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Abstract: The helical distribution of the electronic density in chiral molecules, such as DNA and
bacteriorhodopsin, has been suggested to induce a spin–orbit coupling interaction that may lead
to the so-called chirality-induced spin selectivity (CISS) effect. Key ingredients for the theoretical
modelling are, in this context, the helically shaped potential of the molecule and, concomitantly,
a Rashba-like spin–orbit coupling due to the appearance of a magnetic field in the electron reference
frame. Symmetries of these models clearly play a crucial role in explaining the observed effect, but
a thorough analysis has been largely ignored in the literature. In this work, we present a study of
these symmetries and how they can be exploited to enhance chiral-induced spin selectivity in helical
molecular systems.

Keywords: chirality-induced spin selectivity; helical molecules; spin transport; spin polarization;
DNA electronic transport

1. Introduction

The discovery of the spin polarization capability of helical molecules a few years ago [1,2] has
demonstrated an intriguing novel physical phenomenon, which has been called chirality-induced spin
selectivity (CISS). Although work on spin-dependent effects in chiral systems can be traced back to
earlier work by Kessler and others (see Ref. [3]), it was not until 2011 that the previously mentioned two
works clearly showed strong spin polarization effects in chiral molecules (DNA in this case) using two
different experimental approaches: photoemission experiments [1] and AFM-based electrical transport
setups [2]. The CISS effect is very striking since it does not require the presence of any magnetic
centers or strong spin–orbit coupling (SOC) effects in the systems where it has been observed [4–17].
Its universality in molecular systems displaying a helical shape has put forward the hypothesis that a
very close relationship must exist between helical symmetry and spin selectivity. Many theoretical
works have been devoted up to now to scrutinize the CISS effect, largely based on spin-dependent
transport calculations using scattering matrix or Green’s function techniques [18–34]. In addition, few
first-principle calculations have been presented [35,36], further supporting the relation to the helical
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symmetry. Still, the debate has remained open and there is not a common theoretical framework
explaining the CISS effect yet. Most of the previously cited theoretical investigations based on model
Hamiltonian approaches assume that the presence of some type of generic SOC in the molecular
systems and, based on it, proceed to discuss its consequences for the CISS effect. A major issue has
been whether spin polarization can be found in a two-terminal setup without invoking dephasing [26]
or non-unitarity effects [29]. Some indications that these factors may not be required were given in
Ref. [21] and more recently in Ref. [34], but the discussion remains also open on this point.

In this paper, we consider a very generic model previously used to describe the CISS effect [21,26],
which consists of two inter-connected tight-binding chains, mimicking two interacting helices,
including spin–orbit interaction and attached to two fermionic reservoirs playing the role of current
terminals. We discuss in detail the general symmetries of the model—an issue not addressed
previously—and show the parameter ranges where spin polarization can be important. It is interesting
to note that our model does not assume any source of dissipation in the molecule. All dissipation
takes place deep in the reservoirs, which are assumed to be in local thermodynamic equilibrium
with well defined electrochemical potential and temperature. In the next section, we introduce
the model and discuss the system energy spectrum by analytically diagonalizing the Hamiltonian.
Using non-equilibrium Green’s function techniques, the spin-dependent electrical current is derived
from the transmission probability for electrons traversing the two-terminal setup. Thus, we can define
an energy-dependent spin polarization function. Special attention is devoted to the general symmetry
properties of the spin polarization. Furthermore, we find that spin–flip processes do not contribute to
the computed spin polarization, in perfect agreement both with first-principle calculations [35] and
with the analysis of photoemission experiments [37].

2. Results

2.1. Tight-Binding Model with Generalized Rashba Interaction

Our system Hamiltonian describes two different helical strands µ = {A, B} with sites n =

{1, 2, . . . , N} that can be occupied with electrons of spin σ = {↑, ↓}. Including intrastrand (tµ) and
interstrand hoppings (αc) as well as a non-zero spin–orbit coupling, we split the system Hamiltonian
asH = Ht +Hsoc +Hth, with

Ht = −∑
µn

tµ

[
d†

µndµn+1 + d†
µn+1dµn

]
, (1a)

Hsoc = i ∑
µn

λµ

[
d†

µn+1(σ̂
⊥,µn + σ̂⊥,µn+1)dµn − d†

µn(σ̂
⊥,µn + σ̂⊥,µn+1)dµn+1

]
, (1b)

Hth = αc ∑
n

(
d†

AndBn + d†
BndAn

)
, (1c)

where the creation and annihilation electron operators are d†
µn = (d†

µn↑, d†
µn↓) and dµn = (dµn↑, dµn↓)

ᵀ,
respectively (the superscript ᵀ stands for transpose). The energy of the molecular orbitals in the two
strands has been set to zero for simplicity. However, the interstrand coupling αc needs to be nonzero
to achieve non-vanishing spin polarization, as demonstrated in Refs. [21] and [26]. The SOC of the
Hamiltonian with strength λµ depends on the spin operator perpendicular to the helical path, which is
written in terms of the Pauli matrices as follows:

σ̂⊥,µn = σ̂x sin ϕµn sin θ − σ̂y cos ϕµn sin θ + σ̂z cos θ , (2)

where θ is the helix angle, and ϕAn = nϕ and ϕBn = nϕ + π are the azymuthal angles in the two
helical strands for the B-form of DNA [26].
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2.2. Band Structure of a Molecule with Site-Independent SOC

As described in Equation (1), the molecular SOC is site-dependent. However, when one assumes
a site-independent SOC (ϕAn = ϕA and ϕBn = ϕB = ϕA + π), this model still allows for a finite SOC
to exist. Within this approximation, the electron band structure can be easily calculated in the standard
way by performing a Fourier transform. The matrix Hamiltonian in momentum space is then

H(k) =


EA+(k) 0 αc cos θ αc sin θ

0 EA−(k) αc sin θ −αc cos θ

αc cos θ αc sin θ EB+(k) 0
αc sin θ −αc cos θ 0 EB−(k)

 , (3)

where EµS = 4Sλµ sin k− 2tµ cos k with S = ± and the wavenumber k lies between −π and π for the
first Brillouin zone.

In Figure 1, we plot the energy bands calculated from the diagonalization of Equation (3) for three
different situations satisfying the requirement λµ < |αc| ∼ |tµ| that will be analyzed hereafter. Notice
that the condition ∆ϕ = ϕA − ϕB = π accounts for a physical scenario where electrons propagating
along the two helices, A and B, perform a precession around opposite magnetic fields within the XY
plane. The first case under consideration will be referred to as the symmetric one since tA = tB and
λA = λB. Furthermore, we will also be dealing with asymmetric cases such as tA = −xtB = and
xλA = λB, x being a scaling factor. The latter has been demonstrated as the most favorable case to
obtain an enhanced spin polarization [21,27].

Figure 1. Energy dispersion relation of the helical system for αc = −0.08 and θ = π/6 in (a) the
symmetric configuration with parameters tA = tB = 0.1 and λA = λB = 0.01, (b) the quasi-symmetric
configuration with parameters tA = −tB = 0.1 and λA = λB = 0.01, and (c) the asymmetric
configuration with parameters tA = −2tB = 0.2 and 2λA = λB = 0.02.

In the symmetric case (see Figure 1a), the tight-binding bands undergo a horizontal splitting due
to the SOC field. This finding is consistent with the shifts observed in Rashba quantum wires with
parabolic dispersions [38]. Two separated groups of bands are obtained due to the interstrand hopping
term. The asymmetric cases (see Figures 1b,c) are more involved because the nature of the eigenstates
(bonding or antibonding) differ in the two strands. Noticeably, a small gap opens for energies around
the reference energy. In each case, we recover the spin degeneracy for zero wavenumber. Our results
are qualitative since we neglected the site dependence in the SOC potential. However, we do not
expect significant departures in the full dependence case.



Biomolecules 2020, 10, 49 4 of 10

2.3. Transmission and Spin Polarization

We now discuss charge transport when the molecule is tunnel coupled to two non-magnetic
terminals attached at the edges of the helical molecule. We model such connection by adding the
following two terms to the system Hamiltonian (1)

Hlead = ∑
αk

εαkC†
αkCαk , (4a)

Htun = ∑
αkσµ

[
Vαk,µnC†

αkdµn + V∗αk,µnd†
µnCαk

]
, (4b)

where the creation and annihilation electron operators at the leads are C†
αk = (C†

αk↑, C†
αk↓) and Cαk =

(Cαk↑, Cαk↓)
ᵀ, respectively. Here, the tunneling amplitude Vαk,µn is nonzero only when {α = L, n = 1}

and {α = R, n = N}. Using well-known techniques of non-equilibrium transport calculations [39],
after a lengthy but straightforward algebra, we find the electronic transmission probability in terms of
advanced and retarded Green’s functions:

T (ω) = ∑
µνρτs

ΓR
ν1σ,µ1σ(ω)Gr

µ1σ,ρNs(ω)ΓL
ρNs,τNs(ω)Ga

τNs,ν1σ(ω) . (5)

Our objective is to calculate the transmission probability per spin and strand, which we define as

Tµσ,νs(ω) = ΓR
µ1σ,µ1σGr

µ1σ,νNsΓL
νNs,νNsGa

νNs,µ1σ , (6)

where the retarded and advanced Green’s functions are evaluated from the expression Gr,a(ω) =

[ω −H− Σr,a]−1. This is exact for independent electrons as the ones considered in this work. Σr,a

are the retarded and advanced electron self-energies due to tunneling. Their matrix elements are the
broadening coefficients Γ’s, which describe the coupling between the molecule and the contacts [40].
When the contacts are metallic, we can take the wide-band limit since their density of states are
flat. Thus, the Γ’s are simply given by a constant, which we take as the energy unit: ΓL

µ1σ,µ1σ =

ΓR
νNs,νNs = Γ0 = 1 (µ, ν = A, B, and σ, s =↑, ↓). The sum over strands will provide us with the electron

transmission per spin

Tσ,s(ω) = ∑
µν

Tµσ,νs(ω) . (7)

We are now in a position to assess the spin polarization generated in the molecular transport by
means of the following energy-dependent quantity:

P(ω) =
T↑,↑(ω) + T↑,↓(ω)− T↓,↑(ω)− T↓,↓(ω)

T↑,↑(ω) + T↑,↓(ω) + T↓,↑(ω) + T↓,↓(ω)
, (8)

which will be referred to as spin polarization in what follows.
The transmission completely determines the current for small applied voltages at very low

temperature. This description is close to the experiments of Ref. [8] that were performed in the linear
response regime with a small applied bias (50 mV). In such a case, a spin polarization of nearly 50%
from the linear conductance of the junction was obtained. Thus, we claim that the transmission
function, which is proportional to the conductance at very low temperature, may still be a good
reference point for the investigation of spin polarization. In different experimental setups, additional
non-equilibrium effects play a role, but these are beyond the scope of this work, although they are
expected to magnify the CISS effect.
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2.4. Analysis of Symmetries

Let us analyze the results derived from Equations (6) and (8) for the three representative cases
considered in Section 2.2, namely, symmetric, quasi-symmetric and asymmetric configuration. Since the
calculations are fully numerical, we take into account the site dependence of the SOC potential.
In Figures 2–4, we show all interstrand spin–flip components of the transmission in addition to the spin
polarization for each set of parameters. For concreteness, hereafter we will consider a DNA molecule
of Nt = 3 turns in its B-form, which has Nb = 10 bases in a complete turn. Hence, ϕ = 2π/10. As a
result, our simulations will contain N = NbNt = 30 sites. Ab initio calculations calculations suggest
values of the intrastrand hopping roughly in the range of 30–80 meV (see, e.g., Ref. [41]) in DNA and
we take 50 meV as a typical value. Assuming a lead-molecule coupling of the order of Γ0 ∼ 250 meV
yields tµ/Γ0 ∼ 0.2. As to the SOC, we will take λµ ∼ 5 meV, hence λµ/Γ0 ∼ 0.02.

Figure 2 shows the curves Tµσ,νs(ω) in different panels for the symmetric situation, namely, when
the physical parameters of the two DNA strands are the same. Later, as an intermediate case, Figure 3
shows the same magnitudes when a small asymmetry is introduced in the double-stranded molecular
hopping coefficients, tA = −tB = 0.1 (recall that Γ0 is set as the unit of energy), but the SOC strengths
are equal. Finally, Figure 4 summarizes the same physical magnitudes when both DNA strands are
clearly asymmetrical with regard to both their different electronic hoppings, tA = −2tB = 0.2, and SOC
intensities, 2λA = λB = 0.02.

Figure 2. Transport coefficients obtained for a symmetric molecule: εA = εB = 0.0, tA = tB = 0.1,
λA = λB = 0.01, αc = −0.08, θ = 0.66, Nst = 10, Ntr = 3 and Γ0 = 1.0. Transmission coefficients
(a) Tµ↑,ν↑(ω); (b) Tµ↓,ν↓(ω); (c) Tµ↓,ν↑(ω); (d) Tµ↑,ν↓(ω); and (e) spin polarization P(ω) as a function
of energy.
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Figure 3. Transport coefficients obtained for a quasi-symmetric molecules with the same parameters
as in Figure 2 but tA = −tB = 0.1 and λA = λB = 0.01. Transmission coefficients (a) Tµ↑,ν↑(ω); (b)
Tµ↓,ν↓(ω); (c) Tµ↓,ν↑(ω); (d) Tµ↑,ν↓(ω); and (e) spin polarization P(ω) as a function of energy.

Figure 4. Transport coefficients obtained for an asymmetric molecule with the same parameters as
in Figure 2 but tA = −2tB = 0.2 and 2λA = λB = 0.02. Transmission coefficients (a) Tµ↑,ν↑(ω); (b)
Tµ↓,ν↓(ω); (c) Tµ↓,ν↑(ω); (d) Tµ↑,ν↓(ω); and (e) spin polarization P(ω) as a function of energy.

In all considered cases, we observe that there exist contributions for each set of spins. However, it
is most important to mention that the following symmetry condition for spin–flip processes arise from
our calculations:

Tµ↑,ν↓(ω) = Tν↓,µ↑(ω) . (9)

This originates from the fact that the transmission of a Rashba conductor is, quite generally,
independent of the magnetization direction, a statement that has been demonstrated for
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one-dimensional (1D) [42] and quasi-1D systems [43]. Furthermore, for spin-conserving transmission
contributions, we observe additional symmetries:

Tµσ,νσ(ω) = Tνσ,µσ(ω) ,

Tµ↑,ν↑(ω) = Tµ↓,ν↓(−ω) . (10)

Moreover, the following symmetry conditions for intrastrand contributions also hold (not
explicitly shown in the figures for brevity):

Tµ↑,µ↓(ω) = Tµ↓,µ↑(ω) ,

Tµ↑,µ↑(ω) = Tµ↓,µ↓(−ω) . (11)

The latter conditions lead to the full cancellation of the spin–flip processes such that the
components of the transmission which play a role in the spin polarization are T↑µ,↑ν(ω) and T↓µ,↓ν(ω),
including the case µ = ν. Therefore, the resulting spin polarization reads

P(ω) =
∑µν

[
Tµ↑,ν↑(ω)− Tµ↓,ν↓(ω)

]
T↑,↑(ω) + T↑,↓(ω) + T↓,↑(ω) + T↓,↓(ω)

. (12)

In fact, the symmetries shown in Equations (10) and (11) imply an energy symmetry in the
polarization, which reads

P(ω) = −P(−ω) . (13)

3. Discussion

In this work, we revisit one of the most relevant model Hamiltonians widely used to describe
spin-dependent transport in chiral molecular systems [21,26]. In particular, we focus on a description
that accounts for a double-stranded helical molecule to mimic DNA molecules in its most common
structure, namely, B-form DNA. It is worth noticing that in our study we keep the physical parameters
within reasonable values accepted for DNA λµ < |αc| ∼ |tµ|. We demonstrate that a sizable spin
polarization arises in chiral systems with no need of including dephasing effects if the terminal
connections are properly simulated [27]. In such a scenario, the asymmetry between the two DNA
strands turns out to be a trigger for the spin polarization to arise. Here, we consider three representative
cases to analyze this issue. Our reference system is referred to as a symmetrical case, where the two
strands are equal. We also consider two other situations where this condition is relaxed. First, in view
of some first-principle calculations [44], we introduce a small asymmetry in the two strands by
considering their electronic hoppings with opposite signs [45]. Lastly, we obtain spin polarization in
a very asymmetrical situation where the two DNA strands are described by different electronic and
spin–orbit couplings, the latter being a limiting case for which it was proven that the spin polarization
is clearly enhanced [21,27]. In addition, one of the novel interests of the present study is the analysis of
the symmetries that arises in the transmission coefficients involved in the spin transport along chiral
molecular systems.

Let us now summarize the main conclusions of our work. On the one hand, from Figures 2 and 3,
it is clear that even a tiny seed of asymmetry between the two DNA strands lead to a clear enhancement
of the spin polarization in the molecule. In particular, just a change of the electronic hopping sign
doubles the magnitude of the spin polarization although the energy window within which this
enhancement is relevant is still small. However, when the asymmetry between the two strands is
further increased as in Figure 4, we obtain an even higher spin polarization and, most importantly,
it happens in a clearly wider energy window. From our simulations, not shown here for brevity, it
is clear that the opposite signs of the electronic hoppings turns out to be a crucial ingredient to get
this effect. This fact is related to the band structures shown in Figure 1, where anti-crossing points
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arise only if the hoppings parameters have opposite signs. In previous studies [21,32], it was shown
that the non-vanishing of spin polarization within a two-strand helical model like the one used in the
present study is related to the impossibility of fully removing the SOC from the model via a unitary
transformation. In particular, it turns out that asymmetries in the values of the electronic couplings
and/or in the strength of the SOC can lead to an increased polarization, a result nicely confirmed in
the current investigation. We remark, however, that additionally both strands need to be connected to
left and right electrodes in order to get a non-zero polarization.

Regarding the transmission coefficient symmetries, Figures 2–4 clearly establish the symmetries
summarized in Equations (10) and (11). These symmetries will be valid as long as the energies of
the molecular orbitals of the two strands are equal to or symmetric around zero. If this is not the
case, then the conditions should be slightly modified. This analysis allows us to demonstrate that the
processes responsible for the spin polarization in chiral molecules are those that conserve the spin state.
Indeed, it seems plausible that, even in other possible configurations, the spin–flip contributions will
be less significant. Our results based on an effective model are in perfect agreement with other recent
statements based on ab initio calculations [35] and rate equations for the analysis of photoemission
experiments [37].
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