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Chimeric antigen receptor (CAR)-modified T cells targeting CD19 demonstrate
unparalleled responses in B cell malignancies. However, high tumor burden limits
clinical efficacy and increases the risk of cytokine release syndrome and neurotoxicity,
which is associated with over-activation of the CAR-T cells. The hinge domain plays an
important role in the function of CAR-T cells. We hypothesized that deletion of glycine, an
amino acid with good flexibility, may reduce the flexibility of the hinge region, thereby
mitigating CAR-T cell over-activation. This study involved generating a novel CAR by
deletion of two consecutive glycine residues in the CD8 hinge domain of second-
generation (2nd) CAR, thereafter named 2nd-GG CAR. The 2nd-GG CAR-T cells
showed similar efficacy of CAR expression but lower hinge flexibility, and its protein
affinity to CD19 protein was lower than that of 2nd CAR-T cells. Compared to the 2nd
CAR-T cells, 2nd-GG CAR-T cells reduced proinflammatory cytokine secretion without
diminishing the specific cytotoxicity toward tumor cells in vitro. Furthermore, 2nd-GG
CAR-T cells prolonged overall survival in an immunodeficient mouse model bearing
NALM-6 when tumor burden was high. This study demonstrated that a lower-flexibility
of CD8a hinge improved survival under high tumor burden and reduced proinflammatory
cytokines in preclinical studies. While there is potential for improved safety and efficacy,
yet this needs validation with clinical trials.

Keywords: chimeric antigen receptor (CAR T), hinge region, cytokine release storm (CRS), structure optimization,
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INTRODUCTION

Chimeric antigen receptor T cell (CAR-T) therapy for
hematological malignancies has demonstrated tremendous
clinical outcomes (1, 2). Four CAR-T cell products have been
approved globally, including Kite’s Yescarta and Tecartus,
Novartis’s Kymriah, and BMS’s Breyanzi, all targeting CD19
antigen (2–4). However, a high tumor burden often indicates
poor prognosis and significant adverse reactions after CAR-T
therapy, which may be related to the over-activation of CAR-T
cells (5–8). Therefore, patients with a high tumor burden have an
unmet medical need for anti-CD19 CAR-T therapy.

Investigators are currently striving to improve the safety
and efficacy of CAR-T cells by optimizing CAR designs to
overcome their existing limitations (9). These include
cytokine release syndrome (CRS) and immune-effector cell
associated neurotoxicity syndrome (ICANS), both related to
the excessive release of cytokines and limited persistence
caused by activation-induced cell death (AICD) (10–15).
The standard CAR design consists of four modular
components: the antigen binding domain, hinge domain,
transmembrane domain, and intracellular signaling domain,
each of which has a specific function and thus the potential to
be optimized (16). More attention has been paid to the
improvement of s ignal reg ions , inc luding ant igen
recognition and signaling argument regions such as the
costimulatory domain and immunoreceptor tyrosine-based
activation motif (ITAM) of CD3x (17, 18).

In recent years, a growing number of studies have
demonstrated the significant function of non-signaling
regions. The properties of the hinge and transmembrane
domains also influence CAR-T cell cytokine production and
AICD (19), which are related to the anti-tumor efficacy and the
loss of CAR, respectively (20, 21). Ying et al. (22) constructed a
new CAR design with longer extracellular and intracellular
domains named CD19-BBz (86) CAR T cells, which produced
a potent and durable anti-lymphoma response without causing
neurotoxicity or severe CRS (greater than grade 1). The hinge
provides sufficient flexibility to overcome steric hindrance, and
length to facilitate access to the target antigen (23). It thus
seems reasonable to down-regulate the activation of CAR-T
cells by reducing the flexibility of the hinge region, thereby
improving efficacy and safety. Glycine, the smallest amino acid
is unique because unlike all others, it contains hydrogen as its
side chain rather than a carbon (24), permitting much more
conformational flexibility. (Gly4Ser)n is often used as a
linker for different polypeptides because it is not prone to
misfolding errors, and Gly plays an irreplaceable role in this
structure (25).

Consequently, this study entailed designing a novel CAR by
deleting two consecutive glycine residues in the CD8 hinge
domain of traditional second-generation (2nd) CAR and
named the FMC63-CD8(Gly2-deletion)-4-1BB-CD3z CAR as
2nd-GG CAR. Studies were then conducted to verify the
flexibility and affinity of this new CAR, and compare the
functions of 2nd and 2nd-GG CAR-T cells in vitro and in vivo.
Frontiers in Immunology | www.frontiersin.org 2
MATERIALS AND METHODS

Cell Lines and Cell Culture Conditions
Cell lines were cultured according to the manufacturers’
recommendations. NALM-6 is a pre-B cell acute lymphoblastic
leukemia (ALL) cell line with high expression of CD19 (German
DSMZ cell collection Cat#: ACC128). NALM-6-GFP-luciferase
(luc) is a stable cell line engineered to express GFP-luciferase.
K562 is a chronic myelogenous leukemia cell line (ATCC; Cat#:
CCL-243). K562-CD19 and K562-CD19-GFP are stable cell lines
engineered to express CD19 and/or GFP. 786o is a renal cell
adenocarcinoma cell line (ATCC; Cat#: CRL-1932™). CD19 was
transduced using a lentivirus system into 786o to produce 786o-
CD19. The method of tumor cells culture refers to our previous
study (26).

Generation of CAR Constructs
Generation of lentiviral constructs and production of lentiviral
particles refer to our previous study (27). The conventional
second-generation 2nd CAR was constructed by the fusion of
CD19 scFv, CD8 hinge and transmembrane, 4-1BB, and CD3z.
The structure of 2nd-GG is same to the 2nd CAR except for
deletion of two consecutive glycine in the CD8 hinge. Nucleotide
sequence of CD8 hinge in 2nd-CAR and 2nd-GG CAR are
shown in Supplementary Figure 2.

Selection, Activation, and Lentivector
Transduction of CD3+ T Cells
Blood samples from healthy volunteers were obtained using an
approved protocol by the Ethics Committee of the Fifth Medical
Center of Chinese PLA General Hospital (Ethical code: Ky-2018-
5-37). These studies were conducted following the Declaration of
Helsinki. All subjects provided written informed consent before
participation in the present study. The methods of T cell isolation
and culture and gene transfer refer to our previous study (26).

Binding Assay
Briefly, through the measurement of the fluorescence intensity of
different CAR T cells to CD19 protein at various concentrations,
their affinity for CD19 protein can be determined. Specifically,
mock-T, 2nd CAR-T, and 2nd-GGCAR-T cells were washed twice
by centrifugation with PBS (1% BSA). They were treated with
CD19-Fc protein (11880- H02H) at final concentrations of 180 µg/
mL, 72 µg/mL, 28.8 µg/mL, 11.52 µg/mL, 4.61 µg/mL, 1.84 µg/mL,
0.74 µg/mL, 0.29 µg/mL, 0.12 µg/mL, or 0.05 µg/mL, incubated at 4°
C in darkness for 45 min, and washed twice with a PBS washing
solution by centrifugation. Next, the cells were treated with 10 µL
goat anti-human IgG (FC)/FITC, incubated at 4°C in darkness for
20min,washed twicewithawashingsolutionbycentrifugation, and
tested utilizing flow cytometry (NovoCyte D3010).

Cytotoxicity Assay
Briefly, CFSE-labeled targets were incubated at the indicated ratios
with effector T cells for 12–16 h or 6–8 h. The cells were then
harvested, and Annexin V and 7-AAD were added prior to flow
cytometric analysis. The residual live target cells were CFSE+
October 2021 | Volume 12 | Article 724211
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Annexin V- 7-AAD-. E:T ratios designated the ratios of the
absolute number of CAR T cells to target cells. The number of
T cells was the same as that in the 2nd CAR group. All
experiments were carried out in triplicate.

Cytokine Production
Effector cells (5 × 104) and target cells (5 × 104) were incubated at
a 1:1 ratio in RPMI (10% FBS) media with 10% human serum for
24 h. Cytokine concentration in the culture supernatant and
mouse s e rum was measured wi th enzyme- l inked
immunosorbent assay (ELISA) kits (MultiSciences Biotech Co.,
Ltd., China) for human IFN-g, TNF-a, and IL-2. E:T ratio
designated the ratio of the absolute number of CAR T cells to
target cells. The number of T cells was the same as that in the 2nd
CAR group.

Flow Cytometry
Anti-human antibodies were purchased from Becton Dickinson,
BioLegend, and Miltenyi Biotec. The Accuri C6 (Becton
Dickinson, USA), FACS Calibur (Becton Dickinson, USA), and
BD FACSAriaTM II cell sorter were used for the analysis of
various samples. Anti-human antibodies were purchased from
BioLegend, eBioscience, Acrobiosystems, or BD. Cells were
isolated from in vitro cultures or from animals, washed once
with PBS supplemented with 2% FCS, and stained on ice after
blocking Fc receptors. In all analyses, the population of interest
was gated based on forward vs. side scatter characteristics
followed by singlet gating.

Mouse Xenograft Tumor Model
Animal experiments were conducted at the National Beijing
Center for Drug Safety Evaluation and Research and at the
SAFE Pharmaceutical Research Institute Co.,Ltd (IACUC-
2019-001). Female NSG mice (28) aged 6–8 weeks were used.
For NALM-6-acute precursor B-ALL models, 106 tumor cells
were intravenously injected with PBS, and tumors were
measured by the total bioluminescent flux using a Xenogen
Imaging System (PerkinElmer-IVIS Lumina III). Peripheral
blood was collected via the submandibular vein.

Statistical Analysis
Statistical analyses were performed using Prism version 7.0
(GraphPad). For studies comparing two groups, we utilized a
Students t-test. Log rank (Mantel Cox) test was used to analyze in
vivo survival. Survival curves were constructed using Kaplan–
Meier methodology.
RESULTS

Deletion of Gly-Gly in CD8 Hinge Region
of CAR Reduced the Flexibility of
Hinge Without Affecting the CAR
Expression Efficiency
The 2nd CAR-T cells, structured as FMC63-CD8-4-1BB-CD3z,
have shown promising efficacy in clinical studies (1). To decrease
Frontiers in Immunology | www.frontiersin.org 3
the flexibility of the hinge region, deletion mutations were
performed on two consecutive Glys in the wild-type CD8
hinge region of FMC63-CD8-4-1BB-CD3z CAR, and this
novel CAR was named 2nd-GG CAR (Figure 1A). The specific
nucleic acid sequences of the wild CD8 hinge region and the CD8
hinge region with deletion of 2 Gly are shown in Supplement
Figure 1. The transduction efficiency of 2nd CAR and 2nd-GG
CAR on human T cells was similar (approximately 70%)
(Figures 1B, C). The S2 order parameters represent the
restriction of movement of an atomic bond vector with respect
to the molecular reference frame. The greater the value of S2, the
less flexible the protein. Thus, the flexibility of the CD8-GG
hinge region was less than that of the CD8 hinge region
according to the index of S2 from DynaMine (29)
(Figure 1D). Furthermore, when the two CAR-T cells were
individually incubated with different concentrations of CD19
protein, the 2nd-GG CAR-T cells showed weaker binding ability
to CD19 protein than 2nd CAR-T cells (Figure 1E).

2nd-GG CAR-T Cells Showed Similar
Killing Efficiency but Secreted Less
Proinflammatory Cytokines Compared to
2nd-GG CAR-T Cells In Vitro
To evaluate the effector function of the two different CAR-T cells,
a killing (cytotoxicity) and cytokine secretion assays were
conducted on different cell lines. These were: NALM-6, a
precursor B-cell leukemia cell line that naturally expresses
CD19, plus the 786o and K562 cell lines which are CD19
negative (Figure 2). The two CAR-T cells showed similar
cytotoxic efficacy against the CD19-positive and negative cell
lines, with no statistically significant differences.

It is well known that cytokines secreted from CAR-T cells
trigger an overactivation of the immune system, ultimately leading
to CRS (30). We therefore examined the pro-inflammatory factors
released after the incubation of CAR T cells with different tumor
cells. Following incubation with CD19+ target cells, the amount of
proinflammatory cytokines secreted by 2nd-GG CAR-T cells was
less than that of 2nd-GG CAR-T cells (P<0.01). None of the CAR-
T cells produced specific killing effects or proinflammatory factors
against K562, a CD19- tumor cell line, demonstrating the antigen-
specificity towards CD19 by the 2nd-GG CAR-T cells.

2nd-GG CAR-T Cells Exhibited Similar
Antitumor Efficacy but Less
Proinflammatory Cytokines Release in
Mouse Model With Moderate
Tumor Burden
Although 2nd-GG CAR-T cells showed a similar specific immune
response to CD19+ tumor cells in vitro compared with 2nd CAR-
T cells, their antitumor efficacy in animal models needs to be
further verified. The anti-tumor efficacy of CAR-T cells in NSG
immunodeficient mice bearing NALM-6-GFP-luc(luciferase) was
subsequently investigated, as detailed in Figure 3A. Both 2nd-GG
and 2nd CAR-T cells exhibited improved overall survival (OS)
and reduced tumor burden compared with the mock-T cells,
demonstrating improved tumor control of both CAR-T cells
October 2021 | Volume 12 | Article 724211
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(Figures 3B, D). Furthermore, compared to the 2nd CAR-T cell
group, the OS in those administered 2nd-GG CAR-T cells was
prolonged, although there was no statistical difference, as
shown in Figure 3C. As expected, 2nd-GG CAR-T cells
secreted less human proinflammatory cytokines, particularly
IL-6 and IFN-g, compared to the 2nd CAR-T cells in vivo
(Figure 3E). In order to distinguish it from the following
experiment with a higher tumor burden, this experiment was
referred to as “with moderate tumor load”. The 2nd-GG CAR-
T cells did not show sufficient advantage compared to the 2nd
CAR-T cells in experiments with moderate tumor burden,
owing to the relatively lower tumor load.

2nd-GG CAR-T Cells Significantly
Improved Antitumor Activity in Mouse
Model With High Tumor Burden
A high tumor burden often indicates a poor prognosis and
significant adverse reactions after CAR-T therapy (31). It is
Frontiers in Immunology | www.frontiersin.org 4
suggested that a high tumor burden might affect the efficacy of
CAR-T cell therapy (32, 33). It was thus hypothesized that
CAR T cells behave differently in mouse models with different
tumor burdens. To mimic the clinical situation of a high
tumor burden, NSG mice bearing NALM6-Luc tumors
received delayed CAR-T cell infusion to increase the tumor
load. The specific schedule is shown in Figure 4A. When NSG
mice were challenged with high tumor burden, 2nd-GG CAR-
T cells showed significantly improved overall survival
compared with 2nd CAR-T cells, while the 2nd CAR-T cells
showed no advantage over the mock-T cells (Figures 4B, D).
The tumor load in group of 2nd-GG CAR-T was lower than
that of 2nd CAR T (P>0.05) on day 15 and showed a
downward trend (Figure 4C). The anergy of 2nd CAR-T
cell in the mouse model with high tumor load is likely
related to AICD. One mouse from each group was randomly
selected on day 14, to evaluate the tumor load of peripheral
blood (PB), bone marrow (BM), and spleen by flow cytometry.
A B

D

E

C

FIGURE 1 | Schematic diagram and expression efficiency of 2nd and 2nd-GG CAR-T cells. (A) Diagrammatic model of 2nd and 2nd-GG CAR. Schematic of CAR
containing scfv (FMC63), variations in the hinge, extra-membrane, and transmembrane domains. The hinge region of 2nd-GG deleted two Gly compared with that of
the 2nd CAR, and the rest of the sequences were the same. (B) Typical flow cytometry detection of the expression efficiency of 2nd and 2nd-GG CAR on T cells.
(C) Expression efficiency of 2nd and 2nd-GG on T cells 5-6 days after culture in vitro determined by flow cytometry (mean ± SD, n = 5). T cells are derived from at
least three different healthy donors. (D). Comparison of the flexibility between the CD8 hinge and the CD8-GG hinge. S2 order parameter (S2 RCI) values were
estimated from chemical shift values using the Random Coil Index (RCI) software. S2 is inversely proportional to the hinge region flexibility. (E). The affinity of CD19
protein to different CAR T cells: 2nd CAR-T cells > 2nd-GG CAR-T cells. The EC50 of 2nd and 2nd-GG CAR-T cells binding to CD19 protein was determined by
flow cytometry. EC50, 50% maximal effective concentration. CAR, chimeric antigen receptor; FITC, fluorescein isothiocyanate.
October 2021 | Volume 12 | Article 724211
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The results showed that the tumor burden of the 2nd-GG
group was less than that of the other two groups after
treatment (Figure 4E). Similarly, the amount of human
proinflammatory cytokines secreted by 2nd-GG CAR T cells
was lower than that of 2nd CAR T cells (Figure 4F).

Overall, 2nd-GG CAR-T cells exhibited stronger antitumor
activity and lower cytokine release in the high tumor burden
model than the 2nd CAR-T cells.
Frontiers in Immunology | www.frontiersin.org 5
DISCUSSION

This study demonstrated that 2nd-GG CAR exhibits lower
flexibility and affinity for the CD19 antigen. The 2nd-GG
CAR-T cells produced lower levels of cytokines, yet showed
similar cytotoxicity to CD19+ tumor cells as 2nd CAR-T cells
in vitro. However, 2nd-GG CAR-T cells show lower cytokine
release in mouse models with moderate and high tumor burden,
A

B

FIGURE 2 | The killing efficiency and cytokine secretion of 2nd CAR-T and 2nd-GG CAR-T cells towards tumor cells. (A) Cytotoxic percentages of targeted cells by
mock T, 2nd and 2nd-GG CAR-T cells after 8–10 h of co-culture in vitro. E: T (2.5:1 and 5:1) designate the ratios of the absolute number of CAR T cells to target
cells, specifically K562, NALM-6, 786o-CD19, and K562-CD19. The number of mock T cells is the same as in the 2nd CAR-T cells group. Results are representative
of at least three independent experiments with T cells from different healthy donors. (B) Human IFNg, TNF-a, IL-2 and IL-6 production by mock T, 2nd and 2nd-GG
CAR-T cells. Cytokine concentrations in the media were measured after 24 h of co-incubation with different target cells at E: T of 1:1. Values are mean ± SD of
triplicate specimens obtained with T cells isolated from one healthy donor. *P < 0.05; **P < 0.01; ***P < 0.005.
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and prolong overall survival in animal models with high
tumor burden.

Currently, the indication for anti-CD19 CAR T cells has been
mainly for relapse and refractory B-cell malignancies, which are
often insensitive to traditional radiotherapy and chemotherapy.
Furthermore, an inevitable vein-to-vein time interval, typically 3-
8 weeks, is required for patients preparing for CAR-T cell
therapy. Pivotal trials of approved treatments have resulted in
up to a third of the enrolled patients failing to receive the
product. It has not been determined if bridging therapy is
necessary during this gap, and which treatment regimen may
be better (34). Although off-the-shelf cell therapy or Fast CAR-T
cells may shorten the vein-to-vein time interval, it is still under
clinical study (35). Therefore, the high tumor burden in patients
before CAR-T cell therapy is an unavoidable problem. It has been
reported that both the efficiency and the incidence of adverse
reactions, such as CRS of the anti-CD19 second-generation CAR
T cells, increased in patients with high tumor burden (36–38).
Many studies have demonstrated that reduced activation of anti-
CD19 CAR-T cells improves the safety and efficiency of CAR-T
cells (22). This could be achieved through reducing anti-CD19
Frontiers in Immunology | www.frontiersin.org 6
CAR T cell activation by diminishing scFv affinity (39),
increasing the hinge and transmembrane region (22), replacing
the co-stimulatory molecule from CD28 to 4-1BB (18), and
mutation of the immunoreceptor tyrosine-based activation
motif (ITAM) region of CD3z (40).

The hinge region has a significant impact on the function of
CAR T cells, and its components are often derived from the IgG
family or the co-receptor of T cells (CD4/CD8) (41), but the
specific mechanism is still unclear (9). Studies have shown that
the hinge region provides a spatial location for the recognition of
scFv and antigens. When the epitope recognized by CAR is in a
membrane proximal position, the hinge region is necessary for
the recognition of CAR-T cells by antigens, such as when
targeting NCAM or 5T4. Whereas if the epitope recognized by
CAR is a membrane distal epitope, the hinge region is negligible
for the recognition of CAR-T cells by antigens, such as when
targeting CEA (42). In general, little is known about the role of
the hinge domain, and strategies to optimize it need to be
creatively explored.

The flexibility of the hinge region has been shown to affect the
CAR T cell function. The addition of a flexible IgG hinge instead
A

B

D

E

C

FIGURE 3 | The antitumor efficacy and cytokines release of different CAR-T cells in moderate tumor load models. (A) Diagrammatic representations of the
experimental procedures. (B) Representative bioluminescent images are shown. (C) Overall survival curves of NALM-6 -GFP-luc challenged mice (n = 8). (D) Tumor
burden-total flux (log) for each mouse was quantified and averaged by group. (mean ± SEM) (E) On day 8, approximately 1,000 µL of blood were collected from the
caudal vein of each mouse mixed to detect the concentration of human IL-2, TNF-a, IFN-g, and IL-6 using an ELISA-kit. (mean ± SD, n = 2). ***P < 0.005.
October 2021 | Volume 12 | Article 724211
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of a CD28 hinge alone (SD28z) led to more pro-cytokines
produce and better recognition of the MUC1 epitope
compared to S28z CAR-T cells (43). However, further
verification is needed to determine whether reducing the
flexibility of the hinge region can decrease CAR-T activity. We
removed two consecutive glycine residues in the hinge region to
reduce the flexibility of the hinge domain, thus resulting in better
tumor control and lower release of inflammatory factors such as
TNF-a and IL-6, which are the key molecules triggering the
cytokine storm. This can be explained by the fact that reducing
the flexibility of the hinge domain prevents overactivation of
CAR-T cells, especially under high tumor load. However, the
specific mechanism is unknown and warrants further
investigation. Although studies have shown that the persistence
of CAR-T cells is essential for immune surveillance of tumors,
CAR gene copy numbers were unfortunately not measured (6).
Studies have shown that the formation of immune synapses by
Frontiers in Immunology | www.frontiersin.org 7
CAR influences the function of CAR-T cells and changes the
flexibility of the hinge region (44, 45). This may alter
the formation of immune synapses in CAR, thus affecting the
function of CAR-T cells, though it needs to be further explored.

Although we observed a downward trend in tumor load in the
2nd-GG group, it is a limitation of our study that the lack of
evidence for enhanced anti-tumor activity of 2nd-GG CAR-T in
vivo. Mice in the group of Mock-T, which had very low level of
cytokines, had the highest mortality at day 15. Therefore, the
death of mice was not caused by excessive release of cytokines.
Recent study demonstrated that patients with high tumor burden
had higher immune dysregulation with increased serum
inflammatory markers and tumor IFN signaling. IFN signaling
is associated with the expression of multiple checkpoint ligands
and inferior response to CAR-T therapy (46). Therefore, we
considered the direct cause of death in high tumor burden model
was the increased tumor load. We hypothesized that lower levels
A

B

D

E

F

C

FIGURE 4 | The antitumor efficacy and cytokines release of different CAR-T cells in high tumor load models. (A) Diagrammatic representations of the experimental
procedures. (B) Representative bioluminescent images are shown. (C) Overall survival curves of NALM-6 -GFP-luc challenged mice (n = 8). (D) Tumor burden-total
flux (log) for each mouse was quantified and averaged by group. (mean ± SEM) (E) On day 14, one mouse was randomly euthanized from the Mock-T, 2nd CAR-T
and 2nd-GG CAR-T groups. Cell suspensions from peripheral blood, bone marrow and spleen were collected and ground for flow cytometry detection. Since the
NALM-6 cells were engineered to express GFP, the tumor load was reflected by the expression percentage of GFP+ cells. (F) On day 12, approximately 1,000 µL of
blood were collected from the caudal vein of each mouse to detect the concentration of human IL-2, TNF-a, IFN-g, and IL-6 using an ELISA-kit. (mean ± SD, n = 2).
**P < 0.01, ***P < 0.005.
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of inflammatory cytokine in vivo improved activity of 2nd-GG
CAR-T through correct the immune dysregulation and reduce
tumor IFN signaling, which requires further detection of
phenotypes and exhaustion markers of T cells to confirm.

The present study demonstrated that a novel CD19 CAR with
a less flexible hinge domain showed prolonged survival of mice
under high tumor burden in preclinical studies. While there is
potential for improved safety and efficacy, yet this needs
validation with clinical trials.
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