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A B S T R A C T

Mathematical modelling can provide precious tools for bioprocess simulation, prediction, control and
optimization of mammalian cell-based cultures. In this paper we present a novel method to generate kinetic
models of such cultures, rendering complex metabolic networks in a poly-pathway kinetic model. The model is
based on subsets of elementary flux modes (EFMs) to generate macro-reactions. Thanks to our column
generation-based optimization algorithm, the experimental data are used to identify the EFMs, which are
relevant to the data. Here the systematic enumeration of all the EFMs is eliminated and a network including a
large number of reactions can be considered. In particular, the poly-pathway model can simulate multiple
metabolic behaviors in response to changes in the culture conditions.

We apply the method to a network of 126 metabolic reactions describing cultures of antibody-producing
Chinese hamster ovary cells, and generate a poly-pathway model that simulates multiple experimental
conditions obtained in response to variations in amino acid availability. A good fit between simulated and
experimental data is obtained, rendering the variations in the growth, product, and metabolite uptake/secretion
rates. The intracellular reaction fluxes simulated by the model are explored, linking variations in metabolic
behavior to adaptations of the intracellular metabolism.

1. Introduction

Mathematical modelling can aid in the understanding of underlying
biological mechanisms as well as provide tools for bioprocess simula-
tion, prediction, control and optimization. Mammalian cell lines have a
complex and flexible metabolism and can display varied metabolic
behaviors depending on the culture conditions. A model that captures
these variations would be a precious tool for the developments of
media, feeds and/or processes in the biopharmaceutical industry. To
ultimately function as a predictive tool, such a model must (as a first
step) simulate and (in a next step) also predict variations in the
metabolic behavior that occurs under a range of culture conditions.
Kinetic models relate the culture conditions to the metabolic state of
the cells in a quantitative manner, and are thereby well-suited for such
purposes. Network-based models benefit from the incorporation of a
priori knowledge about biochemical reaction pathways for which

detailed information is available in databases for many organisms.
Defining the model is however a challenge, as it requires the determi-
nation of relevant reactions, metabolic pathways and mostly unknown
and potentially complex kinetic equations (Almquist et al., 2014).

While the analysis of the intracellular metabolism of living cells
demands expertise and techniques which are complicated and costly
(Zamorano et al., 2010; Ben Yahia et al., 2015), the measurements of
several extracellular metabolites can be achieved in many laboratories.
Macroscopic models have been recognized as useful in this context;
they exclude several details of the intracellular metabolism, yet can
achieve simulation of rates and concentration profiles relevant to cell
cultures (Provost and Bastin, 2004; Provost et al., 2005; Dorka et al.,
2009; Gao et al., 2007; Naderi et al., 2011; Zamorano et al., 2013;
Hagrot et al., 2017). The macroscopic kinetic model structure can be
separated into two parts: (i) the macro-reactions that connect
extracellular substrates to products; and (ii) the kinetic equations that
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relate the macro-reaction fluxes to the culture conditions (Ben Yahia
et al., 2015).

Macro-reactions can be derived from empirical knowledge alone or
from a metabolic network, potentially in combination with experi-
mental data and/or statistical analysis. In the latter case, methods from
pathway analysis can be used to obtain elementary flux modes (EFMs)
(Schuster and Hilgetag, 1994; Klamt and Stelling, 2003; Papin et al.,
2004; Llaneras and Picó, 2010). An EFM is a stoichiometrically
balanced linear combination of individual network reactions, and
provides a route through the network that connects extracellular
substrates to products. The experimental data can be taken into
account by combining the EFMs with metabolic flux analysis (MFA),
forming the EFMs-based MFA problem (Provost, 2006); the problem is
solved via estimation of the macro-reaction fluxes such that the
squared residuals between the EFM model and data are minimized.
The problem is developed into a macroscopic kinetic model as the flux
over each macro-reaction is described by a kinetic equation whose
parameters become targets for the estimation.

Generalized Monod- or Michaelis-Menten-type equations have been
frequently used as the starting point to formulate the kinetic equations
in macroscopic models (Provost and Bastin, 2004; Naderi et al., 2011;
Hagrot et al., 2017). Examples of variables that can be incorporated into
these equations include the concentrations of medium components and
metabolic by-products, as well as other process parameters. The
parameters of the equations can be estimated from literature and/or
by fitting the model to experimental data, typically using least squares or
maximum likelihood functions (Ben Yahia et al., 2015). However, non-
linear problems (as given by the Michaelis-Menten-type equations) are
generally difficult to solve, especially when there is a large number of
parameters; challenges may include multiple local minima and over-
fitting issues (Ben Yahia et al., 2015). Fixing the saturation parameters
yields a linear problem for which only the maximum flux rates of the
equations need to be estimated (Provost and Bastin, 2004; Dorka et al.,
2009; Hagrot et al., 2017). In particular, the strategy of setting the
saturation parameters sufficiently small (or large) such that the inputs
have little or no impact on the outputs have been applied in many cases,
and justified under conditions of balanced growth (Provost and Bastin,
2004; Provost et al., 2005; Dorka et al., 2009; Zamorano et al., 2013;
Ben Yahia et al., 2015).

The EFMs of a metabolic network can be systematically enumerated
using, e.g., the Metatool algorithm (von Kamp and Schuster, 2006) or
other software (Klamt et al., 2007; Schwarz et al., 2007), and then
provide a comprehensive representation of all possible pathways
through the network. With increasing size and complexity of the
metabolic network, there is an explosion of possible routes and the
EFM enumeration becomes computationally prohibitive (Klamt and
Stelling, 2002). Models developed based on EFM enumeration are
thereby limited to simplified networks. In this context, it has been
suggested to strive for a reduced set of EFMs and to use experimental
data to guide the simplification of the network prior to the enumeration
(Gao et al., 2007; Niu et al., 2013; Naderi et al., 2011): based on a
preliminary metabolic flux analysis, the reactions with insignificant flux
are identified and removed, yielding small numbers of EFMs (Gao
et al., 2007; Niu et al., 2013) that are even manually enumerable (Gao
et al., 2007). However, the loss of network detail at an early stage of the
model development limits the modelling capacity in many cases.

Pathway analysis of complex networks can be made possible by
focusing on a subset of the EFMs, while accepting that the remaining
EFMs stay unknown. An advantage here is that EFMs in the subset are
based on a network with preserved size and complexity, rather than
simplified reactions. The identification can be made feasible, e.g. by
focusing on finding the EFMs using the fewest number of reactions (de
Figueiredo et al., 2009), subsystem analysis (Kaleta et al., 2009) or
random sampling (Machado et al., 2012; Tabe-Bordbar and Marashi,
2013). Another option is to let the identification be guided by
experimental data (Jungers et al., 2011; Oddsdóttir et al., 2014).

Jungers et al. (2011) suggested a method that first generates
a flux vector feasible for a metabolic state and then randomly
decomposes this vector into a small set of EFMs. The resulting
algorithm is later used to build a kinetic EFM model, simulating the
dynamics of a CHO a cell culture based on a detailed metabolic network
(Zamorano et al., 2013).

Column generation (CG) (Ford and Fulkerson, 1958; Dantzig and
Wolfe, 1960; Gilmore and Gomory, 1961, 1963; Desrosiers et al.,
1984), is a general optimization technique that can be used to
efficiently solve large linear problems, and that has been successfully
applied to areas such as vehicle and aircraft routing (Lübbecke and
Desrosiers, 2005). The idea of the technique is that, as many variables
may be zero in the optimal solution, only a subset of the variables needs
to be taken into account when solving the problem. In previous work
(Oddsdóttir et al., 2014, 2016) we applied CG, for the first time, to
identify pathways (EFM subsets) in metabolic networks. Using our
novel CG-based algorithm, the EFMs-based MFA problem can be
efficiently solved as the EFM identification and data-fitting procedure
are carried out dynamically, without prior enumeration of the EFMs or
flux vector estimation (Oddsdóttir et al., 2014). The algorithm delivers
a subset of EFMs and the corresponding macro-reaction fluxes that are
able to optimally fit the data in a least-squares data-fitting sense, i.e.,
the solution is a global optimum to the EFMs-based MFA problem.

In our previous work, we introduced the poly-pathway model
approach (Hagrot et al., 2017) aiming to capture the metabolic
behavior of multiple experimental conditions in a single kinetic EFM
model. The approach builds on the concept that the cells adapt their
metabolism in response to external stimuli by using metabolic path-
ways in different combinations, e.g., to compensate for nutrient
depletion or product accumulation. In the model, the metabolic path-
ways are represented by macro-reactions obtained from the EFMs of a
metabolic reaction network. In this first proof-of-concept, the approach
is demonstrated using a simplified network for which the complete set
of EFMs is enumerated using Metatool algorithm. For the kinetic
equations, we developed a strategy of flexible kinetics in which different
equations are formulated and then identified from experimental data
generated in parallel CHO cell cultures subjected to variations in amino
acid availability. The simplification of the metabolic network imposed
by the EFM enumeration step is identified as a key limitation in this
study (Hagrot et al., 2017).

In the present work, a novel method based on CG is developed for
the poly-pathway model approach. The CG algorithm (Oddsdóttir et al.,
2014) is integrated into the modelling framework, such that complex
metabolic networks can be used for the model development. The
experimental data are used to identify the EFMs, which are relevant
to the data, eliminating the systematic EFM enumeration.

The outline of the paper is as follows. In Section 2, we briefly
present the theory behind the EFMs-based MFA-problem, the poly-
pathway model approach and the CG algorithm. A metabolic network,
for which the total enumeration of EFMs is prohibitive, is introduced in
Section 3. The experimental data (Hagrot et al., 2017) are briefly
presented in Section 4. In Section 5, we introduce our general
modelling approach to build the model and identify its parameters,
based on the theoretical part of Section 2, 3. Then we incorporate the
CG algorithm into our modelling framework, perform EFM identifica-
tion, formulate the kinetic equations, generate a poly-pathway model
using cross-validation, and explore the detailed intracellular flux
distributions simulated by the resulting model. Finally, Section 6
provides our conclusions.

2. Theory

2.1. EFMs-based MFA

A metabolic network is defined by the two stoichiometric matrices
Aext (rows of extracellular metabolites) and Aint (rows of intracellular
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metabolites), and Jirrev (the set of irreversible reactions). The reaction
flux vector v is a solution to the fundamental equation of MFA (1) and
is consistent with the stoichiometry and irreversibility constraints of
the metabolic network, the experimentally determined uptake and
secretion rates in qext, and the pseudo steady-state assumption (Quek
et al., 2010),
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The complete set of EFMs in the metabolic network is defined by
the column vectors el in the matrix E e e e= [ … ]L1 2 . Non-zero
entries ej l, in el indicate the stoichiometric contribution of reaction j in
EFM l. By EFM, we refer to a linear combination of network reactions.
Each EFM is associated with a macroscopic flux wl in the column
vector w w ww = [ … ]L

T
1 2 . Each v can be expressed as a non-

negative linear combination of the EFMs in which w are the weights:
v Ew= . The experimental data relate to the fluxes in the macroscopic
model by: q A v A Ew= =ext ext ext . Here, A Eext derives the macro-reac-
tions from the EFMs; each column provides stoichiometric coeffi-
cients for the extracellular metabolites involved. Finally, the EFMs-
based MFA problem is to

q A Ew

w
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2

∑ −
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Here, qk corresponds to the qext-vector calculated from the concentra-
tion measurements over one day in one experimental condition, and
D is the total number of culture days for this particular condition. k is
an identity matrix that can be defined such that rows corresponding to
missing metabolite data for certain culture days are removed from the
problem. Since (2) is a convex problem, global optimality is guaran-
teed. However, the solution is not necessarily unique.

2.2. The poly-pathway modelling framework

The poly-pathway model approach takes its starting point in (2).
However, rather than finding w for a single experimental condition, the
aim is to combine data from multiple conditions via the introduction of
kinetic equations. It is not obvious how to formulate the kinetic
equations for macroscopic reactions. In cell culture kinetics, the
Monod-type equations capable of simulating saturation, inhibition
and metabolite limitation have been frequently applied (Ben Yahia
et al., 2015). In our previous implementation (Hagrot et al., 2017), the
kinetic equations are formulated based on the general equation,

w w f c K= · ( , ),k l max l l l k l, , 0, , (3)
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Mext s l, , and Mext p l, , are the sets of extracellular substrates and products in
macro-reaction l, respectively. Mext r l, , is a set of extracellular metabo-
lites freely selected and not necessarily involved in the macro-reaction.
c l k0, , are the concentrations of extracellular metabolites in measure-
ment k; for substrates in Mext s l, , , products in Mext p l, , and metabolites in
Mext r l, , . The Eq. (3) is linear in the parameter wmax l, , which represents the
maximum flux over macro-reaction l, and non-linear in the parameters
Kl . In the function fl Ks i l, , is a saturation parameter for metabolite i in
Mext s l, , , and Kp i l, , and Kr i l, , are inhibition parameters for a product or
metabolite i in Mext p l, , and Mext r l, , , respectively. The effects of saturation
or inhibition on the macroscopic flux rate imposed by a single
metabolite are explained in the supplementary material (Fig. S4).
The problem in (2) now incorporating (3) for a total of D culture days

in multiple experimental conditions is to

q A EF c K w

w 0

minimize 1
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D
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2

max
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where F is a diagonal matrix with fl on its diagonal, non-linear in the
parameters K. (4) is a complicated non-linear and non-convex
optimization problem for which optimality can only be determined
locally.

2.3. CG-based identification of EFM subsets in metabolic networks

Here, we use the workflow of the CG algorithm (Fig. 1), originally
developed by Oddsdóttir et al. (2014) for the purpose of identifying
EFMs in metabolic networks. The algorithm solves the data-fitting
problem (2) for a single metabolic state by finding a subset EB of the
EFMs in E and an associated flux vector wB that fits the experimental
data optimally. Two inputs are necessary: (i) the metabolic network;
and (ii) the experimental data. Optionally, bounds on the uptake/
secretion rates for unmeasured metabolites can be provided
(Oddsdóttir et al., 2016). Inside the algorithm, two optimization
problems (the Master Problem (MP) and the subproblem (SP)) are
solved iteratively. Initially, EB is empty. As a first step, an initial column
e is generated and added to EB. At each iteration, the MP (Box 1) finds a
solution w*B for the current EB and forwards this solution to the SP
(together with the dual variable λ*B ). Solving the SP (Box 1) determines
if the current EB and w*B constitute an optimal solution to the MP. If the
answer is no, the SP identifies a new column e whose addition to EB
decreases the objective function value in the MP and adds e to EB. If the
solution is optimal, the algorithm terminates. The solution is globally
optimal but not necessarily unique.

3. Metabolic network

A metabolic network of CHO cell metabolism with 126 reactions is
used. For this, the network presented by Zamorano et al. (2010) is further

Fig. 1. CG algorithm. Flow chart showing the CG-based identification of an EFM subset
using the CG algorithm.
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developed and adapted as follows: (i) it is compartmentalized, i.e., a
mitochondrial subspace is introduced; (ii) several reactions are made
reversible; (iii) the reactions involved in biomass formation are modified;
and (iv) a mAb synthesis reaction is added. In the resulting network 74 of
the 126 reactions are reversible, 29 of the metabolites are extracellular and
89 intracellular, and fifteen subsystems are represented (Fig. 2). Additional
details and abbreviations are available in the supplementary material
(Section S2 and Tables S1–S6). Energetic co-factors (e.g. ATP, NADH
and NADPH) are involved in the metabolism (Tables S4 and S5, Fig. S19).
Similarly to the work of Zamorano et al. (2010), these co-factors are
excluded from the network in the generation of the model because they are
not internally balanced. The co-factor balances are calculated based on the
final model and are presented in Supplementary Table S17.

4. Experimental data

The experimental data are generated and presented in previous
work (Hagrot et al., 2017), based on the original amino acid cocktail of
the Irvine Scientific medium. Ten amino acids (alanine, asparagine,

aspartate, glutamine, glutamate, glycine, serine, threonine, cysteine,
and proline) are selected from preliminary experiments in our lab,
showing effects on the metabolism. Individual amino acids are
removed (A0, N0, D0, Q0, E0, G0 and S0), reduced at 50% (C50) or
doubled in concentration (A200, N200, D200, Q200, T200, S200 and
P200), creating sixteen different culture media (Table 1). Except for
amino acids deliberately omitted in the media, none of the measured
metabolites are depleted during the cultures - depletion would imply
incorrect flux measurements since those are calculated from daily
sampling analyses.

The cells are cultured in parallel TubeSpin bioreactors in pseudo-
perfusion mode with daily medium renewals. The cell-specific rates of
growth (μ) and uptake/secretion of extracellular metabolites and mAb
(qext) are calculated from concentration measurements in samples
collected before and after each medium renewal according to,

⎛
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X

t t
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−
,
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−
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Xv,0 is the viable cell concentration after medium renewal and Xv is the
viable cell concentration before the following medium renewal, c0 and c
are the corresponding metabolite concentrations, and t0 and t are the
corresponding consecutive time points of sample collection. The
measurements of six metabolites are either not available (carbon
dioxide (CO2,ext), ethanolamine (Ethnext), choline (Choext) and urea
(Ureaext)) or of poor accuracy (arginine (Argext) and histidine (Hisext)).
Bounds for the corresponding uptake/secretion rates are defined based
on partial measurement and/or literature as described in the supple-
mentary material (Table S7).

5. Results and discussion

5.1. Overview

The present section gives an overview of the different parts applied
for the modelling. These parts are then detailed in dedicated sections.

i ) Concept of poly-pathway modelling using the CG-algorithm
The concept to generate a poly-pathway model using the CG-

algorithm is as follows.

EFM identification

The macro-reactions of the metabolic reaction network are created
by an EFM approach. Given the metabolic network, the experimental
data and the bounds, the EFM subsets are generated using the CG
algorithm (see Fig. 3). Each of the sixteen data sets listed in Table 1
have been measured in a culture where a given variation in the amino
acid availability has been applied. One EFM subset is generated for
each data set. Among all the possible EFMs of the metabolic reaction
network, each subset includes only the EFMs relevant to the informa-
tion present in the data (Oddsdóttir et al., 2014, 2016). The subsets are
then combined into a set of unique EFMs by forming the union Eunion of
the sixteen EFM subsets, generating the macro-reaction network.

Kinetic model development

The kinetic model is based on the macro-reactions network
combined with kinetics equation. To determine the kinetics part, we
apply our strategy of flexible kinetics (Hagrot et al., 2017): one or
several potential kinetic equations with saturation and/or inhibition
effects are attributed for each EFM in Eunion, generating a much larger
potential model, LargeM, composed of the macro-reactions and several
kinetics alternative per macro-reaction. The potential kinetic equations
vary in the effect of the metabolites. The saturation parameters Ks of

Box 1.Master Problem (MP)

∑ q A E wminimize 1
2

∥ − ∥ +
k

D
k k ext B B

w z z, , =1 2
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z A E w q+ ≥LB
nm B B nm

LB
(5d)

z 0≥UB (5e)

z 0≥LB (5f)

The bounds for unmeasured metabolites are represented via the
penalty function in (5a) with MUB and MLB set sufficiently large to
satisfy these requirements. Anm in (5c) and (5d) is a stoichiometric
matrix for the unmeasured metabolites and qnm

UB and qnm
LB are the

assumed upper and lower bounds for their uptake/secretion rates,
respectively. The problem is handled in extended space; thereby, all
the macro-reactions/EFMs are considered irreversible and all the
macroscopic fluxes are positive (5b).

Box 2.Subproblem (SP)

∑ A A E w qminimize (( ( * − )) +
k

D
ext
T

k
T

k ext B B k
T

e =1

λ λ A e+( − ) ) ,UB
k

LB
k T

nm (6a)

A e 0subject to = ,int (6b)

1 e ≤ 1,T (6c)

e ≥ 0. (6d)

The objective function (6a) is derived from the optimality condi-
tions for a globally optimal solution to the MP. If the objective
function value of (6a) is negative, then the EFM (e) found will be
included in the MP. If the value is zero, EB is an EFM subset that
solves the MP to optimality and the CG algorithm terminates. The
constraints are formed such that the column e fulfills the pseudo-
steady state assumption (6b), the problem is bounded (6c), and the
reactions are irreversible (6d). 1 is a vector consisting only of ones.
λUB

k and λLB
k are the dual variables corresponding to the constraints

(5c) and (5d), respectively.
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the kinetics are taken from the literature while the inhibition para-
meters Kp and Kr are obtained by fitting the fluxes estimated by the
model to the experimental data in LargeM. The maximal flux rates wmax
are estimated by linear regression to fit the model to the experimental
data. Adjustment of Kp and Kr and weighting are introduced to
improve the fit between the model and the data.

Model reduction

LargeM model is reduced into model RedM by removing the
equations associated with very low maximum flux rates, since these
have no influence on the model.

ii) Workflow for the model identification
The workflow includes the determination of the macro-reactions

and all the potential kinetics in Step 1 followed by the identification of
the final reduced model using a cross-validation approach in Step 2.

Determination of the macro-reactions and potential kinetics - Step 1

Fig. 2. Metabolic network map. The subscript m denotes mitochondrial metabolites and these metabolites are shown in red. The subscript ext denotes extracellular metabolites. The
boundaries between compartments are indicated by dashed lines. Subsystems are indicated by color. The visualization is created with VANTED (Rohn et al., 2012b) (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article).

Table 1
Media used in pseudo-perfusion culture. The media #1–15 are referred to by code Xy,
where X is the one-letter abbreviation of the varied amino acid and y is its concentration
level in percent relative to the concentration in the control medium #16 (which is
referred to as Ctrl).

# Amino acid Level Code # Amino acid Level Code
(%) (%)

1 Alanine 0 A0 9 Glutamate 0 E0
2 Alanine 200 A200 10 Glycine 0 G0
3 Asparagine 0 N0 11 Threonine 200 T200
4 Asparagine 200 N200 12 Serine 0 S0
5 Aspartate 0 D0 13 Serine 200 S200
6 Aspartate 200 D200 14 Proline 200 P200
7 Glutamine 0 Q0 15 Cysteine 50 C50
8 Glutamine 200 Q200 16 — — Ctrl
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In Step 1, the procedures described above of EFM identification
and Kinetic model development are sequentially applied, generating an
initial LargeM model, LargeMinitial, see Fig. 4. The macro-reaction
network defined by Eunion and the kinetics of LargeM are then used as
inputs for Step 2.

Identification of the final model - Step 2

A cross-validation approach is applied to identify the final model,
see Fig. 5. The data are randomly distributed in a training data set and
a testing data set. For the training data set d, the macro-reaction
network defined by Eunion and the kinetics of Step 1 are used to
determine a large model LargeMd. Using the Model reduction method
described above, LargeMd is reduced into RedMd. RedMd is then used
on the testing data set to simulate the flux rates and the error between
the simulated and measured data is computed. This is repeated in a 4-
fold approach. From all the repetition exercises, the RedMd providing
the smallest simulation error for the testing data is selected as final
model RedMfinal.

5.2. EFM identification

5.2.1. EFM subsets generated by column generation
The CG algorithm is run in MATLAB (version R2018a) based on

previous implementations (Oddsdóttir et al., 2014, 2016). For the
present work, the glpk solver (GLPK and GNU,) is implemented to
efficiently solve the subproblems. In addition, an upper limit of 1000
pmol/cell, day is applied on all the macroscopic fluxes (i.e.,

w0 ≤ ≤ 1000l ), without loss of generality since this value is very large.
Using the CG algorithm, we solve a series of sixteen independent
EFMs-based MFA problems (one for each experimental condition)
yielding sixteen EFM subsets, with corresponding sets of macro-
reactions and macroscopic flux estimates. The total number of EFMs
in each subset varies between 25 and 29 (in extended space), including
1–3 EFMs involved in biomass synthesis and 1 EFM in mAb synthesis
(Table 2). The CG algorithm starts from an empty set of EFMs, and at
each iteration the addition of a new candidate EFM is evaluated
(Fig. 1). When the optimality criterion is achieved, the iterations stop
(Oddsdóttir et al., 2014). We do not restrict the number of EFMs to be
found. Nonetheless, a rather small set of EFMs and a small number of
EFMs involved in biomass or mAb synthesis are found. These small
numbers in comparison with systematic enumeration of millions of
EFMs are potentially linked to the amount of information present in
the experimental data. As described in Section 2, an EFM subset
delivered by the CG algorithm fits the data of the associated experi-
mental condition optimally in the least-squares sense. The fit is good
for all the metabolites except lysine for which the specific uptake rates
are generally overestimated compared to the data.

5.2.2. The EFM union
The sixteen EFM subsets are combined into Eunion (Table S8), which

included 125 EFMs in total, representing a network of 125 macro-
reactions. It can be noted that Eunion is in itself a subset of E, and as it
contains all the sixteen EFM subsets it can optimally fit the data of each
experimental condition. A comparison between the sixteen EFM
subsets and Eunion reveals that the majority of the EFMs in Eunion occurs
in one EFM subset only, while a small number of EFMs occurs in all the
sixteen subsets (see Fig. 6). A complete overview of this comparison is
available in the supplementary material (Tables S9 and S10). EFMs
representing the reversible conversion of glutamine into glutamate and
ammonium, the reversible conversion between serine and glycine, and
the conversion of proline into glutamate are common to all the sixteen
subsets. Detailed characteristics of the EFMs are illustrated in the
supplementary material (i.e. the stoichiometric coefficients of the
macro-reactions (Fig. S2), and the comparison of EFMs between the
sixteen EFM subsets (Fig. S3)).

5.3. Kinetic model development

The poly-pathway model approach is based on the idea that the
fluxes over the pathways are regulated or switched on and off
depending on the culture conditions. Since the macro-reactions are
issued from several metabolic reactions, the determination of the
kinetics is a challenging task in particular for the inhibition effects.
Rather than a priori assuming one kinetic equation for each macro-
reaction, we provide several different kinetic equations as ‘potential’
kinetics and then let the importance of each kinetic equation be
automatically determined based on the data via the parameter estima-
tion step, leading to their final selection. The kinetics of substrate
saturation are Michaelis-Menten equations with parameters taken
from the reported information about the transport of the metabolites
into the cells (see supplementary material S12). For the saturation
effects, the parameters are not changed but an effect is potentially
removed as alternative kinetics. The potential kinetics of inhibition
effect are designed based on the effects of the metabolites observed in
our experimental data and/or indication from general biochemistry
knowledge of CHO or mammalian cells. During the modelling devel-
opment Step 1, some of the parameters of inhibition kinetics are tuned
to improve the model fitting to the experimental data. During these
iterations, some parameters are set to the very small value of 1e-05,
which is equivalent to have the maximum flux in (3). Using the general
kinetic Eq. (3), one or several kinetic equations are defined for each
macro-reaction as given in Tables 3 and S11. Each additional equation
is added to the problem in (4) by extending E, wmax, and F with the
corresponding EFM column, wmax-parameter and kinetic function,
respectively:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥E E E F

F
F w

w
w= [ ], = , = .union added

union

added
max

max union

max added

,

, (9)

5.3.1. Estimation of wmax
The parameters in wmax are estimated by solving the following

constrained linear-least-squares problem using the function lsqlin
with the interior-point algorithm (MATLAB, R2018a):

q A EFw

w
q q q

minimize 1
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∑ ( − )

subject to 0 ≤ ≤ 1000
≤ ≤ .
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D

k k k ext max

max

nm
LB

nm nm
UB

w =1 2
2

max

(10)

A normalization is applied to attenuate the effect of the variation in
order of magnitude between the measured rates, i.e., the normalization
matrix k is as a diagonal matrix in which the entries are q| |k i,

−1 when
q| | > 0.01k i, and otherwise 1 ((Hagrot et al., 2017)). We also introduce
weighting factors (Table S13) to adjust the influence of the data sets on

Fig. 3. Determination of the network of macro-reactions by CG. The CG-based algorithm
(CGa, yellow), replaces the conventional enumeration of EFMs. The identification of each
EFM subset (pink) is carried out independently for each experimental condition. The
subsets are then combined into the EFM union.
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the parameter estimation (i.e., the weighting matrix k is a diagonal
matrix in which the entries are the weights given to each row in (10)).
The fluxes with higher information content are attributed a higher
weight as commonly used to select the weights during an iterative
modelling exercise (Montgomery et al., 2015) so that the model fit is
improved. This strategy is used to improve the fit for particular
variations in some experimental conditions that are not well captured

in the preliminary estimations. Furthermore, the data with a larger
uncertainty are attributed a lower weight, e.g. lysine uptake. The
resulting model is an initial and large model (Step 1), LargeMinitial,
including the macro-reactions (or EFMs) and the kinetics. The
simulated fluxes generated with this model are compared to the
measured fluxes in Supplementary material Figs. S5–S7 showing a
good agreement of the model to the data.

Fig. 4. Determination of the macro-reactions and kinetics - Step 1. The macro-reactions of the metabolic reaction network are created by an EFM approach: given the metabolic
network, the experimental data and the bounds, the Eunion is generated using the CG algorithm (see Fig. 3). One or several potential kinetic equations with saturation and/or inhibition

effects are attributed for each EFM in Eunion, noted as ‘All the potential kinetics equations associated to each macro-reaction’. This generates a large potential model, LargeM, composed

of the macro-reactions and several kinetics alternative per macro-reaction. The potential kinetic equations vary in the effect of the metabolites. The saturation parameters Ks of the

kinetics are taken from the literature while the inhibition parameters Kp and Kr are obtained by fitting the fluxes estimated by the model to the experimental data in LargeM.

Fig. 5. Identification of the reduced model - Step 2. A cross-validation approach is applied to identify the final model. The data are randomly distributed in a training data set and a
testing data set. For each training data set d, the macro-reaction network defined by Eunion and the kinetics of Step 1 are used to determine a large model LargeMd. The LargeMd is

reduced into RedMd. RedMd is then used on the testing data set to simulate the flux rates and the error between the simulated and measured data is computed. From all the repetition
exercises, the RedMd providing the smallest simulation error for the testing data is selected as final model RedMfinal.
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5.4. Model reduction

In LargeM, many values of wmax are very small indicating that only a
fraction of the equations significantly contributed to the model. A
model reduction is carried out by discarding the equations with
w w<max j cut, , where wcut is the cut-off level, such that the model is not
significantly affected. Fig. 7 illustrates the selection of w = 0.1cut , which
corresponds to a reduced model including approximately 10% of the
equations of LargeM. In the resulting reduced model RedM, the values
of wmax are recalculated.

5.5. Identification of the final model

In cross-validation, part of the data (test set) is excluded from the
model training and the remaining data (training set) are used to train
the model. The ability of the model to predict the test set is then
assessed (Hastie et al., 2001). In k-fold cross-validation, the data set is
split into k folds and the cross-validation is repeated k times so that
each fold is the test set once.

Here, the model LargeMinitial is used as initial model to establish the
macro-reaction network and the potential kinetics. We perform a k-fold
cross-validation with k = 4. First, the whole data set is divided into four
folds of nearly equal size such that, in each fold, each experimental
condition is represented at similar proportion as in the whole data set.

Three of the folds (75% data) are used as training set d and the fourth
fold as test set (25% data). Thus, both the training and test data are in
the same experimental range. The model generation includes the
estimation of wmax using the training set, resulting into LargeMd, and
a reduction of LargeMd into RedMd. RedMd is then applied to the test
data set and the sum of the relative errors between the simulated and
the measured fluxes, errord, is computed. The cross-validation is
repeated systematically until each fold has been the test set once.
This procedure is repeated 10 times; each time with random assign-
ment of data into the folds and generation of a model RedMd. The
RedMd corresponding to the smallest errord is selected as the final
model RedMfinal. RedMfinal model includes 132 kinetics equations while
the corresponding LargeMd model includes 1227 kinetics equations
before the reduction (see Table S14). Among the 125 macro-reactions
of LargeMd, 65 are finally retained in RedMfinal model. Each of the
macro-reaction is associated with one or several kinetics, which have
been automatically selected among all the potential kinetics based on
the experimental data. The simulation obtained with RedMfinal model is
visualized in Figs. 8 to 10.

RedMfinal model predicts the test data fairly well (Figs. 8 to 10). For
most metabolites, the difference between the simulations of the
training data and the testing data are barely distinguishable. They
are also comparable for many of the metabolites and experimental
conditions to the simulation obtained in the initial LargeMinitial model
(Figs. S5 to S7), where all the data are used for the model training and
the model is not reduced.

The average relative and absolute errors for each medium and
metabolite of simulation of the test data set obtained with RedMfinal are
given in Tables S15 and S16 in the supplementary material. 72% of the
relative errors are smaller than 10% and 85% smaller than 20% while
8% of the relative errors are higher than 50% (Table 15). Notice that for
very small fluxes the relative error can be misleading due to division by
a very small number however the absolute errors for these components
are in the range of the other components as confirmed by the visual
observation of the simulation in Figs. 8–10. From the relative errors
and visual observation, the rates of the control (Ctrl, #16) are captured
very well, as are many of the shifts triggered by varying the initial
concentration of selected amino acids in the other experimental
conditions (#1–15). The models in the present work and the model
in our previous work (Hagrot et al., 2017) are based on the same set of
experimental data, except that data of mAb production are included in
the present models. As can be seen in Fig. 8 the present model
simulated the mAb production rate well, capturing also the cell-specific
rate increase observed for glutamine omission (Q0). For the simulation
of EAAs uptake, major improvements in the simulation accuracy are
achieved. The metabolic network used to build the poly-pathway in our
previous proof-of-concept (Hagrot et al., 2017) lacked EAA catabolism
due to the restriction imposed in the network size. In the present work,
in which EAA catabolism is included in the model, the simulation

Table 2
Number of EFMs in subsets and union. The number of EFMs in the sixteen EFM subsets
delivered by the CG algorithm and in the Eunion. ‘Removed’ refers to the number of EFMs
removed during the iterations, i.e., EFMs that are firstly included in an EFM subset and
then removed by the CG algorithm.

#EFMs

Total Reversible Extended Biomass mAb Removed
Subset space synthesis synthesis

1 24 4 28 2 1 4
2 22 3 25 3 1 3
3 22 4 26 2 1 5
4 22 3 25 2 1 1
5 24 2 26 3 1 1
6 23 3 26 3 1 3
7 24 3 27 1 1 3
8 25 3 28 2 1 4
9 24 4 28 3 1 4
10 24 3 27 3 1 1
11 22 3 25 2 1 2
12 23 3 26 3 1 2
13 25 3 28 3 1 0
14 25 4 29 2 1 2
15 22 3 25 2 1 3
16 25 4 29 3 1 2
Union 119 6 125 16 4 –

Fig. 6. Comparison between EFMs in subsets and union. A comparison between EFMs in the sixteen EFM subsets (y-axis) and in the union Eunion (x-axis) with green color indicating

that the EFM is found in both the EFM subset and the union. In the figure, the 125 unique EFMs in Eunion have been sorted in descending order according to the number of matched EFM

subsets, and occurs along the x-axis in the following order: 4, 8, 16, 18, 26, 27, 1, 3, 22, 30, 31, 2, 9, 17, 20, 28, 5, 15, 32, 53, 10, 29, 47, 36, 13, 19, 44, 65, 6, 11, 24, 33, 42, 50, 55, 97,
100, 25, 34, 41, 43, 46, 54, 56, 62, 66, 67, 69, 85, 89, 91, 7, 12, 14, 21, 23, 35, 37, 38, 39, 40, 45, 48, 49, 51, 52, 57, 58, 59, 60, 61, 63, 64, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 86, 87, 88, 90, 92, 93, 94, 95, 96, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125.
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accuracy for the uptake of the EAAs isoleucine, leucine, phenylalanine,
threonine, tryptophan, tyrosine, valine and methionine is greatly
improved (Fig. 10). The RedMfinal poly-pathway model is also able to
capture the increased specific uptake rate for several of those EAAs
triggered by glutamine omission (Q0). The model fit is degraded for a

couple of cases such as the simulation of alanine in A0 medium and
glutamate in Q200, which will be worth further investigation in future
work.

Table 3
Overview of kinetic equations defined with starting point in the general kinetic Eq. (3) in Section 2.2. Kinetic equations based on substrate saturation effects are
defined for each macro-reaction from the EFM union as defined in ① . In addition, alternative kinetic equations are formulated for macro-reactions that fulfilled
certain criteria as defined in ②-⑦ .
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5.6. Simulation of the flux distributions

The poly-pathway model can be translated into a flux distribution
over the network of the 126 metabolic reactions presented in Fig. 2.
These distributions provide a simulation of the intracellular reaction
fluxes underlying the uptake and secretion rates. To illustrate this, the
simulated flux distribution of the control medium and the variations
triggered by depleting asparagine, glutamine, and serine are detailed

below in comparison with the control.

5.6.1. Control (Ctrl)
The flux distribution in the control medium is shown in Fig. 11.

High fluxes over the glycolysis pathway reactions v1-v8 leads to secretion
of lactate, which is typical for the CHO cell metabolism (Gódia and
Cairo, 2006). Part of the G6P enters the PPP (v9). While a small flux
continues over v67, contributing to nucleotide synthesis, the remainder
is returned back to the glycolysis via v11-v13. Based on isotope tracer
measurements in a CHO cell perfusion culture experiment (Goudar
et al., 2010), the flux from G6P towards the PPP is 41% of the
consumed glucose; this value is 22% for the control in our model. In
our case, the flux from G6P continuing in the glycolysis versus the PPP
can not be determined from our extracellular metabolite data. Even
though carbon dioxide is produced in the first step of the PPP (v9), we
do not measure extracellular carbon dioxide and its secretion rate is
free to vary within the intervals specified by the bounds in Table S7.

In line with typical CHO cell metabolism (Gódia and Cairo, 2006),
only a small fraction of the pyruvate generated in the glycolysis enters
the mitochondrion via v91, supplying AcCoA for the TCA-cycle (here the
flux over v14 corresponds to 19% of the glucose uptake rate which can
be compared to 83% in the study by Goudar et al., 2010). Additional
mitochondrial AcCoA is supplied via the EAA catabolism. AcCoA is
required for the lipid synthesis, however, as it cannot cross the
membrane it must be transported as citrate (Martens, 2007), leaving
the cycle such that AcCoA can be regenerated in the cytosol (v22). Based
on their isotope tracer measurements, Goudar et al. (2010) estimated
that 24% of the TCA-cycle flux (v15) is channeled to lipid synthesis, a
number which is very close to 22% simulated in the present model.

Fig. 7. The x-axis shows the logarithm (base 10) of the cut-off level wcut . The left y-axis

shows the error (2-norm) indicating the fit between model and data. The right y-axis
shows the percentage of equations in LargeMinitial that are kept. w = 0.1cut is chosen for

the model reduction (log10(0.1) = − 1).

Fig. 8. Comparison of the simulated fluxes of the training set (yellow triangle) and the test set (green squares) with the experimental data (blue circle) of metabolic rates in pmol/cell,
day (y-axis), for biomass, mAb, glucose, lactate, glutamine, ammonia and alanine. For each experimental condition (A0, A200, N0, …, Ctrl), the data and simulated values are shown
along the x-axis in ascending order according to time (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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Generally in mammalian cell lines, the flux in the TCA-cycle is
replenished at aKG, which is supported via glutamine uptake (Gódia
and Cairo, 2006). As can be seen in the present simulation (Fig. 11),
the conversion of glutamine into glutamate into aKG results from
combined fluxes over the NEAA metabolism and mitochondrial trans-
port reactions. Overall, NEAA metabolism generates aKG at 2 pmol/
cell, day, while the TCA-cycle consumes aKG at 1.7 pmol/cell, day. EAA
catabolism feeds additional succinate into the cycle. Typically, in
industrial cell lines, the resulting TCA overflow is handled via the
malate shunt: the export of malate out of the mitochondrion with
subsequent conversion into pyruvate (Gódia and Cairo, 2006). In our
network, malate and oxaloacetate are interconvertible (v21 and v25), as
are PEP and pyruvate (v7). In our simulation, there is a net generation
of malate (at 0.27 pmol/cell, day) and oxaloacetate (at 2.7 pmol/cell,
day) in the TCA-cycle. Overall, the anaplerotic (v26-v29) convert
oxaloacetate and malate (at 1.6 and 0.27 pmol/cell, day) into PEP
and pyruvate (at 1.7 and 0.2 pmol/cell, day).

5.6.2. Glutamine omission (Q0)
In case of glutamine omission (Q0), the glutamine transport v112

shifts towards secretion at a small rate compared to uptake in the
control, and the fluxes are altered over the majority of the network
reactions. The biomass synthesis (v90) and the reactions of the nucleo-
tide and lipid syntheses are greatly reduced, while the mAb synthesis
(v87) is increased. This is in accordance with the decreased specific
growth rate and increased specific mAb productivity experimentally
observed here. The uptake of glucose v1 and fluxes over the glycolysis
and PPP are greatly increased, leading to increased generation of
pyruvate in v7 and v40 and lactate generation/secretion. An increased

amount of pyruvate enters the mitochondrion via v91, leading to
increased aKGm and aKG generation by v16 and v23. All the fluxes of
the TCA-cycle are increased (with exception for v22 that supplies AcCoA
for lipid synthesis) and there is a net outflow of malate from the
mitochondrion. Consistent with experimental observation, the model
simulates increased uptake of asparagine (v111), as well as increases of
asparagine degradation (v34), asparagine synthesis (v35), and glutamine
synthesis (v36). Thereby, part of the glutamine synthesized in v36 is
converted to asparagine via v35. Reaction v103 shifts direction from
aspartate secretion towards uptake. Overall, the net glutamate genera-
tion of the NEAA metabolism in the control shifts to consumption in
Q0. Despite the increased fluxes over some of the ammonium-
generating reactions (e.g. v40 and v34), in total, less ammonium is
generated as significant amount is used in the generation of glutamate
and glutamine by v36 and v37. A substantial amount of serine is
generated and consumed via v30 and v40, such that glutamate is
converted into aKG. Additional serine is supplied via an increased
uptake (v106). Serine is used in methionine catabolism (v60) and
converted into glycine (v41), which is also generated in v42 and secreted
(v105). Overall, the combined activity of the EAA catabolism generates
significantly higher amounts of glutamate, ammonium and pyruvate,
and consumes an increased amount of aKG compared to the control.
Increased amounts of SucCoAm, Sucm and AcCoAm are generated for
entry into the TCA-cycle. The fluxes in the urea cycle (v v−64 66) as well
as uptake and catabolism of arginine (v110 and v62) are all increased,
leading to an increased fixation of ammonium, urea secretion (v126),
and the generation of glutamate from ornithine via v43 and v45.

Wahrheit et al. (2014) have studied the effects of glutamine
availability during CHO cell batch cultivations using dynamic MFA.

Fig. 9. Comparison of the simulated fluxes of the training set (yellow triangle) and the test set (green squares) with the experimental data (blue circle) of metabolic rates in pmol/cell,
day (y-axis), for glutamate, aspartate, asparagine, cysteine, proline, serine and glycine. For each experimental condition (A0, A200, N0,…, Ctrl), the data and simulated values are shown
along the x-axis in ascending order according to time (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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The conditions during the early stages of the glutamine free cultures
(Wahrheit et al., 2014) can be compared to Q0 in the present work.
Consistent with the present experimental results, the glutamine free
cultivations reported in Wahrheit et al. (2014) are characterized by an
initial slight production of glutamine, low production of ammonium,
high production of glutamate and glycine and high consumption of
serine. Increased asparagine uptake and shift towards aspartate uptake
is not initially observed by Wahrheit et al. (2014), yet occurs at a later
stage of the culture. In particular, the reversal of the glutamate
dehydrogenase reaction to provide glutamate for the glutamine synth-
esis (Wahrheit et al., 2014) corresponds with the increased flux over
glutamine-generating v36 simulated in the present work. Similar to the
present simulation, Linz et al. (1997) observed an enhanced consump-
tion of the other amino acids in a BHK cell line cultured at low
glutamine concentration.

5.6.3. Asparagine omission (N0)
In case of asparagine omission (N0), the simulated asparagine

uptake (v111) is almost null. The model simulates both reduced
asparagine degradation (v34) and asparagine synthesis (v35), resulting
in a shift in the NEAA metabolism from net asparagine consumption to
net asparagine generation, compared to the control. Furthermore, the
NEAA metabolism consumes more glutamine, and generates increased
amounts of glutamate and aKG. The increase in alanine secretion

experimentally observed can be traced to the increased flux over v30, for
which additional pyruvate is primarily obtained from increased ana-
plerotic flux (v29) and cysteine catabolism (v61). In the EAA metabolism,
an increased uptake and catabolism of arginine generates additional
glutamate from ornithine.

5.6.4. Serine omission (S0)
The serine omission triggers direction shifts for the transports of serine

(v106) and glycine, from small serine uptake to its secretion and from glycine
secretion to its uptake (v105). The conversion of serine into glycine (v41) is
decreased, leaving additional serine available for secretion. In addition to
glycine taken up from the medium, additional glycine is now available
compared to the control due to a decreased consumption (v42).

6. Conclusions and perspectives

In this work, a kinetic model based on a network of 126 metabolic
reactions is created. Using our novel column generation-based method,
subsets of EFMs relevant to the experimental data are identified
instead of systematically including all the EFMs. By including flexible
kinetics, the resulting poly-pathway model can describe multiple
metabolic states. It is usual that certain fluxes cannot be resolved from
extracellular data alone (Martens, 2007), e.g. the fluxes from G6P
continuing in the glycolysis or the pentose phosphate pathway (PPP),

Fig. 10. Comparison of the simulated fluxes of the training set (yellow triangle) and the test set (green squares) with the experimental data (blue circle) of metabolic rates in pmol/cell,
day (y-axis), for isoleucine, leucine, phenylalanine, threonine, tryptophan, tyrosine, valine, methionine and lysine. For each experimental condition (A0, A200, N0, …, Ctrl), the data and
simulated values are shown along the x-axis in ascending order according to time (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article).
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fluxes over parallel reactions of the TCA-cycle, the anaplerotic reactions
or some reversible reactions of amino acid metabolism cannot be
resolved.

The integration of the CG algorithm adds a new dimension to the
poly-pathway modelling framework previously presented in Hagrot
et al. (2017). It enables here the use of a much more complex and
comprehensive metabolic network than what has been typically used
for kinetic models of mammalian cell cultures (Provost and Bastin,
2004; Provost et al., 2005; Gao et al., 2007; Dorka et al., 2009; Naderi
et al., 2011; Ghorbaniaghdam et al., 2013, 2014; Hagrot et al., 2017;
Nolan and Lee, 2011; Robitaille et al., 2015). In particular, the models

based on macroscopic reactions (e.g. EFMs) have been limited to
simple networks of approximately 40 reactions or less (Provost and
Bastin, 2004; Provost et al., 2005; Gao et al., 2007; Dorka et al., 2009;
Naderi et al., 2011; Hagrot et al., 2017), as the enumeration of EFMs in
more complex networks leads to a very high number of EFMs and
becomes computationally prohibitive. The CG algorithm avoids a
systematic EFM enumeration and provides a set of EFMs relevant to
the information of the experimental data while the properties of the
original network are preserved.

Compared to the network of 34 reactions in our previous work
(Hagrot et al., 2017), the present network of 126 reactions includes

Fig. 11. Flux distributions over the metabolic network in the control medium, subjected to glutamine omission (Q0), asparagine omission (Q0) and serine omission (S0). The thickness
of the arrows is proportional to the reaction flux. Dashed lines represent fluxes for which v| |<i 0.0025. Fluxes that are significantly different compared to the control are colored in the

following way: blue indicates an increase, red indicates a decrease, and purple indicates a shift in the direction of the flux. The flux visualizations are created with VANTED (Rohn et al.,
2012b) and FluxMap (Rohn et al., 2012a).
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additional reactions, metabolites, and intracellular pools, as well as
compartmentalization and product formation. A major improvement
compared to Hagrot et al. (2017) is observed in the ability of the model
to simulate essential amino acid uptake, resulting from the inclusion of
EAA catabolism in the metabolic network. Despite the increased
network complexity, our CG algorithm can efficiently generate reduced
sets of EFMs that optimally fit the data of each experimental condition.
Interestingly, even though the network is much more complex, the
combined set of EFMs used to build the poly-pathway model is smaller
(125 EFMs) than the EFM set obtained by systematic enumeration
(379 EFMs) in our previous work (Hagrot et al., 2017) using the well-
established Metatool method.

We formulate flexible and diverse macro-reaction kinetics that are
applied in a systematic manner, including a priori information and/or
data-driven kinetics selection, that are identified via parameter estima-
tion. The generation of EFMs by CG is very rapid. For each medium,
EFMs are obtained by CG in a few seconds using non-optimized
Matlab2018a code (on a Macbook Pro computer). The generation of
RedMfinal model in the present cross-validation of ten 4-fold repeti-
tions, which includes the generation of a kinetic model forty times,
takes 13min (using non-optimized code).

The resulting poly-pathway model accurately simulates the differ-
ent metabolic states observed in the CHO cell cultures under varied
amino acid availability, demonstrating the ability of this approach to
capture diverse metabolic behavior in one single model. The method
supports as well the inclusion of bound values of parameters/compo-
nents for which information is scarce, uncertain or taken from an
external source, e.g. from the literature. This allows a better identifica-
tion of the model parameters and offers a possibility to use larger
models since the measurements can potentially be replaced by inter-
vals. Furthermore, using the poly-pathway model, the influence of
amino acid availability on the experimentally observed metabolic
behavior can be linked to varied use of certain reactions in the internal
structure of the model network, information which is important to
optimize the cell metabolism, culture media or processes.

For future modelling applications requiring predictive power, the
kinetic parameters will become increasingly important, e.g. for process
optimization or feedback control. Parameter estimation in large non-
linear systems is a challenging task, requiring specialized mathematical
tools and strategies or alternative kinetics models such as for instance
ensemble modelling (Tran et al., 2008). In the present approach, CG-
based selection of the EFMs of a poly-pathway kinetic model con-
stituted a first step. In future work, the kinetics modelling could be
further developed, e.g. the determination of the number of kinetics and
the selection of their parameters could be automatized and/or guided
by sensitivity analysis and more advanced parameter estimation
strategies (Ben Yahia et al., 2015). Future development could also
benefit from a simultaneous EFM identification and parameter estima-
tion. Due to the non-linearity of the kinetic equations, this is not a
straightforward implementation. A heuristic approach is presented by
Oddsdóttir (2015) and will be implemented in the future.

The information of the intracellular components could be beneficial
for the development and validation of the model with the present
approach. The segregation of extracellular vs. intracellular is motivated
by the biology. From a mathematical point of view, in the present work,
this relates to the fact that extracellular components are measured
while the intracellular components are not (and they are mathemati-
cally eliminated during the EFM exercise). Therefore our model frame
allows the inclusion of measured intracellular component fluxes and
concentrations, and this could be used in future work.

The main goal of the present work is to show a new way to use
EFMs in a kinetic model thanks to the novel CG-based method. In the
present work, the modelling approach takes into account the internal
structure of the metabolism given by its stoichiometric reaction
network to identify the relevant metabolic pathways and fluxes taking
place in the experiments. The present model is not able to describe

pathways which are not included in the reaction network and do not
occur in the data set. To include a given behavior in the model, it is
necessary that experimental data corresponding to this behavior
(potentially available as interval range) are provided for the model
identification. The model presented herein has been developed for
scenarios of varied amino acid availability. To capture metabolic
behavior in response to other environmental perturbations than the
ones studied here will require relevant experimental data and a
reconsideration of the network and kinetic design will be necessary.
Furthermore the model does not include more detailed regulatory
mechanisms from information e.g. of the transcriptome or proteome,
which could be of interest. The algorithm accepts metabolic networks
of varying size and complexity, from simplified descriptions
(Oddsdóttir et al., 2014) up to genome-scale (in preparation), opening
up for applications in the omics field. For this type of application, it will
be relevant to impose objective such as those used for microogranism
culture, e.g. the maximization of growth rate or the optimization of the
complexity in their metabolism to achieve maximum growth rate
(Groot et al., 2017). To give a perspective from the microorganism
field, the omics information has recently been included in different
approaches to model these organisms such as incorporating the
transcriptions factors, post-translational regulation and enzyme level
regulation mechanisms (Millard et al., 2017); generating kinetics based
on qualitative knowledge in the proteome (Erickson et al., 2017); or
integrating the regulatory mechanisms relevant to the modeled cell
type into the network and/or kinetic design underlying regulatory
network (Chubukov et al., 2014). These could potentially be accounted
for in future work for kinetic models of animal cells however the high
complexity of these latter will represent a challenge.

Finally, the CG algorithm is not limited to the construction of
kinetic EFM models or models of mammalian cell cultures; it could be
applied for other applications and to other organisms for which the
identification of an EFM subset is desired.
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