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Abstract: We introduce a new incompatibility criterion for quantum channels based on the notion
of (quantum) Fisher information. Our construction is based on a similar criterion for quantum
measurements put forward by H. Zhu. We then study the power of the incompatibility criterion in
different scenarios. First, we prove the first analytical conditions for the incompatibility of two Schur
channels. Then, we study the incompatibility structure of a tuple of depolarizing channels, comparing
the newly introduced criterion with the known results from asymmetric quantum cloning.
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1. Introduction

The impossibility of simultaneous realizations of two quantum operations is one of
the fundamental features of quantum theory [1,2]. Two of the most famous incarnations
of this principle are the Heisenberg uncertainty principle (the position and momentum of a
quantum particle can not be measured simultaneously [1]) and the no-cloning theorem (there
is no physical operation producing two identical copies of an unknown, arbitrary, quantum
state [3,4]). In general, two (or more) quantum operations, such as measurements, channels,
or instruments, are called compatible if they can be seen as marginals of a common operation;
if there is no physical operation having the original ones as marginals, they are called
incompatible. As quantum theory is built on Hilbert space, general quantum measurements
are considered the positive operator-valued measures (POVMs). In quantum information
theory, there are many applications of the notion of incompatibility, such as the robustness
of entanglement [5,6], the robustness of measurement incompatibility [7–9], quantum non-
locality [10,11], quantum steering [7,12], quantum state discrimination [13–15], quantum
resource theory [16], and quantum cryptography [17].

In the modern formalism of quantum theory, the most general description of physical
transformations of quantum states is in terms of quantum channels [18,19]. The concept
of incompatibility of quantum channels has been proposed in terms of the input–output
devices [20,21]. In [21], the authors show that the definition of the incompatibility of quantum
channels is a natural generalization of joint measurability of quantum observables. There
exists a large body of work dealing with this notion from various points of view [15,22–24].
Generally speaking, deciding whether a given family of quantum operations is compatible
can be formulated as a semidefinite program [25]. However, the size of the program grows
exponentially with the number of operations considered. Hence, this method can be computa-
tionally prohibitive even for small system sizes (such as qubits) when the number of systems
is moderately large. To cope with this dimensionality problem, (in-)compatibility criteria
have been introduced; these are conditions that are only necessary, or sufficient, for the com-
patibility of the given tuple of channels. As is the case with quantum measurements [20],
there exist much more compatibility criteria [26] than incompatibility criteria.
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In this work, we introduce a new incompatibility criterion for quantum channels based on
the notion of (quantum) Fisher information. Our criterion is based on a similar condition
put forward by H. Zhu [27,28] in the case of quantum measurements.

After introducing the necessary background on Fisher information and quantum
channel compatibility (Sections 2 and 3), we put forward the new incompatibility criterion
in Section 4. The statement of the main result of the paper can be found in Theorem 1. We
then apply this result to study, for the first time, the incompatibility of Schur channels,
an important class of quantum operations with wide-ranging applications; see Section 5.
In the final two sections of the paper, we introduce different compatibility structures for
assemblages of quantum channels (Section 6), and we study them in the case of generalized
depolarizing channels (Section 7).

2. Classical and Quantum Fisher Information

Consider a family of probability distributions {p(x|θ), x ∈ R} parametrized by θ. A
central research direction in statistics is to estimate the accuracy of the value of parameter θ
by observing x outcomes sampled from the distributions. Recall that the (classical) Fisher
information of the model is defined as

I(θ) := ∑
x

p(x|θ)
(

∂ log p(x|θ)
∂θ

)2

.

when an estimator θ̂(x) of the parameter θ is unbiased, the inverse of the classical Fisher
information gives a lower bound on the mean square error (MSE) of the estimator, which is
the well-known Cramér-Rao bound [29,30]. The notion of the classical Fisher information
plays a significant role in the geometrical approach to statistics [31,32] and the information
theory approach to physics [33].

In the multiple-parameter scenario, when θ is a vector, the classical Fisher infor-
mation is considered as a matrix form, which is a real symmetric matrix with matrix
elements [34–36]:

Iij(θ) := ∑
x

p(x|θ)∂ log p(x|θ)
∂θi

∂ log p(x|θ)
∂θj

.

In a quantum parameter estimation scenario, we may perform the quantum positive
operator-valued measurement (POVM) on a quantum state that depends on a parameter
to extract the parameter information. Consider a quantum measurement M = {Mx ≥
0, ∑x Mx = Id} acting on the states ρ(θ) ∈ L(Hd). The parameterized probability of
outcomes x of the measurement is p(x|θ) = Tr[ρ(θ)Mx]. The corresponding measurement-
induced Fisher information IM(θ) is then given by

IM(θ) = ∑
x

p(x|θ)Tr
(

∂ log ρ(θ)

∂θ
Mx

)2

.

The quantum Fisher information of the model ρ(θ) is defined as [37]

J(θ) := Tr[ρ(θ)L(θ)2],

where the symmetric logarithmic derivative (SLD) operators L(θ) for the parameter θ are
determined implicitly by

dρ(θ)

θ
=

1
2
[ρ(θ)L(θ) + L(θ)ρ(θ)].

In contrast with the classical Cramér-Rao bound, the inverse of quantum Fisher
information is also a lower bound for the MSE of an unbiased estimator, which is called the
quantum Cramér-Rao bound [37].
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In quantum multiple-parameter estimation scenarios, both the measure-induced Fisher
information and quantum Fisher information are matrices

IM,ij(θ) = ∑
x

p(x|θ)Tr
(

∂ log ρ(θ)

∂θi
Mx

)
Tr

(
∂ log ρ(θ)

∂θj
Mx

)
, (1)

Jij(θ) =
1
2

Tr{ρ(θ)[Li(θ)Lj(θ) + Lj(θ)Li(θ)]}, (2)

where Lk is the SLD operator corresponding with θk. The measurement-induced Fisher
information resembles the classical correlations, while the quantum Fisher information
resembles the quantum mutual information. From the Braunstein–Caves theorem [36],
the quantum Fisher information, independent of measurement, is an upper bound of the
measurement-induced Fisher information in the positive semidefinite order for matrices:

IM(θ) ≤ J(θ).

In this work, we shall consider another relationship proposed by Gill and Massar [38] for
any d−dimensional quantum system:

Tr[J−1(θ)IM(θ)] ≤ d− 1. (3)

This inequality was the main ingredient in the incompatibility criterion invented by
Zhu [27], which lies at the foundation of our incompatibility criterion for quantum channels.

3. Compatibility of Quantum Channels

In this section, we review the basic definitions of quantum channel compatibility.
Let Hd and HD be Hilbert spaces, and L(Hd) denote the family of linear operators on

Hd. In the Schrödinger picture, a quantum channel is defined as a linear map Φ : L(Hd)→
L(HD) having the following two properties:

• complete positivity: for any dimension k ≥ 1, the linear map idk ⊗Φ : L(Ck ⊗ Hd)→
L(Ck ⊗ HD) is a positive operator;

• trace-preservation: for all operators X ∈ L(Hd), Tr Φ(X) = Tr X.

We say that quantum channels are trace-preserving, completely positive (TPCP) maps. In
this paper, we shall also consider the Heisenberg picture of quantum mechanics, where
channels are seen as acting on observables instead of states. This amounts to considering
the adjoint map Φ∗ : L(HD) → L(Hd), where the adjoint is taken with respect to the
Hilbert–Schmidt scalar product on the corresponding matrix spaces [21]:

〈A, Φ(ρ)〉 = 〈Φ∗(A), ρ〉,

where ρ ∈ L(Hd), A ∈ L(HD), and 〈X, Y〉 := Tr(X∗Y).
We now recall the definition of the compatibility of quantum channels and refer the

reader to the review [20] for further properties.

Definition 1. Consider two quantum channels Φ1 : L(Hd) → L(Hd1) and Φ2 : L(Hd) →
L(Hd2) having the same input space. The pair (Φ1, Φ2) is said to be compatible, if there exists a
joint channel Λ : L(Hd)→ L(Hd1 ⊗ Hd2) such that Φ1,2 are the marginals of Λ:

∀X ∈ L(Hd), Φ1(X) = Tr2 Λ(X) and Φ2(X) = Tr1 Λ(X),

where Tr1,2 denote the partial trace operations in L(Hd1 ⊗ Hd2)
∼= L(Hd1)⊗L(Hd2).

In the Heisenberg (dual) picture, the condition above reads

∀A ∈ L(Hd1), Φ∗1(A) = Λ∗(A⊗ Id2), and ∀B ∈ L(Hd2), Φ∗2(B) = Λ∗(Id1 ⊗ B).
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The (in-)compatibility of more than two channels is defined in a similar manner.

As an example, let us consider the partially depolarizing channel, which is defined as:

Φt = t · id + (1− t)∆, 0 ≤ t ≤ 1, (4)

with id(A) = A and ∆(A) = Tr(A)Id/d for any operator A; these quantum channels will be
discussed at length in Section 7. From the no-cloning theorem [3,4], it follows that two copies
of the identity channel (id, id), are incompatible. On the other hand, the completely depolar-
izing channel ∆ is compatible with any other channel. A question is the self-incompatibility
of Φt. It is well known that the channel Φt is self-compatible if 0 ≤ t ≤ d+2

2(d+1) [26,39].
The necessary and sufficient condition for the compatibility of two different depolarizing
channels Φs and Φt were shown in [40–42]:

t + s− 2
d

√
(1− t)(1− s) ≤ 1. (5)

As previously discussed, quantum channel incompatibility is a key phenomenon in
quantum theory, being at the heart of fundamental results in quantum information, such
as the no-cloning theorem. In order to measure the degree of incompatibility of a given
set of quantum channels, several definitions of the robustness of incompatibility have been
considered in the literature [8,26,43]. In this section, we introduce a new such measure
for a tuple of channels, which has the merit of taking into consideration the asymmetry
between the channels considered. A similar definition was considered in the case of POVMs
in [44,45]. We shall consider only channels acting on L(Hd), and we recall that ∆ denotes
the fully depolarizing channel ∆(X) = (Tr X)Id/d.

Definition 2. Given an N-tuple of quantum channels Φ := (Φ1, Φ2, . . . , ΦN), define the com-
patibility region of Φ as

ΓΦ :=

{
s ∈ [0, 1]N : the channels

[
siΦi + (1− si)∆

]N

i=1
are compatible

}
.

Note that the definition is a relevant event in the case where the channels Φi are
identical: Φi = Φ for all i ∈ [N], in which case we call ΓΦ := ΓΦ the self-compatibility
region (note that the dependence in N is still present since we are consider N copies of the
channel Φ).

The following result is a simple exercise.

Proposition 1. For any N-tuple of quantum channels Φ := (Φ1, Φ2, . . . , ΦN), the set ΓΦ is
convex and closed (i.e., a convex body). We have 0 ∈ ΓΦ, and, for all i ∈ [N],

ei := (0, . . . , 0, 1︸︷︷︸
i-th position

, 0, . . . , 0) ∈ ΓΦ.

4. Channel Incompatibility via POVM Incompatibility

This is the main section of our paper, where we put forward a new incompatibil-
ity criterion for quantum channels in Theorem 1. Our criterion is based on an incom-
patibility criterion for quantum measurements (POVMs) introduced by H. Zhu and his
collaborators [27,28].

Let us start by recalling the definition of compatibility (or joint measurability) of
quantum measurements. First, recall that a quantum measurement (or POVM) is a k-tuple of
operators A = (A1, A2, . . . , Ak), having the following two properties:

• positivity: the operators A1, . . . , Ak ∈ L(Hd) are positive semidefinite;
• normalization: ∑k

i=1 Ai = Id.
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A POVM gives the most general form of a physical process that produces the probabilities
given by the Born rule: when measuring a quantum system described by a density matrix ρ,
one obtains the result i ∈ [k] with probability

P[ outcome i] = Tr(ρAi).

Naturally, one can see a POVM A as a quantum-to-classical channel

ΦA(X) =
k

∑
i=1

Tr(XAi)|i〉〈i|,

where {|i〉}k
i=1 denotes the canonical basis of Ck corresponding to the pointer states of the

measurement apparatus.
Whether two (or more) quantum measurements can be performed simultaneously is

one of the crucial questions lying at the foundations of quantum theory [1,2]. Mathemati-
cally, we have the following important definition (compare with Definition 1).

Definition 3. Two POVMs A = {Ai}i∈[k] and B = {Bj}k∈[l] are said to be compatible (or
jointly measurable) if there exists a third POVM C = {Cij}(i,j)∈[k]×[l], called joint measurement,
such that

∀i ∈ [k], Ai =
l

∑
j=1

Cij,

∀j ∈ [l], Bj =
k

∑
i=1

Cij.

Otherwise, the measurements A and B are called incompatible [46]. The compatibility of more than
two measurements is defined similarly.

Quantum measurement (in-)compatibility has received a lot of attention in the lit-
erature, see, e.g., the excellent reviews [20,47], or the recent perspective on the problem
focusing on the post-processing partial order [48]. Importantly for us, in [27], H. Zhu
proposed a family of universal POVM incompatibility criteria based on the classical Fisher
information matrix. Assume a measurement C is the joint measurement of Ai. According
to the Fisher information data-processing inequality, the measurement-induced Fisher
information matrix of Ai should not exceed that of C, that is to say

IAi ≤ IC

for all quantum states θ (θ is omitted in the formula above for convenience); the Fisher
information matrix I was defined in Equation (1). Define ĨAi := J−1/2 IAi J−1/2 as the metric-
adjusted Fisher information. The following inequality holds for compatible measurements
based on the Gill–Massar inequality (3):

min
{

Tr H : H ≥ ĨAi ∀i ∈ [N]
}
≤ d− 1. (6)

Otherwise, the N-tuple of measurements (Ai)i∈[N] is incompatible. When the parameter θ
(the state around which we compute the Fisher information) corresponds to the maximally
mixed state θ = Id/d, inequality (6) can be rephrased as the following proposition [27,28].

Proposition 2. For a set of N measurements A = (A1, A2, . . . , AN) on L(Hd), define the operators

∀i ∈ [N] GAi :=
ki

∑
s=1
|Ai(s)〉〈Ai(s)|/[Tr(Ai(s)] ∈ L(H⊗2

d ),
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where Ai(1), Ai(2), . . . , Ai(ki) are the (non-zero) effects of the POVM Ai, having ki outcomes.
Consider now the quantity

τ(A) := min Tr H

s.t. H ≥ GAi ∀i ∈ [N].
(7)

If τ(A) > d, then the N-tuple of POVMs A = (A1, A2, . . . , AN) is incompatible.

Remark 1. Note that the function τ(A) satisfies two basic requirements for a good measure of
(in-)compatibility: monotonicity under coarse-graining and global unitary invariance.

Remark 2. For any POVM A, the associated matrix GA is larger, in the positive semidefinite order,
than the maximally entangled state

ω :=
1
d

d

∑
i,j=1
|ii〉〈jj|.

This fact is a consequence of the important observation that the A 7→ GA is an order morphism for
the post-processing order of quantum measurements [48], and G{I} = ω.

A natural question is how to capture the incompatibility of quantum channels using
measurements. Let {|ej〉} and {| fk〉} be any sets of the basis of Hilbert spaces Hd1 and
Hd2 , respectively. Motivated by the definition of incompatibility of quantum channels, we
dedicate to research properties of the induced sets {Φ∗1(|ej〉〈ej|)} and {Φ∗2(| fk〉〈 fk|)}. As we
consider the quantum channel is trace-preserving, thus {Φ∗1(|ej〉〈ej|)} and {Φ∗2(| fk〉〈 fk|)}
can be regarded as POVMs [23], that is to say,

∑
j

Φ∗1(|ej〉〈ej|) = ∑
k

Φ∗2(| fk〉〈 fk|) = Id. (8)

Lemma 1. [21] If N quantum channels Φ1, Φ2, . . . , ΦN are compatible, then, for all orthonormal
bases e(1), e(2), . . . , e(N) of Cd, the corresponding POVMs

As :=
[
Φ∗s (|e

(s)
i 〉〈e

(s)
i |)

]d

i=1
, ∀s ∈ [N]

are compatible.

Proof. Let Λ be a joint channel for the compatible N-tuple (Φ1, Φ2, . . . , ΦN). Clearly, Λ :
L(Hd)→ L(H⊗N

d ) thus its adjoint is an unital, completely positive map

Λ∗ : L(H⊗N
d )→ L(Hd).

Define operators

B :=

[
Λ∗
( N⊗

s=1

|e(s)is 〉〈e
(s)
is |
)]

i1,...,iN∈[d]

.

From the fact that Λ∗ is a completely positive, unital map, we infer that B is a POVM (with
dN outcomes). Let us now compute the marginals of this POVM. For some fixed s ∈ [N]
and is ∈ [d], we have

∑
i1,...,is−1,is+1,...,iN∈[d]

Bi1···iN = Λ∗(Id ⊗ · · · ⊗ |e
(s)
is 〉〈e

(s)
is | ⊗ · · · ⊗ Id) = Φ∗s (|e

(s)
is 〉〈e

(s)
is |) = As(is), (9)

showing that the s-th marginal of B is As. Thus B is a joint measurement of A1, A2, . . . , AN ,
proving the claim.
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We leave open the reciprocal question, which we formulate as a conjecture (below for
two channels, although the general version, for a N-tuple, can be easily stated).

Conjecture 1. Consider two quantum channels Φ, Ψ : L(Hd) → L(Hd) such that, for all
orthonormal bases e = (e1, . . . , ed), f = ( f1, . . . , fd) of Cd, the POVMs[

Φ∗(|ei〉〈ei|)
]d

i=1
and

[
Ψ∗(

∣∣ f j
〉〈

f j
∣∣)]d

j=1

are compatible. Then, Φ and Ψ are compatible channels.

We now turn to the main theoretical result of our paper: a criterion for quantum
channel incompatibility. Informally, one can formulate it as follows: given an N-tuple
of quantum channels, if one can find an N-tuple of orthonormal bases such that the
corresponding quantum measurements are incompatible, then the original N-tuple of
channels must also be incompatible. Our criterion is important since there are very few
useful incompatibility criteria for channel incompatibility. On the other hand, there exist
quite numerous incompatibility criteria for quantum measurements, so one can turn those
into criteria for channels using Lemma 1. We introduce the following important notation:
to a quantum channel Φ : L(Hd)→ L(Hd) and an orthonormal basis e = (ei)

d
i=1 of Cd, we

associate the G matrix

GΦ,e :=
d

∑
i=1

|Φ∗(|ei〉〈ei|)〉〈Φ∗(|ei〉〈ei|)|
Tr Φ∗(|ei〉〈ei|)

, (10)

which corresponds to the G matrix associated to the POVM[
Φ∗(|ei〉〈ei|)

]d

i=1
.

Theorem 1. Let Φ1, Φ2, . . . , ΦN : L(Hd) → L(Hd) be N quantum channels. If there exists
orthonormal bases e(1), e(2), . . . , e(N) of Cd such that the value of the semidefinite program

min Tr H

s.t. H ≥ GΦi ,e(i)
∀i ∈ [N]

(11)

is strictly larger than d, then the n-tuple of channels Φ = (Φ1, Φ2, . . . , ΦN) is incompatible.

Proof. The theorem follows directly from Proposition 2 and Lemma 1.

Remark 3. If the quantum channel Φ is unital, that is to say, Φ(Id) = Id, the formula (10)
simplifies, in the sense that the denominator is trivial:

Tr Φ∗(|ei〉〈ei|) = 〈Id, Φ∗(|ei〉〈ei|)〉 = 〈Φ(Id), |ei〉〈ei|〉 = 〈Id, |ei〉〈ei|〉 = Tr|ei〉〈ei| = 1. (12)

This will be the case for most of the examples we shall discuss in what follows.

It is important at this point to note that the incompatibility criterion we put forward
in the result above is formulated as an SDP (semidefinite program). The usual way of
formulating the compatibility of a tuple of quantum channels is also an SDP: one looks for
a joint channel, a problem that can be formulated as an SDP thanks to the Choi formalism.
However, let us compare the size of the SDPs:

• channel compatibility: the joint channel has a Choi matrix of size dN+1

• incompatibility criterion from Theorem 1: the variable H has size d2.
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Note also that one has, in both cases, N constraints of size d2. Therefore, we obtain a dra-
matic reduction in the size of the SDP at the price of having only a necessary compatibility
condition (i.e., an incompatibility criterion).

There is, however, a situation when SDP (11) simplifies and can be analytically solved.
This is when the matrices G corresponding to the channel are orthogonal (up to the maxi-
mally entangled state ω). We formalize this observation below.

Proposition 3. Consider N quantum channels Φ1, Φ2, . . . , ΦN : L(Hd)→ L(Hd) and orthonor-
mal bases e(1), e(2), . . . , e(N) such that, for all i, j ∈ [N], i 6= j,

GΦi ,e(i)
−ω ⊥ GΦj ,e(j) −ω.

Then, the value of SDP (11) is

1− N +
N

∑
i=1

Tr GΦi ,e(i)
.

Proof. Taking into consideration Remark 2, one can rewrite SDP (11) by subtracting
ω everywhere:

1 + min Tr H̃

s.t. H̃ ≥ GΦi ,e(i)
−ω ∀i ∈ [N]

(13)

where H̃ = H −ω. Using the hypothesis and noting that the matrices GΦi ,e(i)
−ω are all

positive semidefinite, any feasible H̃ must satisfy

H̃ ≥
N

∑
i=1

GΦi ,e(i)
−ω.

Hence, the optimal H̃ achieves equality above, and the conclusion follows.

This idea will be used in Sections 5 and 7 to obtain (analytical) incompatibility criteria
for important classes of quantum channels.

As an example, let us work out the G matrix for the identity channel id(X) = X.

Gid,e =
d

∑
i=1

∣∣∣|ei〉〈ei|
〉〈
|ei〉〈ei|

∣∣∣ = d

∑
i=1
|ei ⊗ ēi〉〈ei ⊗ ēi| =: Ze. (14)

The matrix Ze will play an important role in what follows. We gather some useful
facts about it below. Recall that two orthonormal bases e, f of Cd are called unbiased if

∀i, j ∈ [d], |〈ei, f j〉| =
1√
d

.

Lemma 2. For any orthonormal basis e, we have

〈Ze, ω〉 = 1.

Moreover, if e and f are unbiased orthonormal bases, then

〈Ze, Zf〉 = 1.

Let us close this section by mentioning how the matrices G behave when mixing
noise into a quantum channel Φ. This property will be very useful in what follows when
investigating the compatibility robustness of some classes of quantum channels.
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Lemma 3. Given a quantum channel Φ : L(Hd)→ L(Hd), consider its noisy version

Φt := tΦ + (1− t)∆,

where ∆(X) = (Tr X)I/d is the completely depolarizing channel, and t ∈ [0, 1] is some parameter.
Then, for any orthonormal basis e,

GΦt ,e = t2GΦ,e + (1− t2)ω,

where ω is the maximally entangled state (note that ω = G∆,e).

Proof. This can either be proven directly using formula (10) or by using the corresponding
result for POVMs, see, e.g., ([48] Proposition 5.3).

5. Incompatibility of Two Schur Channels

As the first application of our newly introduced incompatibility criterion for quantum
channels, we consider Schur channels. A Schur map is a linear map of the form

ΣB(X) = B ◦ X,

where B is a d× d complex matrix and ◦ denotes the Hadamard product. The map ΣB is
completely positive if and only if matrix B is positive semidefinite, and it is trace-preserving
if the diagonal of B is the identity: Bii = 1 for all i. If both conditions are satisfied, we call
map ΣB a Schur channel (sometimes also called a Schur multiplier), see [49–52]. Schur
channels have received a lot of attention in operator algebra and quantum information
theory, and they contain the identity channel id = ΣJ , where J is the all 1s matrix, and the
dephasing channel (the conditional expectation on the diagonal sub-algebra) diag = ΣI
as examples.

For Schur channel ΣB, we have

GΣB ,e = |B̄〉〈B̄| ◦ Ze,

for any orthonormal basis e (recall the form of the matrix Z from (14)). If e is the canonical
basis, we have

GΣB ,can = Zcan.

Consider now a basis f that is unbiased with respect to the canonical basis; in other
works, the elements of f form the columns of a Hadamard matrix U: | f j〉 = U |j〉 for all j.
An important example of such a basis is the Fourier basis:

f j(s) = exp(2πi/d)js, ∀j, s ∈ [d].

Lemma 4. If B and C are two positive semidefinite matrices with unit diagonal, and can and f are
unbiased, then

GΣB ,can −ω ⊥ GΣC ,f −ω.

Proof. Expanding the scalar product and using Lemma 2, we need to show that

〈Zcan,
∣∣C̄〉〈C̄∣∣ ◦ Zf〉 = 〈ω,

∣∣C̄〉〈C̄∣∣ ◦ Zf〉.

Let us work out the left-hand-side:

〈Zcan,
∣∣C̄〉〈C̄∣∣ ◦ Zf〉 = 〈|C〉〈C| ◦ Zcan, Zf〉 = 〈Zcan, Zf〉 = 1,

where we have used Lemma 2 and the fact that |C〉〈C| ◦Zcan = Zcan, which follows from the
fact that C has unit diagonal. The right-hand-side can be dealt with in the same manner.
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For a d× d matrix B with unit diagonal, define the real parameter β(B) as follows:

β(B) :=
1

d− 1

(
1
d

d

∑
i,j=1
|Bij|2 − 1

)
=

1
d− 1 ∑

i 6=j∈[d]
|Bij|2. (15)

Recall that the torus Td is the set of vectors b ∈ Cd with |bi| = 1 for all i = 1, . . . , d.

Lemma 5. If B is a d× d positive semidefinite matrix with unit diagonal, then

0 ≤ β(B) ≤ 1,

with β(B) = 0 iff B = I and β(B) = 1 iff B = |b〉〈b| for a vector b ∈ Td.

Proof. The non-negativity of β, as well as the equality case, follows directly from definition
(15). For the upper bound, use the ordering of the 1, 2-Schatten norms of B to write

d

∑
i,j=1
|Bij|2 = ‖B‖2

2 ≤ ‖B‖2
1 = (Tr B)2 = d2,

proving the inequality. Equality holds if B is rank one, which, together with the condition
on the diagonal, proves that B = |b〉〈b| for some vector b ∈ Td.

We can now, using Theorem 1, provide a new incompatibility criterion for Schur channels.

Theorem 2. Consider two positive semidefinite matrices B and C with unit diagonal, and the
corresponding depolarized Schur channels

Φs(X) = sΣB(X) + (1− s)∆(X) = sB ◦ X + (1− s)(Tr X)
I
d

Ψt(X) = tΣC(X) + (1− t)∆(X) = tC ◦ X + (1− t)(Tr X)
I
d

.

If s2 + β(C)t2 > 1, then the channels Φs and Ψt are incompatible. We have, thus, an upper
bound for the compatibility region from Definition 2:

ΓΦ,Ψ ⊆ {(s, t) ∈ [0, 1]2 : s2 + β(C)t2 ≤ 1 and β(B)s2 + t2 ≤ 1}, (16)

where Φ := Φ1 and Ψ := Ψ1.

Proof. The proof is an application of Theorem 1. To start, let us compute the G matrices
associated with these channels, taking, respectively, the canonical basis can, and any unbi-
ased base f (e.g., the Fourier basis); this choice is inspired by Lemma 4 and Proposition 3.
Applying these results, as well as the scaling Lemma 3, we have

GΦs ,can = s2GΣB ,can + (1− s2)ω = ω + s2(Zcan −ω)

GΨt ,f = t2GΣC ,f + (1− t2)ω = ω + t2(
∣∣C̄〉〈C̄∣∣ ◦ Zf −ω).

Hence, the value of SDP (11) is given by (see Proposition 3)

1− 2 + Tr GΦs ,can + Tr GΨt ,f = s2(d− 1) + 1− t2 + t2 Tr[
∣∣C̄〉〈C̄∣∣ ◦ Zf].

We can evaluate

Tr[
∣∣C̄〉〈C̄∣∣ ◦ Zf] =

1
d

d

∑
i,j=1
|Cij|2,
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and, using parameter β(C) from (15), the incompatibility criterion reads

s2 + β(C)t2 > 1,

which is the first claim. The second claim follows by swapping the roles of the unbiased
bases can and f.

Remark 4. One can not easily generalize the result above to more than two Schur channels. This is
due to the fact that one has to fix one of the bases in Theorem 1 to be the canonical basis. This is due
to the fact that the Hadamard product used to define Schur channels is adapted to the canonical basis.
We leave the generalization of the result (and method) above for three or more Schur channels open.

We compare, in Figure 1, the criterion from the theorem above with the actual incom-
patibility thresholds for some particular Schur channels, concluding that the incompatibility
criterion is close to being exact.
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Figure 1. The Fisher information-based incompatibility criterion for Schur channels. In the left panel,

we consider two noisy copies of the Schur channel corresponding to B =

[
1 1/2

1/2 1

]
. In the right

panel, we consider noisy versions of ΣB and ΣC, where C =

[
1

√
3/4√

3/4 1

]
. Shaded regions

correspond to the conditions from (16), while the red dots correspond to the maximally compatible
channels in the respective directions.

6. Channel Assemblages

The way in which several quantum measurement and quantum channels can be incom-
patible has been studied extensively in the literature [53–56]. The kind of (in-)compatibility
structures that can be found in nature, and their relation to other important manifesta-
tions of non-locality (such as Bell inequality violations), is clearly a crucial question at the
foundation of quantum theory.

Let {Φi}N
i=1 be a channel assemblage that is an N-tuple of quantum channels. If {Φi}N

i=1
are incompatible, there does not exist a joint quantum channel for all the N channels.
However, a joint channel may exist when we consider a certain subset of {Φi}N

i=1. In
other words, some subsets of {Φi}N

i=1 may be compatible, even though the whole set is
incompatible. Obviously, if the whole set of N channels is compatible, then so is any subset:
if Λ is a joint channel for the N-tuple. Then, for any subset S ⊆ [N] of the channels, ΛS, the
marginal of Λ corresponding to the output indices in S

ΛS : L(Hd)→ L
(⊗

i∈S
H(i)

d

)
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is a joint channel for {Φi}i∈S; above, we identify the different copies of the output space
L(Hd) by a superscript. Therefore, it is significant to classify the incompatibility of subsets
for a given quantum channel assemblage. A K-subset of [N] is simply a subset S ⊆ [N] of
cardinality |S| = K.

Definition 4. Consider a quantum channel assemblage Φ = {Φi}N
i=1 and 1 ≤ K ≤ N an integer.

The N-tuple Φ is called:

• (N, K)-compatible if all K-subsets of Φ are compatible.
• (N, K)-incompatible if at least one K-subset of Φ is incompatible.
• (N, K)-strong incompatible if all K-subsets of Φ are incompatible.
• (N, K + 1)-genuinely incompatible if it is (N, K)-compatible and (N, K + 1)-incompatible.
• (N, K + 1)-genuinely strong incompatible if it is (N, K)-compatible and (N, K + 1)-strong

incompatible.

Note that the assemblage {Φi}N
i=1 is compatible if and only if it is (N, N)-compatible.

The previous definition is strongly inspired by the one from ([56] Section 2) in the case
of POVMs. The incompatibility criterion from Theorem 1 can be readily adapted to the
previous definition by considering subsets of the PSD constraints in (11). We restate it here
for the convenience of the reader. We shall apply it in the next section for assemblages of
depolarizing channels.

Theorem 3. Consider an assemblage Φ = {Φi}N
i=1 of quantum channels acting on L(Hd). For a

K-subset S of [N], and K orthonormal bases e = (e(1), e(2), . . . , e(K)) of Cd, define the value of the
following semidefinite program

val(Φ, S, e) := min Tr H

s.t. H ≥ GΦi ,e(i)
∀i ∈ S.

(17)

If there exists at least one S ∈ [N] and a K-tuple of orthonormal bases e such that val(Φ, S, e) >
d, then the assemblage Φ is (N, K)-incompatible. Moreover, if for all K-subsets S ⊆ [N], there exists
a K-tuple of bases eS such that val(Φ, S, eS) > d, the assemblage Φ is (N, K)-strong incompatible.

7. Assemblages of Depolarizing Channels

In this section, we address the (in-)compatibility properties of an N-tuple of partially
depolarizing channels, using the Fisher information-based criterion from Theorem 1. Recall
that the partially depolarizing channel is the linear map Φt : L(Hd)→ L(Hd) given by

Φt = t · id + (1− t)∆, (18)

where id is the identity channel id(X) = X and ∆ is the fully depolarizing channel ∆(X) =
(Tr X)I/d. The parameter t ∈ [0, 1] interpolates between the identity channel and the fully
depolarizing channel.

In this section, we shall study the incompatibility of N partially depolarizing channels
{Φi

ti
}N

i=1, for some fixed parameters t1, t2, . . . , tN ∈ [0, 1], with the help of the criterion from
Theorem 1. To do so, let us first compute the G matrices of depolarizing channels, which are
just noisy versions of the identity channel. Recall from Equation (14) that, for the identity
channel, we have, for an arbitrary basis e,

Ze = Gid,e =
d

∑
i=1
|ei ⊗ ēi〉〈ei ⊗ ēi|,

where ēi denotes the (entrywise) complex conjugate of the vector ei. Hence, by Lemma 3,
we have

GΦt ,e = t2Ze + (1− t2)ω.
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As in Section 5, we are going to use the orthogonality of the G matrices in order to put
forward analytical incompatibility criteria for depolarizing channels (see Proposition 3). To
do so, recall that the Ze matrices have tractable scalar products for unbiased bases. As it
turns out, mutually unbiased bases [57] will play an important role in what follows. Let
Dd be the maximal cardinality of a set of mutually unbiased bases of Cd. It is known that
3 ≤ Dd ≤ d + 1 [58–60]. The upper bounds are attained for all dimensions d, which are
prime powers; whether it is always attained is an important open problem in quantum
information theory, even the case d = 6 being undecided.

We now state the main result of this section, an incompatibility criterion for depolariz-
ing channels.

Proposition 4. Let N be an integer such that N ≤ Dd, the maximal number of mutually unbiased
bases of Cd. Consider N depolarizing channels Φt1 , . . . , ΦtN , where t1, . . . , tN ∈ [0, 1] are noise
parameters. If

t2
1 + t2

2 + · · ·+ t2
N > 1 (19)

then the N depolarizing channels Φti are incompatible.

Proof. Since the number of channels we consider is smaller than Dd, we can choose N
mutually unbiased bases e(1), . . . , e(N). SDP (11) reads

min Tr H

s.t. H ≥ t2
i Ze(i) + (1− t2

i )ω ∀i ∈ [N].

Proposition 3 applies, so the value of the SDP above is

min Tr H = 1 + (d− 1)
N

∑
i=1

t2
i .

Hence, if condition (19) holds, by Theorem 1, the N quantum depolarizing channels
Φt1 , . . . , ΦtN are incompatible.

As mentioned in the introduction, the compatibility of depolarizing channels is equiv-
alent to approximate quantum cloning: how much noise one needs to add to N copies of
the identity channel to render them compatible. In Figure 2, we present the relative perfor-
mance of the criterion from Proposition 4, with the true values of the noise parameters for
1→ 2 asymmetric approximate quantum clonings from Equation (5).

We can specialize the result above to assemblages of depolarizing channels in the spirit
of Definition 4.

Corollary 1. Consider N partially depolarizing channels {Φti}N
i=1 acting on L(Hd) and let K ≤

min(N, Dd) be an integer. If there exists a subset S ⊆ [N] of cardinality K such that

∑
i∈S

t2
i > 1,

then the channels are (N, K)-incompatible. Moreover, if for every subset S ⊆ [N] of cardinality K
the condition above holds, the channels are (N, K)-strongly incompatible.

Note that in the statement above, we do not require that the number N of channels
must be smaller than the number of mutually unbiased bases in the corresponding Hilbert
space; this is required only of the parameter K. This criterion might thus be useful in
situations where one has a large number of channels.
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Figure 2. Comparing the incompatibility criterion from Proposition 4 (filled region) with the incom-
patibility thresholds from Equation (5) (dashed curves) for different values of d: d = 2 (red curve),
d = 5 (brown curve), d = 20 (black curve).

We end this section by a similar corollary, in the setting where the channels are identical.

Corollary 2. If N, K are integers such that K ≤ min(N, Dd), then the partially depolarizing
channel Φt from Equation (18) is (N, K)-self-(strong) incompatible as soon as t > 1/

√
K.
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