducing metal ions into the main lattice, especially for the
mechanism of energy transfer regulation, the influence of the host
lattice manipulation should not be ignored, which may disrupt
the accuracy of the results. To resolve this effect, it can only be
reduced by introducing metal ions with a small difference in the
ion radius between the doping and occupied ions. And for ions
like Fe3+, the enhancement of luminescence is the result of the
combination of the two mechanisms. At the same time, how

the metal ion is doped into the host lattice has not been fully
explained. Site occupation or lattice filling might both exist in
the same host lattice, and the method of metal ion doping has
a relatively close relationship with the concentration and radius
of the doping ions.

With further exploration of the research, the importance
of the NIR-II light also shows itself. For deeper penetration,
higher signal-to-noise ratio, and smaller scattering effect, the
NIR-II light arouses increasing attention. Therefore, a rapidly
growing number of recent studies have focused on improving
near infrared luminescence, such as the emission of Er3+ at
∼1,530 nm. The application of Er3+ in biological imaging is
worth exploring. In addition, the enhancement of a certain
emission band which was caused by non-radiative transition
between two or more different rare earth ions is also the
main focus of future research. It is necessary to develop more
non-radiative transitions between different rare earth ions with
good energy level matching to enhance the desired emission
intensity. For now, most studies on the enhanced luminescence
have been applied in the biological field, such as bioimaging
and biosensing. There are some other applications that have
been explored for the broader use of enhanced luminescence,
such as anti-counterfeiting (Ding et al., 2020) and finger print
latency (Wang et al., 2020), which endorse the importance of
enhancing luminescence. Nonetheless, we believe that the rare
earth ion-doped upconversion nanomaterials will have a wider
range of applications and bright prospects in basic studies and
technology fields.
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