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Richter transformation (RT), defined as the development of an aggressive lymphoma on a
background of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL),
represents a clinical unmet need because of its dismal prognosis. An increasing body of
knowledge in the field of RT is arising from the recent development of preclinical models
depicting the biology underlying this aggressive disease. Consistently, new therapeutic
strategies based on a genetic rationale are exploring actionable pathogenic pathways to
improve the outcome of patients in this setting. In this review, we summarize the current
understandings on RT biology and the available treatment options.
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DEFINITION OF RICHTER TRANSFORMATION

Richter transformation (RT) is defined as the development of a high-grade lymphoma in patients
with a previous or concurrent diagnosis of chronic lymphocytic leukemia/small lymphocytic
lymphoma (CLL/SLL) (1).

RT was originally depicted as a ‘reticular cell sarcoma’ with presence of ‘leukemic and tumor
cells’ on a lymph node biopsy from a male patient with CLL and rapid clinical deterioration by
Maurice N. Richter in 1928 (2). The occurrence of secondary aggressive lymphomas on a CLL
background took the definition of ‘Richter transformation’ in 1964, when a case series of 14 patients
with CLL developing malignant reticulopathy was described by Lortholary and colleagues (3).

The estimated incidence of RT in patients with CLL/SLL previously treated with chemo/
chemoimmunotherapy was reported to be 0.5–1% per year (4). Different histopathologic variants of
RT have been described in the literature, ranging from the more common diffuse large B-cell
lymphoma subtype (DLBCL-RT) which accounts for up to 90–95% of RT cases, to the less
represented Hodgkin lymphoma subtype (HL-RT) accounting for up to 5–10% of cases (1).
Few cases (<1%) of plasmablastic transformation have been also reported (5).
EPIDEMIOLOGY AND CLINICAL FEATURES

The large variability of the reported prevalence of RT (1–23%) has been related to different factors,
mainly depending on the diagnostic assessment of RT (biopsy-proven or just clinically suspected),
and on the setting (clinical trials involving fit patients or real-world data) from which data were
derived (5–8).
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Condoluci and Rossi Biology and Treatment of Richter Transformation
Recently, the German CLL Study Group (GCLLSG) reported
a 3% prevalence of RT in a cohort of 2,975 patients with CLL
longitudinally monitored after their enrolment in clinical
trials (9).

Data coming from the SEER database on 74,116 patients with
CLL diagnosed between 2000 and 2016, depicts a 0.7% incidence
of transformation, mostly emerging with nodal involvement
(74%) (10). The gastrointestinal tract, the skeletal system, and
the brain/CNS are the most commonly reported extra-nodal
sites, being described in 25, 19, and 12% of cases, respectively.
Median time to transformation is 1.8–1.9 years for DLBCL-RT
(3, 11) and 4.6–7.5 years for HL-RT (12, 13), even if no
significant difference according to different histotypes is
reported in other datasets (10).

A higher incidence of RT has been reported for highly
pretreated relapsed/refractory (R/R) CLL patients enrolled in
the first clinical trials with novel agents (2–15%), while in first-
line the incidence of RT is 0–4% in this treatment setting (13–
21). However, these data refer to short follow-up periods and
longer observation time is needed to properly evaluate the
impact of chemo-free treatments on second malignancies/
transformation. Similar clonal evolution patterns are described
for patients experiencing transformation under novel agents or
chemo-immunotherapy (CIT) (22, 23).
DIAGNOSIS

Rapid physical deterioration and/or occurrence of B symptoms
(i.e., fever with no infectious background, weight loss), rapid and
localized growth of lymph nodes, rise in lactate dehydrogenase
(LDH) levels, and hypercalcemia, are all signs that should raise
suspicion for aggressive transformation, particularly in a patient
with known CLL. However, these clinical findings are specific for
RT in only 50–60% of cases, the remaining ones being
manifestations of histologically aggressive CLL (aCLL) or solid
cancers (24).

The gold standard for RT diagnosis is histologic
documentation with an open biopsy. Fine needle biopsy may
not illustrate the whole lymph node structure, leading to false
positive diagnoses (i.e., expanded proliferation centers may be
seen in fine needle biopsies from patients with progressive or
aCLL) (25).

Role of 18FDG PET/CT
Since RT is often limited to one single lesion at the time of
evolution, any biopsy aimed at confirming RT should be directed
at the ‘index’ lesion (the lesion showing the most active
dimensional dynamics). 18FDG PET/CT may assist in the
choice of whether and where to perform a biopsy (24, 26, 27).
When a standard uptake value (SUV) cut-off of 5 is chosen, the
high negative predictive value (97%) of the 18FDG PET/CT in
this setting supports a non-biopsy approach for lesions with SUV
<5. Given the limited positive predictive value (53%) of 18FDG
PET/CT for lesions with an SUV ≥5, the biopsy should be
performed at the site of the index lesion (24, 26, 27).
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A higher positive predictive value (60.6%) has been described
when establishing an SUV cut-off of 10, with a sustained elevated
negative predictive value (99.2%) and a good correlation with
overall survival (OS). Patients with lesions displaying an SUV
≥10 showed a median OS of 6.9 months, while for patients
displaying lesions with an SUV <10 the reported median OS was
56.9 months (28). However, for patients with RT arising after
kinase inhibitor therapy, the SUV threshold of 10 showed lower
negative predictive values (50%) (29).

Morphology and Immunophenotype
Morphology of RT Subtypes
The presence of confluent sheets of large neoplastic B
lymphocytes characterizes the morphology of the DLBCL-RT
(4, 30). Notably, an enlargement of proliferation centers in
lymph nodes can occur also in the ‘aggressive’ or ‘accelerated’
CLL (aCLL), which needs to be distinguished from the proper
transformation, as it is associated with an outcome intermediate
between typical CLL and classic RT (4). Morphologic
discrimination of RT from aCLL is mainly based on the
characteristics of B-cells nuclei and growth pattern (a nuclear
size equal or larger than macrophage nuclei or >2× a normal
lymphocyte and a diffuse growth pattern are more typical for RT)
(31, 32).

The HL-RT subtype is characterized by the presence of Reed–
Sternberg cells either in a typical background of small T cells,
epithelioid histiocytes, eosinophils and plasma cells or scattered
in a background of CLL cells (4, 30, 33).

Phenotype
DLBCL-RT cells express CD20, and less typically CD5 (~30%
of cases), or CD23 (~15% of cases) (4, 34). PD-1 expression
is described in DLBCL-RT neoplastic B-cells, while a
weak expression is restricted on the paraimmunoblasts of
proliferation centers of CLL samples and rarely found in de
novo DLBCL specimens (35, 36). The positivity of transformed
B-cells for PD-1 showed a 90% correlation with molecularly
defined clonal relationship between CLL and DLBCL-RT.
Accordingly, PD-1 expression has been proposed as a
candidate surrogate for defining the clonal relationship of
DLBCL-RT (35).

HL Variant
Hodgkin and Reed–Sternberg cells show a characteristic CD30+/
CD15+/CD20− immunophenotype and are often EBV positive
(4, 34).

Clonal Relationship Between RT and the
Underlying CLL
The definition of clonal relationship between RT and the
underlying CLL relies on the analysis of the rearrangement of
IGHV-D-J genes [by PCR or next-generation sequencing (NGS)
methods]. Most cases of DLBCL-RT (~80%) are clonally related
to the previous CLL phase, representing true transformations
(34, 37). Clonally unrelated cases represent de novo DLBCL
arising in a patient with concomitant CLL, and are usually
described on an IGHV-mutated CLL background (4). Clonal
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relationship impacts meaningfully on the prognosis of patients
with DLBCL-RT, with clonally related cases showing a median
OS of less than 1 year. Conversely, for patients with clonally
unrelated RT the reported survival is̴ 65 months, similarly to de
novo DLBCLs (6, 30).

Clonal relationship between HL-RT and the underlying CLL
has been reported in only 30% of cases (30).

BIOLOGY OF RT

Genetic alterations leading to RT are progressively being
described for DLBCL-RT, which displays some common
characteristics with other transformed lymphomas. Less is
reported on HL-RT, whose molecular background and
behavior are similar to de novo HL.

Biology of DLBCL-RT
Somatic alterations involving genes of tumor suppression, cell
cycle and proliferation pathways (i.e., mutations or disruptions
of TP53, NOTCH1, MYC, and CDKN2A) are the main genetic
clues of DLBCL-RT and can explain its aggressive disease
kinetics and chemoresistance (30, 37, 38).

TP53 is a master regulator of the DNA-damage-response
pathway, and leads to cell apoptosis if activated (i.e., as in
response to the antiproliferative effect of chemotherapies).
TP53 mutations/deletions can be acquired at the time of
transformation and are the most frequent genetic lesions of
DLBCL-RT, being described in 60% cases (38).

MYC is involved in a transcription regulating network and is
found altered in ~40% of DLBCL-RT (11, 30, 37–39).

CDKN2A is a negative regulator of cell cycle transition from
G1 phase to S phase and can be deleted in 30% of RT cases (30,
38). The rapid kinetics and aggressive behaviour of RT may be
explained by cell cycle deregulation linked to CDKN2A
alterations. It has been recently demonstrated that a
concomitant loss of function of TP53 and CDKN2A/CDKN2B
enables a B-cell receptor (BCR)-dependent proliferation of large
pleomorphic cells with a diffuse RT-like morphology (40).

The biased usage of subset 8 configuration in the BCR has
been associated to NOTCH1 somatic mutations. This molecular
setting allows for autonomous BCR signaling and a dynamic
responsiveness of neoplastic B cells to auto-antigens and/or
immune stimuli from the microenvironment (33, 41). The
reported 5-year rate of transformation for patients with CLL
and subset 8 usage is̴ 70% (31).

NOTCH1 mutations represent the only validated risk factor
for RT. The reported cumulative risk of developing DLBCL-RT is
45% among patients with CLL and mutated NOTCH1, while it is
4% for CLL with wild-type NOTCH1 (42–44).

Mutational whole-genome sequencing (WGS) data from
paired circulating CLL and RT biopsies were reported and
independently confirmed by RNA expression profiling for 17
patients diagnosed with DLBCL-RT. RT was characterized by
mutations in the DNA damage pathway and in poor-risk CLL
drivers (45). TRAF3 (a signaling regulator), NF-kB, and mitogen-
activated protein kinase pathways, were reported to commonly
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harbor heterozygous deletions (45). PTPN11, a positive regulator
of the MAPK–RAS–ERK signaling pathway, was overexpressed
in RT samples (45). SETD2 (showing alterations in ~30% of RT
samples) and PTPRD, a tumor suppressor gene found silenced in
many cancers via hypermethylation, were recurrently
deregulated. Compared with the paired CLL, RT samples were
characterized by increased mutational burden mainly related to
some genes previously unrecorded in CLL (BDKRB1, WWP1,
TFCP2, SVIL, SLC9B1, RELN, PTK2, IRF2BP2, IL7) (45), and
whose role in RT pathogenesis needs to be clarified by functional
studies. Further mutations were described in non-coding regions
of immune-regulatory genes (i.e., BTG2, CXCR4, NFATC1,
PAX5, NOTCH1, SLC44A5, FCRL3, SELL, TNIP2, and
TRIM13), suggesting their potential role in RT pathogenesis
(45). Consistently, distinct immune signatures between
peripheral blood and lymph nodes from patients with RT have
been depicted in another study (46). A low T-cell TCR clonality
was found in peripheral blood, with a consequent high diversity
of the T cell repertoire and a potentially active host immune
response. RT samples were characterized by enhanced PD-L1
expression in histiocytes and PD-1 in neoplastic B cells, and also
infiltration of FOXP3-positive T cells and CD163-positive
macrophages. These findings depict a peculiar RT-immune
microenvironment and may explain the higher response rates
to immune checkpoint inhibitors (47).

According to the model proposed by Teng et al. to classify
tumor microenvironments based on PD-L1 expression in tumor
cells and tumor-infiltrating lymphocytes (TIL), RT may harbor a
type I microenvironment (PDL1+, TIL+), reflecting an adaptive
immune resistance environment, which can be the target of
checkpoint inhibitors (48, 49). CLL, on the other hand, seems to
be characterized by immunological ignorance defined as type II
microenvironment (PD-L1−, TIL−) with poor expected response
from checkpoint suppressors (47–49).

An increased LAG3 gene expression has been reported in RT,
with respect to de novo DLBCL and other transformed
lymphomas (50). LAG3 membrane protein is expressed on both
neoplastic B cells and/or TILs and is involved in the delivery of
inhibitory stimuli on activated T cells. In RT, LAG3 shows a strong
positive correlation with HLA Class II and immune regulatory
genes (namely, TIGIT and PD-1), with an immune
microenvironment characterized by potential adaptive immune
resistance when LAG3 is overexpressed (51, 52).

Constitutive phosphorylation of AKT is higher among
patients with CLL at high risk for RT transformation (i.e., CLL
with NOTCH1 mutation, aggressive CLL with TP53 disruption)
(53). In a new experimental TCL1 mouse model of CLL with a
constitutively active Akt allele (Akt-C) in B cells, the
development of an aggressive lymphoma and a massive
splenomegaly was reported by the age of 7 months confirming
the driving role of AKT for RT-like transformations. Akt-C mice
showed a highly expressed NOTCH signaling, with an expansion
of CD4 T cells expressing DLL1 (the NOTCH1 ligand present on
T cells) in the microenvironment. This upregulation has been
related to the NOTCH1 activation of tumor cells, accordingly to
their commitment for transformation.
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Regulating the homing of immune cells, the CXCR4–CXCL12
axis is crucial for the interaction of CLL cells and
microenvironment (54–57). In the Em-TCL1 mouse model, the
introduction of a gain-of-function Cxcr4 mutation (Cxcr4C1013G)
that hyperactivates CXCR4 signaling, led to cell cycle dysregulation
via PLK1/FOXM1 (58). These neoplastic cells showed a
transcriptional signature similar to that of patients with RT.

The main pathways with a reported involvement in RT
pathogenesis are resumed in Table 1 and Figures 1, 2.
PROGNOSIS OF RT

The DLBCL-RT prognosis is overall poor, with a reported
median OS of 10 months (10). As already described, the most
Frontiers in Oncology | www.frontiersin.org 4
impactful prognostic factor is the clonal relationship between the
transformed DLBCL and the underlying CLL (see section Clonal
Relationship Between RT and the Underlying CLL).

Prognostic Scores
The RT prognostic score based on clinical and laboratory
variables (Zubrod performance status >1, increased LDH
levels, platelets ≤100× 109/L, tumor size ≥5 cm, and >2 prior
lines of therapy) allows to differentiate 4 risk groups, with a
median survival of 13–45 months for low risk patients (0–1 risk
factors); 11–32 months for low-intermediate risk (2 risk factors);
4 months for high-intermediate risk (3 risk factors); 1–4 months
for high risk patients (4–5 risk factors) (59).

Complex karyotype (CK) diagnosed on the underlying CLL
has a negative impact on RT-related outcome (60). Type-2 CK
TABLE 1 | Summary of the main biomarkers involved in DLBCL-RT pathogenesis.

Biomarker
(s)

Frequency Role Consequence Note Reference

Biased
usage of
BCR
subset 8

8% BCR signaling Autonomous signaling
and increased
response to auto-
antigens and immune
stimuli

5-years transformation rate of patients with CLL
and subset 8 usage: ~70%

(33, 41)

TP53 60% Regulation of DNA-damage-response pathway inactivation Impaired apoptosis in response to the
antiproliferative effect of chemotherapies due to
TP53 loss may explain the chemorefratoriness of
RT

(38)

MYC 40% Regulation of transcription network Overexpression Key transcription factor which regulates up to 15%
of human genes, constantly involved in
transformation from indolent to aggressive
lymphomas

(11, 30,
37–39)

CDKN2A 30% Regulation of cell cycle Inactivation Concomitant loss of function of TP53 and
CDKN2A/B leads to BCR-dependent proliferation
of abnormal B cells

NOTCH1 40% NFkB activation Activation NOTCH1 gene have been reported in ~10% of
patients with CLL at diagnosis, mainly those with
CLL of the IGHV-UM

(42–44)

AKT
signaling

>50% Driver of protein synthesis, cell survival,
proliferation, and glucose metabolism

Activation, constitutive
phosphorylation

AKT is activated in high-risk CLL and in >50% of
patients with RT. Constitutive AKT may amplify the
NOTCH1 signal or add additional signals that
accelerate transformation

(53)

SETD2 30% Histone methyltransferase that catalyses the
trimethylation of lysine 36 on histone 3
(H3K36me3), epigenetic regulator of gene
transcription

Inactivation Deletions and mutations in ~7% of CLL patients
requiring treatment

(45)

TRAF3 – Signaling regulator, namely, Toll-like receptor
signaling, NF-kB, and mitogen-activated protein
kinase pathways

Inactivation TRAF3 deficiency enhances survival of B cells and
increases transformation risk via upregulation of
PIM3 and c-MYC expression

(45)

PTPN11 – Regulator of MAPK-RAS-ERK pathway Activation Rare CLL driver (45)
PTPRD – Tumor suppressor colocated with CDK2NA Inactivation Receptor protein tyrosine phosphatase regulating

cell growth
(45)

LAG3 – Membrane protein expressed in B cells and/or
TILs

Increased gene
expression

Immune checkpoint gene. LAG3 protein is
expressed on immune cells and in the setting of
persistent antigen exposure; co-expressed with
other immune checkpoints in dysfunctional T cells.

(50)

CXCR4 – G-protein-coupled receptor regulating
hematopoietic stem cell homeostasis,
myelopoiesis, lymphopoiesis, and homing of
immune cells toward its ligand C-X-C motif
chemokine 12 (CXCL12)

Activation via PLK1/
FOXM1

Involved in the migration and trafficking of
malignant B cells

(58)
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(CK2, CK with major structural abnormalities) or high-CK (CK
with >5 chromosome abnormalities), together with IGHV
unmutated status, 11q deletion, TP53 disruption and Binet
stage B/C, have been identified as predictors for RT prognosis.
According to the Richter syndrome scoring system, patients with
high-CK and/or CK2 show a 10-year risk of developing RT of
31%; patients with unmutated IGHV/11q deletion/TP53
disruption/>B Binet stage show a 10-year risk of 12%; while
Frontiers in Oncology | www.frontiersin.org 5
patients with mutated IGHV without CK and with wild type
TP53 display a 10-year risk of developing RT of only 3% (60).

Role of Previous Treatment
Longer survival is reported for patients with treatment-naïve
CLL when compared to the relapsed/refractory setting (12 vs 7
months) (10, 61–65). RT after ibrutinib or venetoclax shows an
aggressive behavior. The median OS after progression for double
FIGURE 1 | Richter transformation: intrinsic vulnerabilities and targets for treatment. A representation of the molecular pathogenesis of Richter transformation,
resulting from a number of epigenetic and genetic lesions occurring in the tumor cell population. Recurrently mutated genes affect DNA repair, B cell receptor, and
chromatine modification. Created with BioRender.com.
FIGURE 2 | Microenvironmental crosstalks and druggable targets in Richter transformation. Pathway activation and changes in immune checkpoints profile are also
involved in transformation. Communication between the tumoral cells, dendritic cells, tumor associated macrophages (TAM), and T cells is established by direct
contact, chemokine/cytokine receptors, adhesion molecules and ligand-receptor interactions. Immune inhibitory molecules (PD-L1 among others) facilitate tumor cells
to evade immune-response and maintain tolerance. All of the here represented are druggable targets in RT. BCR, B cell receptor; DC, dendritic cells; TAM, tumor
associate macrophage. Created with BioRender.com.
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class-resistant CLL patients (i.e., CLL resistant to both BTK and
BCL2 inhibitors) is 3.6 months, and this class of patients
represents a clinical unmet challenge in the era of novel
agents (66).
TREATMENT OF DLBCL-RT

History and comorbidities of patients developing RT drive the
choice of treatment in this challenging setting. A proposed
algorithm for DLBCL-RT is depicted in Figure 3.

Chemo-Immunotherapy
Translating treatment experience from the aggressive B-cell non-
Hodgkin lymphoma setting, combinations of anti-CD20
monoclonal antibodies and polychemotherapy regimens have
been indicated to treat patients with DLBCL-RT.

The historical standard regimen for DLBCL R-CHOP
(rituximab, cyclophosphamide, doxorubicin, vincristine and
prednisone) produced response rates of up to 67% (complete
response, CR 7%), reaching a median progression free survival
(PFS) of 10 months and a median OS of 21 months. Reported
adverse events were mainly hematological (65%), while severe
infections were described in 28% of patients (67). Another case
series reports data on 48 patients with DLBCL-RT treated with
R-CHOP with a response rate of 37% and a median OS of 35
months (9).

The combination of CHOP chemotherapy with the anti-
CD20 ofatumumab (O) showed an overall response rate (ORR)
of 46% (CR 27%), a median PFS of 6 months and a median OS of
11 months. Reported adverse events were infections and
Frontiers in Oncology | www.frontiersin.org 6
hematologic toxicities (thrombocytopenia, febrile neutropenia,
sepsis) (68, 69).

More aggressive CIT regimens were assessed, though not
achieving an improved outcome. R-EPOCH (rituximab,
etoposide, prednisone, vincristine, cyclophosphamide, and
doxorubicin), a regimen indicated in high grade B-cell
lymphoma, reached a response rate of only 20%, a median PFS
of 3 months and a median OS of 6 months (70). Shorter PFS and
OS were observed in patients with disrupted TP53 and an
underlying CLL characterized by complex karyotype.

Poor median OS and response rates of 40% were reported with
the hyper-CVAD regimen (fractioned cyclophosphamide,
vincristine, doxorubicin, and dexamethasone), alone or in
alternating combination with methotrexate and ara-C. Severe
hematotoxicity, high infection rates (developed by 50% of
patients) and a treatment-related mortality of nearly 20% were
reported (71), even under the proper prophylaxis with granulocyte–
macrophage colony stimulating factor (GM-CSF) (72).

The OFAR 1 and 2 trials explored the combination of
oxaliplatin, fluradabine, ara-C and rituximab at different
dosages to prevent toxicities. The ORR ranged from 39 to 50%,
being characterized by a median PFS of 3 months and a
median OS of 6–8 months (73, 74). The main complication
was myelotoxicity, with no significant improvement in
myelosuppression severity for patients enrolled in the OFAR 2
trial compared to the OFAR 1 trial (74).

Consolidation With Stem Cell
Transplantation
Due to the high rate of relapses and poor OS after CIT, stem cell
transplantation (SCT) has been proposed as a consolidation
FIGURE 3 | Proposed algorithm for the management of suspected diffuse large B-cell Richter transformation (DLBCL-RT). aCLL, accelerated chronic lymphocytic
leukemia; auto-SCT, autologous stem cell transplantation; DLBCL, diffuse large B-cell lymphoma; NA, novel agents; RIC allo-SCT, reduced intensity conditioning
stem cell transplantation. Created with BioRender.com.
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strategy for DLBCL-RT. The benefit of receiving SCT is
underlined by a median survival of 5 years vs <1 year for
patients not undergoing SCT, and relies on high-dose cytotoxic
therapy combined to a graft-versus-leukemia effect in the case of
allogeneic SCT. The latter is confirmed by a plateau in relapse-
free survival curves after allogeneic SCT (75).

However, most patients (~85%) cannot access SCT, either due
to their poor performance status, a refractory disease to
induction treatments, and/or the lack of donor availability (75).

The Center for International Blood and Transplant Research
(CIBMTR) registry study evaluated outcomes in 53 and 118
patients with DLBCL-RT treated with autologous SCT and
allogeneic SCT, respectively. A 37% relapse incidence, 48%
PFS, and 57% OS at 3 years was reported in the autologous
SCT cohort. For patients treated with allogeneic SCT, relapse
incidence, PFS, and OS at 3 years were 30, 43, and 52%,
respectively. In the latter cohort, outcomes strongly correlated
with the response status at SCT (3-year OS 77% for patients
reaching a CR with induction therapy versus 57% for partial
responses), while cytogenetic abnormalities and prior novel
therapy did not show an impact on survival (76).

A single-center retrospective analysis of 23 RT patients
undergoing reduced intensity conditioning (RIC-SCT) reports
a 5-year PFS of 40% and OS of 58% (77). Young age (<60 years),
deeper response at SCT and having received <3 previous lines of
therapy positively correlated with outcomes, while cytogenetic/
molecular features and exposure to novel agents did not show an
impact on PFS/OS (77, 78). Total body irradiation (TBI) resulted
in poorer outcomes (77).

A median OS of 17 months has been recently reported by
GCLLSG for 3 patients undergoing allogeneic SCT for RT (9).

In a meta-analysis evaluating the outcome of patients with RT
undergoing allogeneic SCT, the relapse rate was 28% and the
non-relapse mortality 24%, showing similar rates previously
reported for patients diagnosed with other lymphoproliferative
diseases (78).

Overall, young and fit patients with DLBCL-RT attaining
deep responses with induction treatment can benefit both from
autologous SCT and RIC allogeneic SCT, while TBI-containing
RIC should be considered with caution.

Novel Agents
Recent advances in the understanding of deregulated molecular
pathways in RT led to investigate the efficacy of targeted agents,
with promising results.

XPO1 is a nucleo-cytoplasmic transporter of tumor
suppressor proteins, whose activity is often upregulated in
cancers. Selinexor, a selective inhibitor of nuclear export, acts
with the aim of maintaining tumor suppressors within the
nucleus to preserve their activity. In DLBCL-RT selinexor
produced a response rate of 33% with an acceptable toxicity
profile (79). Unfortunately, the phase 2 study (NCT02138786)
was closed prematurely due to enrolment hurdles.

Bruton’s tyrosine kinase (BTK), a component of BCR, plays a
central role in B-cell malignancies, regulating cell proliferation
and survival. Ibrutinib, the first-in-class BTK inhibitor, showed
Frontiers in Oncology | www.frontiersin.org 7
activity in DLBCL-RT (80–82), with a survival benefit and a 16
months PFS (82). Responses to ibrutinib rechallenge have been
reported after incidental RT diagnosis upon ibrutinib
discontinuation in three patients with CLL (83). Acalabrutinib
is a second generation oral BTK-inhibitor with an ORR of 40%
(CR 8%) (84) and a median PFS of 3 months. The phase 1/2
BRUIN study (NCT03740529) evaluated safety and efficacy of
pirtobrutinib (loxo-305), a next generation, highly selective, non-
covalent BTK inhibitor in previously treated RT (85). Among 15
patients, pirtobrutinib reached a response rate of 67% (CR 13%).
The 6-month PFS rate was estimated to be 52%. The median
number of prior lines of system therapy was 6, with 82% of
DLBCL-RT patients having received a prior BTK inhibitor, 59%
a prior BCL-2 inhibitor, and 6% CAR T-cell therapy.

The reversible BTK inhibitor nemtabrutinib (previously
known as ARQ531 or MK-1026) showed efficacy in in vivo
BTK-resistant CLL/RT models (i.e., Em-MYC/TCL1 murine
model recapitulating the disease phenotype of RT) (86, 87).
Inhibitory activity of ARQ531 on the BCR pathway was
reported both upstream and downstream of BTK via SYK,
AKT, and MEK1/ERK. This effect was maintained also in
presence of the C481S BTK resistance mutation and
autoactivating PLCg2 mutations. Safety and activity profile of
nemtabrutinib are being explored in ongoing clinical trials
enrolling patients with B-cell malignancies, including RT
(NCT03162536, NCT04728893) (see Table 2).

Patients with TP53/NOTCH1-disrupted high-risk CLL and
RT display increased constitutive AKT phosphorylation (88).
Some activity data has been reported with the PI3K inhibitor
idelalisib in patients with RT (89), prompting further
investigation of these agents in this condition.

Considering that DLBCL-RT harbors TP53 alterations, novel
treatments and combinations in this setting need to act in a
TP53-independent way. Venetoclax inhibits BCL2 and is
strongly active in high-risk CLL, acting independently from
TP53 (90). In the M12-175 (NCT01328626) phase I study, 7
patients with DLBCL-RT were treated with escalating doses of
venetoclax, attaining a response rate of 43% (no CRs reported)
(90). In the phase 2 study on the combination venetoclax-R-
EPOCH (NCT03054896), the ORR reached 62% (42% CR with
unmeasurable residual CLL in bone marrow). Median PFS and
median OS were 10.1 and 19.6 months, respectively. Main
adverse events were related to grade 3–4 neutropenia (65%),
thrombocytopenia (50%) and febrile neutropenia (38%). No
tumor lysis syndrome (TLS) occurred with daily venetoclax
ramp‐up after 1 lead in cycle of R‐EPOCH (91).

Immune checkpoint deregulation is common in the setting of
DLBCL-RT, which frequently develops upon an exhausted
immune system. Immune checkpoint blockade with the
monoclonal anti-PD1 antibody pembrolizumab produced 44%
response rate (NCT02332980) (47). Importantly, responses were
observed only in patients previously exposed to ibrutinib, with a
median OS not reached (median OS of 10.7 months for the whole
cohort). Preclinical studies reported synergistic antitumor effects
between BTK and the PD-1/PD-L1 inhibitors (92). Ibrutinib
exerts immune modulating effects through IL-2 inhibition,
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deregulating T-cell proliferation and differentiation signaling. The
combination of ibrutinib with nivolumab (an anti-PD1 antibody)
was assessed in patients with relapsed or refractory hematological
malignancies, namely, high-risk CLL/SLL, follicular lymphoma,
DLBCL, and RT (93). The ORR was 65% in the DLBCL-RT
cohort (10% CR), with a median duration of response of 6.9
months. A phase 2 trial is exploring the combination of the anti-
PD-L1 antibody atezolizumab with venetoclax and the anti-CD20
antibody obinutuzumab in patients with untreated or R/R RT
(NCT02846623). Venetoclax treatment is introduced at cycle 2,
after obinutuzumab + atezolizumab lead-in. Data from this
ongoing trial report an ORR of 100% (71% CR) for the first 7
patients with untreated RT enrolled, with responses achieved
early after the introduction of venetoclax (94). After a median
follow-up of 11.2 months, three of the complete responders
underwent consolidation with allogeneic-SCT and no fatalities
were reported.

Glofitamab is a T-cell-engaging bispecific antibody with a 2:1
anti-CD20/CD3 structure, that has been investigated in a phase I
study enrolling patients with R/R non-Hodgkin lymphoma (de
novo DLBCL, transformed follicular lymphoma, primary
mediastinal B-cell lymphoma, mantle cell lymphoma, and RT).
In this study, the reported ORR and CR rates were 48 and 33%,
including 41 and 28% in patients with DLBCL (95). Cytokine
release syndrome (CRS) was the most common adverse event
(25% grade 3, 2% grade 4), and its incidence increased with
higher doses but declined after the first administration (13%
events at cycle 2, 6% at cycle 3 or later).

CD19 is a transmembrane protein found invariably on B cells
(except for plasma cells) with a pivotal role in BCR signaling (96).
Its sustained expression even upon tumoral transformation of B
Frontiers in Oncology | www.frontiersin.org 8
cells led to the development of CAR T-cell targeting its surface
antigenic domain (97, 98). It should be noted that a proportion of
patients relapsing after treatment with CD19 CAR-T cells may
develop a CD19-/CD19dim disease as a mechanism of escape (99–
101). In the setting of DLBCL-RT, CD19 CAR-T cells showed
response rates at 4 weeks after infusion ranging from 71 to 83%
(101–103) and a 1-year OS and PFS of 86 and 59%, respectively
(102). In one of these studies 8 patients with RT after
chemoimmunotherapy and therapy with BTK and/or BCL2
inhibitors were enrolled (103). Patients received locally
produced 1 × 106 autologous CD19 CART-cells/kg, modified
with retroviral vector encoding a CAR comprising FMC63 anti-
CD19 ScFv linked to a CD28 costimulatory domain, and CD3-
zeta intracellular signaling domain. RT patients receiving CD19-
CAR T-cells had a median age of 64 years (median age at CLL
diagnosis 56 years), being previously treated with a median of 3
lines of therapy for CLL. On day 28 a complete response was
reported in all the responders (71%, 5/8 patients). After median
follow up of 6 months, two patients proceeded to allogeneic-SCT.
CRS grade ≥3 requiring tocilizumab was described in 3/8 patients,
while grade 3 central nervous system (CNS) toxicity was
experienced by two patients.

Higher response rates (8/9 DLBCL-RT patients) are reported
using axicabtagene ciloleucel CAR-T cell therapy (104). Of these
patients, 8 were previously treated with kinase inhibitors and one
patient died due to an infection. A CR was reported for 5/8
patients, while a partial response was described in 3 patients.

In another phase 1 study, four patients with RT were treated
with escalating doses of autologous 19-28z/4-1BBL+ CAR T cells
(NCT03085173) (105). Of the responders, 2/3 achieved CR and
no severe CRS was reported.
TABLE 2 | Ongoing trials with targeted agents in diffuse large B-cell Richter transformation.

Interventions Targeted pathway and/OR Antigen Ref.

Acalabrutinib + R-CHOP BTK NCT03899337
Ibrutinib + DA-EPOCH-R BTK NCT04992377
Venetoclax + DA-EPOCH-R BCL-2 NCT03054896
Blinatumomab after R-CHOP CD19 NCT03931642
Polatuzumab vedotin + DA-EPOCH-R CD79b NCT04679012
Epcoritamab CD3/CD20 NCT04623541
Nemtabrutinib (ARQ 531) BTK NCT03162536

NCT04728893
Ibrutinib + Nivolumab BTK + PD-1 NCT02420912
Zanubrutinib + Tislelizumab BTK + PD-1 NCT04271956
Duvelisib + Nivolumab PI3K + PD-1 NCT03892044
Copanlisib + Nivolumab PI3K + PD-1 NCT03884998
Duvelisib + Venetoclax PI3K + BCL-2 NCT03534323
Umbralisib + Ublituximab PI3K, CK1 + CD20 NCT02535286
Obinutuzumab + Ibrutinib + Venetoclax CD20 + BTK + BCL-2 NCT04939363
Atezolizumab + Obinutuzumab + Venetoclax PD-L1 + CD20 + BCL-2 NCT02846623
Atezolizumab + Obinutuzumab + Venetoclax PD-L1 + CD20 + BCL-2 NCT04082897
Ipilimumab + Ibrutinib + Nivolumab CTLA-4 + BTK + PD-1 NCT04781855
TG-1801 + Ublituximab CD47/CD19 + CD20 NCT04806035
ALX148 + Rituximab + Lenalidomide CD47 + CD20 NCT05025800
VIP152 CDK9 NCT04978779
Zilovertamab vedotin (VLS101) ROR1 NCT03833180
CD19 CAR-T cell CD19 NCT04892277
CD19 CAR and PD-1 Knockout T Cells CD19 NCT03298828
CAR70/IL15 NK cells CD70 NCT05092451
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ARI-0001 are autologous T-cells transduced with a CD137-
based CAR construct targeting CD19 and developed at the
Hospital Clinic of Barcelona (106). The CAR-T product ARI-
0001 was administered to six patients with RT (five patients with
DLBCL-RT and one patient diagnosed with plasmablastic
transformation), achieving CRs in three patients sustained at
1.4, 12.5, and 26.7 months after treatment, respectively. With a
median follow-up of 5.6 months, one patient had a stable disease,
and two patients experienced a CD19-negative relapse despite no
prior anti-CD19 therapy. The safety profiled was considered
acceptable, with only one fatality reported due to the COVID
pandemic in a patient not being treated.

Natural killer (NK) cells belong to the innate immune system
and play a central role in immune surveillance. Their
manageability relies upon the possibility to administer them
without the need for full HLA matching, even when obtained
from an allogeneic source (i.e., cord blood) (107). In the setting
of CAR-engineering, this translates into an easier manufacture
since there is no need to generate a patient-specific product.
CAR-NK cells derived from cord blood and transduced with
anti-CD19 CAR, interleukin-15, and inducible caspase 9 were
explored in patients with CD19+ lymphoid tumors including
CLL/RT, with promising results (108). Interestingly, one patient
with RT experienced CR from his transformed component but
persistence of the CLL counterpart. No major toxic effect and/or
graft-versus-host disease was reported. Despite the HLA
mismatch, CAR-NK cells were found to persist at low levels
after 12 months from infusion.
TREATMENT OF HL-RT

The standard of care for de novo HL is the regimen indicated for
patients with the HL-RT (109–112), with a reported response
rate of 40-60% under ABVD (Doxorubicin, Bleomycin,
Vinblastine, Dacarbazine). The median OS is 4 years in this
setting. Bleomycin exposure can cause a severe pulmonary
toxicity, leading to investigate the omission of this agent from
the standard ABVD regimen (112). Following the results coming
from the setting of advanced HLs, bleomycin can be safely
omitted after two cycles of ABVD if interim PET shows
remission (Deauville score 1–3). Escalation to BEACOPP in fit
and younger patients should be considered in case of a positive
interim PET, while radiotherapy could be an option for older and
unfit patients (113). Stem cell transplantation is less used for
consolidation in this setting, because of the longer survival
observed compared to the DLBCL variants.
FUTURE PERSPECTIVES

Diagnosis
Artificial intelligence tools can assist the diagnostic process for
patients with a suspected RT. Four biomarkers have been
recently identified to have consistent value for an RT-diagnosis
model, according to cytologic (nuclear size and nuclear intensity)
Frontiers in Oncology | www.frontiersin.org 9
and architectural (cellular density and cell to nearest-neighbor
distance) characteristics (114). This model was used to
distinguish CLL from aCLL and RT cases with a good
performance, and could be of support for further studies.
Given the importance of distinguishing between aCLL and RT
to select the correct therapeutic approach, more efforts to define
a biological picture underlying the proliferation of RT cells are of
outmost value in the era of targeted therapies.

PET/CT parameters SUV-related (i.e., SUV lean body mass,
SUV body surface area, lesion-to-liver SUV ratio, and lesion-to-
blood-pool SUV ratio) showed a correlation with DLBCL-RT
diagnosis and/or OS and represent possible candidates for
diagnostic biomarkers to further explore (115, 116). Moreover,
novel PET radiotracers and PET–MRI are being explored in the
setting of RT (117).

Biology and Treatment
CDK4/6 inhibitors (i.e., palbociclib) have been recently identified
as potential agents to overcome CDKN2A/B dysregulation (40).
Palbociclib demonstrated activity in inhibiting RT-cell
proliferation and showed an in vitro synergistic activity when
combined with the BCR-signaling directed compounds ibrutinib,
idelalisib, and fostamatinib.

LAG3 is an emerging target for immune checkpoint blockade
(50). Clinical trials are investigating LAG3 inhibitors in
hemato log i ca l and so l id cance r s (NCT02061761 ;
NCT01968109). Further assessment of LAG3 inhibition, either
alone or in combination with anti-PD-1 to enhance anti-tumor
T-cell responses in RT is warranted.

Genomic data from the WGS confirm the pathogenic role of
DNA damage response (DDR) pathway deregulation in RT (45).
The role of DDR inhibitors such as PARP or ATR inhibitors has
still to be assessed in RT.

The antibody-conjugate VLS-101 includes a humanized
immunoglobulin G1 monoclonal antibody that binds ROR1,
which is expressed by CLL lymphocytes to regulate chemotaxis
and proliferation signaling (118, 119). VLS-101 attained
complete and sustained remissions in RT patient-derived
xenografts (RT-PDXs) expressing high levels of ROR1 (120). A
phase 1 clinical trial of VLS-101 (NCT03833180) is enrolling
patients with RT and other hematological neoplasms.
Concomitantly, a phase 1 clinical trial (NCT02706392) is
exploring the efficacy of anti-ROR1 CAR-T cells in patients
with refractory CLL.

U-RT1, is a cell line derived from a highly proliferating RT
clonally related to the underlying CLL (121). It is characterized
by a complex karyotype with driver aberrations characteristic for
RT such as genetic alterations of TP53, CDKN2A, and NOTCH1.
This model represents a valuable tool for RT investigations and
drug development.

Data on three newly established PDX models of RT-DLBCLs
were recently published, namely, clonally-related and clonally-
unrelated RT (122). These PDX models display protein
expression of IRF4, TCF4, and BCL2. CRISPR knockout of
IRF4 led to reduced c-Myc levels and increased sensitivity to
BET inhibitors. Co-treatment with a BET inhibitor or BET-
PROTAC and ibrutinib or venetoclax showed synergistic in vitro
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lethality in the RT-DLBCL cells. When compared to single agent,
combination of BET-PROTAC and venetoclax significantly
reduced tumor burden and improved survival in immune-
depleted mice engrafted with clonally related RT-DLBCL.

A potential synergistic effect of PI3K and BCL2 inhibitors has
been proposed, based on the crosstalk between PI3K and
apoptotic pathways (123). It has been shown that the
inhibition of PI3K signaling by duvelisib leads to GSK3b
activation and subsequent degradation of both c-Myc and Mcl-
1. This crosstalk sensitizes RT cells to BCL-2 inhibition. Drug
combination trials are ongoing, also in the setting of RT-
DLBCL (NCT03892044).

In the field of CARs, targeting the transmembrane protein
CD37 is another potential application for patients with B-cell
malignancies. CD37 is expressed in mature B cells and at lower
levels also on plasma cells and dendritic cells. Indeed, CD37 CAR-
T cells were found to play a cytotoxic activity in vivo in B-cell
tumor models (124). Dual targeting has already been suggested as
a method to overcome treatment resistance due to the
development of specific antigen loss consequent to CAR
infusion. A bispecific CD37/CD19 CAR-T product is being
developed to assess safety and efficacy in preclinical B-cell tumor
models. Bispecific CD19/22 CAR-T cells have been already
explored in non-Hodgkin lymphomas (NCT03196830), showing
promising results (ORR 79.3%, CR 34.5% with 12-month PFS and
OS of 40 and 63%, respectively) (125). The employment of CD19
CAR-NK cells in B-cell malignancies is also being explored in
Frontiers in Oncology | www.frontiersin.org 10
different ongoing phase 1 trials (i.e., NCT04887012,
NCT04639739, NCT04796675, and NCT05020678), and novel
targets for CAR-NK cells are object of study (i.e., CAR70/IL15-
transduced NK cells in NCT05092451). Efficacy of these agents
needs to be assessed in the setting of RT.

A list of ongoing trials with targeted agents in RT is reported
in Table 2 (updated from clinicaltrials.gov on Feb 20, 2022).
CONCLUSIONS

Patients with CLL progressing on novel agents represent a new
high-risk prognostic group with adverse outcome in case of
transformation. The promising combination of CIT with the
novel agent venetoclax for DLBCL-RT confirms the synergistic
effect of the approaches. The availability of new preclinical
models is progressively expanding our understanding of RT
biology, laying the foundations for targeted treatments which
might be better tolerated.
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