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Representation of anatomy in online
atlases and databases: a survey and
collection of patterns for interface design
Melissa D. Clarkson

Abstract

Background: A large number of online atlases and databases have been developed to mange the rapidly growing
amount of data describing embryogenesis. As these community resources continue to evolve, it is important to
understand how representations of anatomy can facilitate the sharing and integration of data. In addition, attention
to the design of the interfaces is critical to make online resources useful and usable.

Results: I first present a survey of online atlases and gene expression resources for model organisms, with a focus
on methods of semantic and spatial representation of anatomy. A total of 14 anatomical atlases and 21 gene
expression resources are included. This survey demonstrates how choices in semantic representation, in the
form of ontologies, can enhance interface search functions and provide links between relevant information.
This survey also reviews methods for spatially representing anatomy in online resources. I then provide a
collection of patterns for interface design based on the atlases and databases surveyed. These patterns include
methods for displaying graphics, integrating semantic and spatial representations, organizing information, and
querying databases to find genes expressed in anatomical structures.

Conclusions: This collection of patterns for interface design will assist biologists and software developers in
planning the interfaces of new atlases and databases or enhancing existing ones. They also show the benefits
of standardizing semantic and spatial representations of anatomy by demonstrating how interfaces can use
standardization to provide enhanced functionality.
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Background
Developmental biology is a data-intensive science. During
the last two decades the primary means of archiving and
accessing experimental results has shifted from traditional
printed publications to digital repositories and web sites
[1, 2]. This transition was driven by the need to mange the
rapidly growing amount of data describing embryogenesis,
integrate heterogeneous data, represent this data within
the context of space and time, and enable cross-species
comparisons.
Development of the first digital atlas took place in the

early 1990s. These authors constructed a 9-day mouse em-
bryo in 3D using serial sections at histological resolution,

with plans to later incorporate spatially-based gene expres-
sion data [3]. Since that time, many anatomical atlases and
gene expression databases have been developed for a
number of species, by both individual laboratories and
multi-institution teams.
Development of these resources has required partner-

ing with computer science and informatics researchers.
Areas of partnership include not only designing inter-
active web-based tools and improving methods of image
capture and analysis, but also developing standards for
data integration. Efforts to standardize elements of re-
search (such as gene nomenclature, experimental proto-
cols, descriptions of phenotypes, and the organisms
themselves) began decades before the introduction of
digital repositories [4, 5]. But standards are particularly
important for digital repositories because the ability of
users to find information relevant to their needs—and to
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make sense of what they find—is determined by the
quality and consistency of the data and its annotations.
The Gene Ontology (GO) is a prominent example of

an effort to develop semantic standards for molecular
biology. GO allows biologists to describe the role of gene
products shared across eukaryotic organisms [6]. It is
widely used to cluster results of large-scale differential
gene expression studies into functional categories, and
has an important role in representing and aiding the dis-
covery of gene regulatory networks [7, 8].
The representation of anatomy often receives less

attention than the representation of genes, but is cru-
cial because studies of gene expression must docu-
ment not only the genes studied but also the
anatomical location(s) of the expression. These anno-
tations are most useful when they represent anatomy
in ways that are explicit, standardized, and can be
understood by researchers without expert knowledge
of the species represented.
Methods for curating information about the anat-

omy of model organisms have evolved in parallel with
methods for disseminating experimental data. Trad-
itional print-based atlases have long been used to
document anatomy and standardize terminology for
structures and developmental stages. Online atlases
provide additional benefits because they (a) allow data
such as high-resolution two-dimensional (2D) images,
three-dimensional (3D) reconstructions, and movies
to be shared, (b) can be updated frequently, and (c)
can link to external resources or incorporate content
maintained by other sites.
The task of representing an organism’s anatomy during

development is inherently complex. As shown in Fig. 1, a
complete description would account for three-dimensional
structure at scales spanning gross, histological, and

molecular anatomy, each throughout the time of develop-
ment. Managing knowledge and data within this space-
scale-time matrix presents a tremendous challenge. But it
is also an opportunity to develop online atlases that not
only provide anatomical descriptions, but also use anatomy
as a framework for organizing and sharing data [9].
In order to develop atlases that will successfully

serve as data portals for developmental biologists, re-
search in a number of areas is crucial. These include
development of web technologies for delivering volu-
metric image data over the web [10] and tools to
support comparing data from disparate sources within
a common spatial environment [11, 12]. Work related
to gene expression data includes capture of quantita-
tive expression data [13], mapping expression data to
3D graphics [14], visualization of data across time
and space [15], and automating annotation of expres-
sion patterns with anatomical terms [16]. Atlases
could also provide tools to aid researchers in analysis
of their own data, such as feature for more precisely
describing a specimen’s stage based on interpolating
between reference stages [17, 18].
Atlases serving as data portals will require tightly inte-

grated spatial and semantic representations as users al-
ternate between image-based and term-based navigation
and data retrieval. Therefore, in addition to research
rooted in the fields of computer science and informatics,
expertise is also needed from the fields of interaction de-
sign (to develop intuitive interfaces and effective visualiza-
tions) and knowledge representation (to provide semantic
representations to enable data integration).
As shown in Fig. 2, the type of semantic representa-

tion determines the level of meaning captured within
the representation. A controlled vocabulary is a list of
terms within a specific domain. A taxonomy is a con-
trolled vocabulary with hierarchical is_a relationships.
An ontology is a taxonomy with additional relationships
such as has_part and develops_into. The information pro-
vided by these relationships is necessary for developing at-
lases that link together data across space and time.
This article examines online resources for develop-

mental biologists with an emphasis on semantic and
spatial representation and interface design. I first survey
14 anatomical atlases and 21 gene expression resources
for methods of anatomical representation. I then present
a collection of patterns for interface design that demon-
strate the variety of approaches used for anatomical rep-
resentation, user interaction, and navigation with the
atlases and databases. The purposes of this work are to
(a) assist biologists and software developers in planning
the interfaces of new atlases and databases or enhan-
cing existing ones, and (b) demonstrate the benefits
of standardizing semantic and spatial representations
of anatomy.

Fig. 1 The components of a complete anatomical description. A
complete description of an organism’s anatomy during development
would account for three-dimensional structure at scales from gross to
histological to molecular anatomy, and throughout the time
of development
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Results
Anatomical atlases
For the purpose of this work, an anatomical atlas is
defined as a resource that provides spatial representa-
tions of a body or region of a body, plus a set of ana-
tomical terms which are associated with regions of
the representations. I identified 14 online anatomical
atlases describing organisms commonly used by devel-
opmental biologists.
Descriptions of each atlas are provided in Table 1. The

six species represented (and number of atlases for each)
are Caenorhabditis elegans (two), Ciona intestinalis
(two), Drosophila (two), medaka (one), mouse (two), and
zebrafish (four). Eight atlases have a spatial scope of the
entire body, while others are limited to the brain (Dros-
ophila, mouse), vasculature (medaka, zebrafish), midgut
(Drosophila), or craniofacial skeleton (zebrafish). With
the exception of one atlases for C. elegans and both
Drosophila atlases, all atlases include a description of at
least some developmental stages.
Table 2 lists the types of anatomical representations

used within each atlas. Types of graphics included con-
focal micrographs, transmission electron micrographs
(TEMs), histological sections, 3D reconstructions from
histological sections, 3D surface models, illustrations,
and brightfield movies. Six of the atlases stated that a
controlled vocabulary or ontology was used as a source
of terms for anatomical structures.

Gene expression atlases and databases
For this work, a gene expression atlas or database is de-
fined as a resource that combines evidence of gene ex-
pression with a representation of the anatomical region
of the expression. Because this work emphasizes spatial

representations, resources consisting only of microarray
data were excluded. I identified 21 resources for gene
expression.
Descriptions of each atlas or database for gene ex-

pression are provided in Table 3. The eight species
represented (and number of resources for each) are
Caenorhabditis elegans (two), chicken (one), Ciona
intestinalis (one), Drosophila (four), medaka (one),
mouse (eight), Xenopus (two), and zebrafish (two).
The spatial scope for 18 of the resources is the entire
body. Others are limited to brain, nervous system, or
urogenital system (each for the mouse). All resources
include at least one developmental stage.
Table 4 lists the anatomical representations used

within each gene expression atlas or database. Types of
graphics documenting expression patterns include
brightfield micrographs showing a colorimetric assay for
expression in both histological sections and whole
mounts, confocal micrographs, and 3D models with the
region of expression highlighted. At least eight of the re-
sources rely primarily on submissions of data from the
community, and therefore various types of graphics are
presented across different database entries. All resources
use anatomical terms to describe regions of expression.
However, only 14 use terms from controlled vocabularies
or ontologies. The other resources appear to use project-
specific vocabularies.

Semantic representation: Controlled vocabularies and
ontologies
Table 5 lists the controlled vocabularies and ontol-
ogies used in the resources surveyed. This survey re-
vealed that a total of 12 vocabularies or ontologies
are used. Each includes terms relevant to adult

Fig. 2 Levels of complexity in semantic representation. A controlled vocabulary is a list of defined terms. A taxonomy is a controlled vocabulary
with a hierarchical structure formed by is_a relationships between pairs of terms. An ontology is a taxonomy with additional relationships, such
as part_of
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Table 1 Summary of anatomical atlases surveyed

Atlas Description Spatial
scope

Developmental stages URL, full project name, project leadership Publication

C. elegans

WormAtlas A collection of resources including the SlidableWorm (for viewing
annotated electron micrograph sections) and descriptions of
individual neurons.

body adult hermaphrodite, adult
male, dauer larva

http://wormatlas.org
From the laboratory of David Hall at
Albert Einstein College of Medicine
(Bronx, NY, USA).

[45]

OpenWorm Browser
(Virtual Worm)

A 3D virtual reconstruction
consisting of surface models of
680 cells.

body adult only http://browser.openworm.org
A collaboration between WormBase
and OpenWorm.

[46]

Ciona intestinalis

ANISEED
(“Anatomy” section)

Illustrations of ascidian embryos at selected stages, annotated with
cell names.

body egg through adult http://www.aniseed.cnrs.fr
Ascidian Network for In Situ and
Embryological Data
A collaboration among ascidian
researchers led by Patrick Lemaire
at the CRM (Montpellier, France).

[47]
[48]

FABA Confocal micrographs for
standardizing developmental stages.

body zygote through hatched
larva

http://tunicate-portal.org/faba/1.4/top.html
Four-dimensional Ascidian Body Atlas
From the laboratory of Kohji Hotta at
Keio University (Yokohama, Japan).

[49]

Drosophila

Flygut Description of the Drosophila midgut based on anatomy, histology, and
expression patterns of reporter transgenes.

midgut adult only http://flygut.epfl.ch
This atlas complements a publication
from Bruno Lemaitre’s group at EPFL
(Lausanne, Switzerland).

[50]

Virtual Fly Brain Virtual sections from a reference
brain, with anatomical regions
delineated.

brain adult only http://www.virtualflybrain.org
Members of the Virtual Fly Brain team
are from the University of Edinburgh
(Edinburgh, Scotland) and the University
of Cambridge (Cambridge, England).

[51]

Medaka

Medaka Blood Vessel Atlas Annotated illustrations of the
vasculature of embryos.

vasculature mid-embryonic stages http://www.shigen.nig.ac.jp/medaka/
medaka_atlas
Work by Misato Fujita and Sumio Isogai.
Hosted online by the National BioResource
Project Medaka (Japan).

[52]
[53]

Mouse

Allen Developing Mouse
Brain Reference Atlas

Histological sections of brain with
anatomical regions delineated.

brain four embryonic stages, four
post-natal stages

http://developingmouse.brain-map.org/
static/atlas
Produced by the Allen Institute for Brain
Sciences (Seattle, WA, USA).

[54]
[55]
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Table 1 Summary of anatomical atlases surveyed (Continued)

e-Mouse Atlas 3D reconstructions of embryos
(some with anatomical regions
delineated), histological sections,
and a guide to embryological
stages.

body all embryonic stages, three
post-natal stages

http://www.emouseatlas.org/emap/ema/
home.html also known as the Edinburgh
Mouse Atlas
Project led by Duncan Davidson
and Richard Baldock within the Medical Research
Council Human Genetics Unit and the University
of Edinburgh (Edinburgh, Scotland).

[56]
[57]
[58]
[59]
[60]
[61]
[3]

Zebrafish

FishFace Graphics of fluorescently-labeled
chondrocytes, osteoblasts, and
bone matrix in the first two
pharyngeal arches.

craniofacial
skeleton

pharyngula through
adult

https://www.facebase.org/fishface/home
Created by the laboratory of Charles Kimmel
at the University of Oregon (Eugene, OR, USA)
as part of the FaceBase Consortium (USA).

[62]

FishNet Virtual sections from optical
projection tomography (OPT)
scans (with selected sections
annotated).

body pharyngula through
adult

http://www.fishnet.org.au
Produced by Robert Bryson-Richardson
and Peter Currie at Monash University
(Clayton, VIC, Australia).

[63]

Interactive Atlas of Zebrafish
Vascular Anatomy

Fluorescent angiograms as movies
and annotated diagrams.

vasculature pharyngula through
larva

http://zfish.nichd.nih.gov/Intro%20Page/
intro1.html
Produced by Brant Weinstein’s group at
the National Institutes of Health (Bethesda,
MD, USA).

[64]

ZFAP Graphics from the FishNet atlas
within a viewer that shows three
orthogonal planes.

body pharyngula through
adult

http://zebrafish.anatomyportal.org
Zebrafish Anatomy Portal
From Robert Bryson-Richardson’s group
at Monash University (Clayton, VIC, Australia).

[65]

Zebrafish Atlas Histological sections and a virtual
slide viewer. Slides from two
developmental stages are annotated.

body larva through adult http://bio-atlas.psu.edu/zf
From the laboratory of Keith Cheng at
Penn State College of Medicine (Hershey,
PA, USA).

[66]
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anatomy, developmental anatomy and stages, or
both. Seven organisms are represented (C. elegans, C.
intestinalis, Drosophila, medaka, mouse, Xenopus, and zeb-
rafish). As shown in Table 5 (third column, indicated with
superscript), each vocabulary and ontology was developed
by one of the groups creating an atlas or database included
in Tables 1 and 3.

Several atlases and gene expression resources demon-
strate how the relationships within ontologies can contrib-
ute to the usefulness of interfaces by enhancing search
functions or providing links between relevant information:

Part relationships: EMAGE [19] and GXD [20] are
databases for gene expression in the mouse, and both

Table 2 Anatomical representations within the anatomical atlas

Types of graphicsa Controlled vocabulary or ontology for
anatomy

C. elegans

WormAtlas • TEMs
• illustrations
• DIC micrographs
• fluorescence micrographs
• confocal micrographs (as movies of volumes)
• various movies, including 3D reconstructions from
ssTEMs

not stated

OpenWorm Browser
(Virtual Worm)

• 3D surface models not stated

Ciona intestinalis

ANISEED (“Anatomy” section) • illustrations Ciona Developmental Ontology

FABA • confocal micrographs (as virtual sections and
volumes)

• brightfield movies

not statedb

Drosophila

Flygut • schematic illustrations
• fluorescence micrographs
• 3D surface models

not stated

Virtual Fly Brain • confocal micrographs (as virtual sections)
• 3D surface models of neurons

Drosophila Anatomy Ontologyc

Medaka

Medaka Blood Vessel Atlas • illustrations
• confocal microangiographs

not stated

Mouse

Allen Developing Mouse Brain Reference
Atlas

• histological sections with illustration overlays Developing Mouse Brain Atlas ontology

e-Mouse Atlas • 3D reconstructions of histological sections
(as virtual sections and volumes)

• histological sections
• OPT scans (as volumes)
• illustrations of stages

EMAP anatomy ontology

Zebrafish

FishFace • confocal micrographs (as projections)
• OPT scans (as volumes)

Zebrafish Anatomy Ontology and [67]

FishNet • OPT scans (as virtual sections and volumes) not stated

Interactive Atlas of Zebrafish Vascular
Anatomy

• illustrations
• confocal microangiographs (as projections and
volumes)

reference list on website

ZFAP • OPT scans (as virtual sections and volumes) Zebrafish Anatomy Ontology

Zebrafish Atlas • histological sections term list on website
a Abbreviations: DIC differential inference contrast, TEM transmission electron micrograph, ssTEM serial section transmission electron micrograph, OPT optical
projection tomography
b The FABA established the developmental stages used in the Ciona Developmental Ontology
c The vocabulary from the Insect Brain Name Working Group [68] was incorporated into the Drosophila Anatomy Ontology as part of the development of the
Virtual Fly Brain atlas
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Table 3 Summary of gene expression atlases and databases surveyed

Atlas or database Description Spatial scope Developmental stages URL, full project name, project leadership Publication

C. elegans

Expression patterns for C. elegans
promoter::GFP fusions

Database of expression
patterns of transgenic
animals with promoter::
GFP fusions

body embryo through adult http://gfpweb.aecom.yu.edu/index
A project of the British Columbia
C. elegans Gene Expression Consortium

[69]

WormBase (“WormMine” tool) Community repository of
molecular and genetic
data from the literature,
submissions, and
collaborating projects

body embryo through adult http://www.wormbase.org
An international consortium of researchers,
based at Caltech (Pasadena, CA, USA)

[70]
[46]

Chicken

GEISHA Community repository of
in situ hybridization data
acquired from high-
throughput screens and
the literature

body egg through first six days
of development

http://geisha.arizona.edu/geisha
Gallus Expression in Situ Hybridization Analysis
Hosted by Parker Antin’s group at the
University of Arizona (Tuscaon, AZ, USA)

[71]
[72]
[73]

Ciona intestinalis

ANISEED (“Gene Expression &
Function” section)

Community repository of
expression data from the
literature, submissions,
and collaborating projects

body egg through adult http://www.aniseed.cnrs.fr
Ascidian Network for In Situ and
Embryological Data
A collaboration among ascidian researchers
led by Patrick Lemaire at the CRM
(Montpellier, France)

[47]
[48]

Drosophila

BDGP expression patterns Database of in situ
hybridization patterns

body all embryonic stages http://insitu.fruitfly.org/cgi-bin/ex/insitu.pl
Berkeley Drosophila Genome Project
From the laboratory of Susan Celniker at the
Lawrence Berkeley Laboratory (Berkeley, CA, USA)

[74]
[75]
[76]

FlyBase (“QuickSearch” tool) Community repository of
molecular and genetic
data from the literature
and direct submissions

body egg through adult http://flybase.org
From an international consortium of
Drosophila researchers

[77]
[78]
[79]

FlyExpress A tool for searching
expression patterns using
images data from BDGP
and Fly-FISH

body all embryonic stages http://www.flyexpress.net
From the laboratory of Sudhir Kumar at
Arizona State University (Tempe, AZ, USA)

[40]
[80]

Fly-FISH Database of in situ
hybridization patterns

body early embryonic stages and
third instar larva

http://fly-fish.ccbr.utoronto.ca
From the laboratory of Henry Krause at the
University of Toronto (Toronto, Ontario, Canada)

[81]
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Table 3 Summary of gene expression atlases and databases surveyed (Continued)

Medaka

MEPD Database of expression
patterns for genes (in
situ hybridization) and
regulatory sequences
(fluorescent reporters)

body egg through adult http://mepd.cos.uni-heidelberg.de/mepd
Medaka Expression Pattern Database
A project within the Medaka Genome
Initiative, from the laboratory of Joachin
Wittbrody at University of Heidelberg
Heidelberg, Germany)

[82]
[83]
[84]

Mouse

Allen Developing Mouse Brain
Atlas (“AGEA” section)

Atlas of spatially correlated
expression patterns derived
from in situ hybridizations
on histological sections

brain four embryonic stages
(E11.5, 13.5, 15.5, 18.5),
four post-natal stages
(P4, 14, 28)

http://developingmouse.brain-map.org/
agea/show
Anatomic Gene Expression Atlas of the Allen
Developing Mouse Brain Atlas
Produced by the Allen Institute for Brain
Sciences (Seattle, WA, USA)

[85]
[86]
[87]
[36]

EMBRYS Database of in situ
hybridization patterns,
using whole mounts

body three embryonic stages
(E9.5, 10.5, 11.5)

http://embrys.jp/embrys/html/MainMenu.html
Note: no longer available online
From the laboratory of Hiroshi Asahara at
the Systems BioMedicine Laboratory of the
National Research Institute for Child Health
and Development (Tokyo, Japan)

[88]
[89]

EMAGE Community repository of
molecular and genetic
data from the literature
and direct submissions

body all post-implantation stages http://www.emouseatlas.org/emage/home.php
e-Mouse Atlas of Gene Expression
Led by Duncan Davidson and Richard
Baldock within the Medical Research Council
Human Genetics Unit at the University of
Edinburgh (Edinburgh, Scotland)

[56]
[90]
[91]
[58]
[92]
[93]

Eurexpress Database of in situ
hybridization patterns,
using histoloogical sections

body one embryonic stage (E14.5) http://www.eurexpress.org/ee
From a consortium of European researchers

[94]

GXD Community repository of
expression data from the
literature, direct submissions,
and collaborating projects

body all embryonic stages,
postnatal

http://www.informatics.jax.org/gxd
Mouse Gene Expression Database
A Mouse Genome Informatics resource from
Jackson Laboratory (Bar Harbor, ME, USA)

[95]
[96]
[97]
[98]

GENSAT Database of in situ
hybridization patterns and
data from transgenic mice
with EGFP reporter genes

nervous system one embryonic stage
(E15.5), postnatal (P7), adult

http://www.gensat.org/index.html
Gene Expression Nervous System Atlas
From the laboratory of Nathaniel Heinz at
The Rockefeller University (New York, NY, USA)

[99]
[100]

GenePaint Database of in situ
hybridization patterns,
using histological sections

body three embryonic stages
(E10.5, 14.5, 15.5), postnatal
(P7), adult

http://genepaint.org
Led by Gregor Eichele at the Max Planck
Institute of Biophysical Chemistry (Göttingen,
Germany)

[101]

GUDMAP Community repository of
expression data from the
GUDMAP consortium

urogenital system mid-embryonic development
through adult

http://www.gudmap.org
GenitoUrinary Molecular Anatomy Project
From an international consortium of researchers

[102]
[103]
[104]
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Table 3 Summary of gene expression atlases and databases surveyed (Continued)

Xenopus

Xenbase Community repository of
expression data from the
literature, submissions, and
collaborating projects

body all stages through adult http://www.xenbase.org
Led by Peter Vize at the University of Calgary
(Calgary, Canada)

[105]
[106]

XenMARK expression patterns Database of in situ
hybridization patterns,
using whole mounts

body 32-cell stage through tadpole http://genomics.crick.ac.uk/apps/XenMARK
From the laboratory of Michael Gilchrist at
the MRC National Institute for Medical
Research (London, UK)

[38]

Zebrafish

GEMS Database of in situ
hybridization patterns

body gastrula through hatching http://bio-imaging.liacs.nl/liacsgems.html
Note: no longer available online
Gene Expression Management System
Produced by the Imagery & Media Group
at Leiden University (Leiden, Netherlands)

[107]

ZFIN Community repository
of molecular and genetic
data from literature and
direct submissions

body zygote through adult http://zfin.org
Zebrafish Model Organism Database (also
known as the Zebrafish Information Network)
Based at the University of Oregon (Eugene, OR, USA)

[108]
[109]
[110]
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Table 4 Anatomical representations within the gene expression atlases and databases

Atlas or database Types of graphicsa Controlled vocabulary or ontology for anatomyb

C. elegans

Expression patterns for C. elegans
promoter::GFP fusions

• fluorescence micrographs
• confocal micrographs (as projections and volumes)
• DIC micrographs with fluorescence overlays

project-specific vocabulary

WormBase (“WormMine” tool) • various types submitted
• Virtual Worm model with regions of gene
expression highlighted

C. elegans Gross Anatomy Vocabulary
C. elegans Development Vocabulary

Chicken

GEISHA • various types submitted project-specific vocabulary

Ciona intestinalis

ANISEED (Expression Data section) • various types submitted Ciona Developmental Ontology

Drosophila

BDGP expression patterns • brightfield micrographs (whole mounts,
colorimetric assay)

Drosophila Anatomy Ontology

FlyBase (“QuickSearch” tool) – Drosophila Anatomy Ontology

FlyExpress • graphics from BDGP and Fly-FISH vocabularies from BDGP and Fly-FISH

Fly-FISH • confocal micrographs project-specific vocabulary

Medaka

MEPD • brightfield micrographs (whole mounts,
colorimetric assay for gene expression)
• fluorescence micrographs (for regulatory
element expression)

MFO

Mouse

Allen Developing Mouse Brain
Atlas (“AGEA” section)

• brightfield micrographs (histological
sections, colorimetric assay)

• standardized 3D brain models with regions
of expression highlighted

Allen Developing Mouse Brain Atlas ontology

EMBRYS • brightfield micrographs (whole mounts,
colorimetric assay)

• AERO images (whole mounts,
colorimetric assay)

project-specific vocabulary

EMAGE • various types submitted EMAP anatomy ontology

Eurexpress • brightfield micrographs (histological sections,
colorimetric assay)

EMAP anatomy ontology

GXD • various types submitted EMAP anatomy ontology;
MA

GENSAT • brightfield micrographs (histological sections,
colorimetric assay)

• confocal micrographs

project-specific vocabulary

GenePaint • brightfield micrographs (histological sections,
colorimetric assay)

project-specific vocabulary

GUDMAP • various types submitted EMAP anatomy ontology

Xenopus

Xenbase • various types submitted XAO

XenMARK expression patterns • brightfield micrographs (whole mounts,
colorimetric assay)

project-specific vocabulary

Zebrafish

GEMS • confocal micrographs DAOZ

ZFIN • various types submitted ZAO
a Abbreviations: DIC differential inference contrast, AERO images are a series of 2D images captured at 2-degree intervals [88]
b Abbreviations: DAOZ Developmental Anatomy Ontology of Zebrafish, MFO Medaka Fish Anatomy and Development Ontology, XAO Xenopus Anatomy Ontology,
ZAO Zebrafish Anatomy Ontology
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have a search function that accepts a term for an
anatomical structure and returns genes expressed in
that structure. These databases make use of the part
hierarchies in the EMAP anatomy ontology [21] and
Adult Mouse Anatomy (MA) [22] to return results
annotated with either the term entered by the user or
the parts of that structure. For example, a search for
genes expressed in “eye” will return genes annotated
with “eye”, “retina”, and “lens vesicle”.

Developmental relationships: Searches for gene
expression in an anatomical structure can be expanded
by including structures linked by developmental
relationships. The Xenbase gene expression database
[23] provides an option to include successor and
predecessor structures in search results. These
relationships are provided by the Xenopus Anatomy
Ontology (XAO) [24]. Developmental relationships also
provide a way for users to navigate an atlas or database

Table 5 Controlled vocabularies and ontologies relevant to this survey

Vocabulary or ontology Domain Used by this atlas
or database

URL, full name Publication

C. elegans

C. elegans Gross Anatomy
Vocabulary

• developmental and adult
anatomy, including
individual cells

WormBasea http://bioportal.bioontology.org/ontologies/
WB-BT also known as the C. elegans Cell and
Anatomy Ontology

[111]

C. elegans Development
Vocabulary

• developmental stages
• time points

WormBasea http://bioportal.bioontology.org/ontologies/
WB-LS

–

Ciona intestinalis

Ciona intestinalis Anatomy
and Development Ontology

• developmental and adult
anatomy, including individual cells

• developmental stages

ANISEEDa http://bioportal.bioontology.org/ontologies/
CIINTEADO

[47]
[48]

Drosophila

Drosophila Anatomy
Ontology

• developmental and adult anatomy
• includes vocabulary from
the Insect Brain Name Working
Group

VFB
FlyBasea

http://bioportal.bioontology.org/ontologies/
FB-BT also known as the Drosophila Gross
Anatomy Ontology

[68]
[27]
[112]

Drosophila Development
Ontology

• developmental stages
• cycles of nuclear division

FlyBasea http://bioportal.bioontology.org/ontologies/FB-
DV

_

Medaka

MFO • developmental and adult anatomy
• developmental stages

MEPDa http://bioportal.bioontology.org/ontologies/
MFO
Medaka Fish Anatomy and Development
Ontology

[83]

Mouse

MA • adult anatomy GXDa http://bioportal.bioontology.org/ontologies/MA
Adult Mouse Anatomy,
also known as the Mouse Adult Gross
Anatomy Ontology

[22]

Allen Developing Mouse
Brain Atlas ontology

• developmental anatomy Allen Developing
Mouse Brain Atlasa

http://help.brain-map.org/display/api/Atlas
+Drawings+and+Ontologies

[55]

EMAP • developmental anatomy
• includes vocabulary from
the GUDMAP consortium

e-Mouse Atlasa

GXD
GUDMAP

http://bioportal.bioontology.org/ontologies/
EMAP
e-Mouse Atlas Project anatomy ontology

[21]
[113]
[114]

Xenopus

XAO • developmental and adult anatomy
• developmental stages

Xenbasea http://bioportal.bioontology.org/ontologies/XAO
Xenopus Anatomy Ontology, also known as the
Xenopus Anatomy and Development Ontology

[24]
[115]

Zebrafish

DAOZ • developmental anatomy
• developmental stages

GEMSa http://bio-imaging.liacs.nl/liacsontology.html
Developmental Anatomy Ontology of Zebrafish

[116]

ZFA • developmental and adult
anatomy

• developmental stages

ZFINa http://bioportal.bioontology.org/ontologies/ZFA
Zebrafish Anatomy Ontology, also known as the
Zebrafish Anatomy and Development Ontology

[117]

a The vocabulary or ontology was developed by the group constructing this atlas or database
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along developmental pathways. GUDMAP [25] is a
database of gene expression in the mouse urogenital
system. It employs the derives_from and differentiates_into
relationships as links between the tissue summary pages
with include gene expression data. This enables a user
examining data annotated with “early distal tubule” to
follow the differentiates_into relationship to data
annotated with “renal distal tubule”.

Structural relationships: Structural relationships allow a
resource to present knowledge specific to an anatomical
context. For example, the Virtual Fly Brain [26] provides
an interface that uses the has_presynaptic_terminal_in
and has_postsynaptic_terminal_in relationships for
nerves in the Drosophila Anatomy Ontology [27]. For
example, when viewing the medulla in the atlas, lists are
generated for neurons with presynaptic and postsynaptic
terminals the medulla. Producing the list of neurons
requires two types of knowledge from the ontology: (a)
which anatomical structures are part_of the medulla, (b)
each neuron that has_presynaptic_terminal_in or
has_postsynaptic_terminal_in those parts.

Ontologies also provide an opportunity to link re-
sources to each other. For example, each anatomical
term in the Zebrafish Anatomy Portal (ZFAP) [28] is
linked to a page in ZFIN [29] that defines the term and
provides ontological relationships.

Spatial representation: 2D and 3D graphics
The atlases and databases in this survey demonstrate
several ways that spatial representation of anatomy can
be enhanced in a web-based resource:

Graphics of developmental stages: The process of
development can be studied only if it is represented in
ways that are sufficiently rich in detail and reasonably
standardized — a challenge as old as embryology itself
[30]. Web-based atlases are able to represent spatial
structure and time-based processes in way that trad-
itional print-based resources cannot. For example, the
Four-dimensional Ascidian Body Atlas (FABA) [31]
defines stages for C. intestinalis with confocal image
stacks and time-lapse movies, and the e-Mouse Atlas
provides 3D reconstructions of embryos for many
Theiler stages. Standardization of annotation for de-
velopmental stages is necessary for sharing data
among laboratories, and atlases provide an easy way
to access stage descriptions.

High-resolution histological sections: Glass histology
slides have long been used for studying histology.
Virtual slides are created by scanning and digitizing
glass slides, and the experience of using a microscope is

simulated through web applications that allow zooming
and panning of the image. Virtual slides are provided
by the Zebrafish Atlas [32] and e-Mouse Atlas [33].

Visual representation of ontological terms: Web-based
resources provide an environment in which to link
semantic and spatial representations of anatomical
structures. For example, the Allen Developing
Mouse Brain Atlas [34] and the Virtual Fly Brain [26]
provide linked term-and-graphic windows that provide a
view of both the ontology used and structures annotated
with those terms. The Zebrafish Anatomy Portal (ZFAP)
[28] provides a search function that takes a term from
the Zebrafish Anatomy Ontology and returns planes of
reconstructions from optical projection tomography
(OPT) scans labeled with the term.
Correlating spatial data among specimens and
experiments: For gene expression patterns to be useful,
they must be annotated in a way that allows users to
find genes that are expressed in regions of interest and
to study co-expression patterns. Four methods are used
to annotate expression patterns within the resources
surveyed: (a) The first method is manual annotation of
each specimen using terms from a controlled vocabu-
lary or ontology. This method enables only text-based
queries, and will be inaccurate where expression patterns
do not correspond to the borders of defined anatomical
regions. (b) The second approach relies on computa-
tional annotation and preserves the spatial nature of the
data. In this approach, the expression pattern of each
specimen is registered to a stage-matched standard
volume through spatial warping enabling spatial
queries to be performed across the dataset. This is
used by the e-Mouse Atlas of Gene Expression (EMAGE)
[19] (as described in [35]) and Allen Developing Mouse
Brain Atlas [34] (as described in [36]). (c) A third
approach, used by XenMARK [37], relies on a man-
ual annotation process in which specimen expression
patterns are drawn onto stage-specific schematic dia-
grams [38]. This method avoids the computational
complexity of spatial warping, but allows spatial
searches from the schematics. (d) A fourth approach
is to compute similarity scores between pairs of im-
ages, instead of mapping to a stage-specific standard.
This method is used by FlyExpress [39] on sets of
2D images of Drosophila embryos that are uniformly
oriented and assayed under the same conditions [40].

Patterns for interface design
In order to document and generalize the approaches for
conveying information about anatomy that are used in
these atlas and databases, I compiled a set of patterns.
Patterns are reusable solutions to design problems, and
are of great interest in interface design [41]. The patterns I
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have identified focus on graphic representation, user inter-
action, and navigation.
From the anatomical atlases I identified a total of

23 design patterns, shown in Figs. 3, 4, 5 and 6.
These patterns provide methods for displaying graphics,
integrating semantic and spatial representations, and
organizing atlas information. They are grouped into
eight categories:

� Displaying 2D graphics
� Displaying sectional graphics
� Displaying 3D graphics
� Labeling graphics
� Presenting topic-focused information
� Defining anatomical terms
� Organizing information about developmental stages
� Describing development using graphical methods

Each pattern has a title, description, examples of use,
and simple pictorial representation. For example, one
pattern in the category of “Displaying 2D graphics” is
“Overview plus detail.” This pattern pairs a small
overview graphic with a large zoomable graphic. A
box on the small graphic indicates the region shown
in the zoomable graphic. This pattern can be used
when high-resolutions graphics are available and it is
important to allow the user to zoom into details. This
pattern is used within the e-Mouse Atlas [33], Virtual
Fly Brain [26], WormAtlas (SlidableWorm) [42], and
Zebrafish Atlas [32].
From the gene expression atlases and databases I

identified 13 patterns that provide methods for querying
databases to find genes expressed in anatomical structures
and display the results. These patterns are shown in Figs. 7
and 8, and are grouped into four categories:

� Providing textual methods for querying a gene
expression database

� Providing graphical methods for querying a gene
expression database

� Displaying query results from a gene expression
database

� Explaining anatomical annotations in a query
result item

A few of the patterns that I present here have been
previously identified in other pattern collections. In these
cases I have retained the names given by previous authors
(for example, “Overview plus detail”, “Autocompletion”,
and “Thumbnail grid“) [41].

Discussion
This collection of design patterns can be used as a cata-
lyst for conversations between biologists and software

developers. Because they provide a user-focused perspec-
tive, they can support discussions of methods for exploring
and retrieving anatomically-based information and can
serve as building blocks for interface specifications.
The patterns also help to clarify how interface func-

tionality is constrained by the investment in semantic
and spatial standardization. For example, one of the
most intuitive ways to query a gene expression pattern
database is by specifying a point or region on a stan-
dardized image, but this requires that the expression
data have been mapped to a spatial standard.
This work documents the variety of ways anatomical

information has been communicated in online atlases
and databases. Part of this variability is due to differ-
ences in the types of data available, purposes of the re-
sources, and the characteristics of the organism. But it
also reflects the large number of design solutions that
are possible. Because this survey did not include re-
sources presented as downloadable software, there are
likely to be additional patterns for representing anatomy.

Using the patterns to support user needs
When applied to developing or expanding a particu-
lar online resource, this work should be considered
in the context of two important considerations:
“What are the information needs of the users?” and
“What information assets are available to use in
building the resource?” The patterns act as inter-
mediaries between the users’ questions and the infor-
mation assets. Figure 9 provides a scenario that uses
ten of the patterns in an imagined resource. This re-
source provides an anatomical atlas and gene expres-
sion database, and uses information assets including
an ontology (serving as the semantic standard),
spatial standards, a graphics collection, and gene ex-
pression data. In this scenario, user needs include
obtaining information about the meaning of anatom-
ical terms and finding data related to development of
a particular anatomical structure.

Designing for new types of data
Looking to the future, standardized spatial representa-
tions will be key to communicating and integrating new
types of data. Emerging techniques for “spatially resolved
omics” [43] provide high-throughput measurements of
gene expressions while preserving detailed spatial infor-
mation. For example, microtomy sequencing provides
gene expression data from individual cryosections of a
specimen. Recent work with zebrafish embryos extends
this approach by analyzing data from embryos sectioned
along orthogonal body axes using image reconstruction
algorithms to produce 3D expression patterns—a technique
called RNA tomography (or tomo-seq) [44].
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The detailed spatial data produced by large-scale gene
expression studies are unlikely to correspond to tradition-
ally defined regions of anatomy. Therefore, standardized

spatial representations of model organisms will need to
serve as a mediator between the data collected by labora-
tories and the users of community databases. In this

Fig. 3 Interface design patterns for displaying 2D graphics and sectional graphics
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scenario, investigators will not annotate their data with se-
mantic annotations. Rather, they will map their data to
standard spatial representations. The role of semantic rep-
resentations will be to serve as references to regions of the
models and logical links between models at different
stages or at different spatial scales. This will integrate dis-
parate data at the level of spatial representation, while

preserving the usefulness of semantic representations for
filtering, searching, and browsing data.

Conclusions
This work highlights issues important for the continued
evolution of online resources for developmental biology. If
resources are to be effective in helping researchers to locate

Fig. 4 Interface design patterns for displaying 3D graphics and labeling graphics
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Fig. 5 Interface design patterns for presenting topic-focused information and defining anatomical terms
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data relevant to their questions and to generate hypotheses,
they must provide a structure that allows researchers to
navigate within the space-scale-time matrix depicted
in Fig. 1, as well as to explore homologous structures

across different species. This next generation of
resources—perhaps better described as web portals—will
provide access to not only information from different
laboratories stored within a single repository, but to

Fig. 6 Interface design patterns for organizing information about developmental stages and describing development using graphical methods
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Fig. 7 Interface design patterns for textual and graphical methods of querying a gene expression database
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information distributed across different repositories. These
web portals (and perhaps networks of interlinked web
portals) will rely on tightly integrated semantic and spatial
representation, using anatomy as a framework for data
integration, organization and navigation.

As model organism communities move toward the goal
of building a comprehensive understanding of develop-
ment, the role of these web portals is crucial. They will
serve both to document collective knowledge from previ-
ous work and to provide the infrastructure that enables

Fig. 8 Interface design patterns for displaying query results from a gene expression database and explaining anatomical annotations
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Fig. 9 Scenario for an online resource combining an anatomical atlas with gene expression data. Questions by users (in thought clouds) serve as entry
points to pages using the design patterns. Arrows represent links between pages using different patterns. Four types of information assets (an ontology,
spatial standards, graphics collection, and gene expression data) are shown in the center. Lines extending from the information assets indicate some of
the patterns that incorporate those assets
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future work. Achieving this vision will require not only ad-
vances in web and imaging technology, but careful consid-
eration of semantic and spatial representation and
research to design usable and intuitive interfaces. In order
for these tools to meet the needs of biologists, biologists
must partner with computer science, informatics, and de-
sign researchers.

Methods
The atlases and databases surveyed in this work were
identified through keyword searches of the Science Dir-
ect, Scopus, and PubMed databases. The keywords used
were atlas or database in combination with Arbacia,
Caenorhabditis elegans, chick, chicken, Ciona, Danio
rerio, Drosophila, fly, frog, Gallus gallus, medaka, mouse,
Mus musculus, nematode, Oryzias latipes, rat, Rattus
norvegicus, sea squirt, sea urchin, Strongylocentrotus,
Xenopus, or zebrafish. Several additional atlases and da-
tabases were identified based on URL links within these
resources. Keyword searches were performed on 26 July
2014 and 9 Oct 2015.
Resources included in this survey are (a) described in

a peer-reviewed journal article, (b) publicly available, (c)
delivered on the web without requiring download, and
(d) in English. In addition, a resource must have been
available on at least one of the dates of testing (26 July
2014, 4 Aug 2014, 6 Sept 2014, and 9 Oct 2015). If a re-
sources consists of both online material and download-
able material, only the online material was included in
this survey. Two resources became unavailable during
the course of this project (EMBRYS and GEMS). These
are included in the survey, but their unavailability is
noted with their URLs in Table 3.
Resources were excluded if they are primarily (a) data-

bases of microarray data, (b) collections of figures from
journal articles, (c) collections of graphics or movies
with little or no annotation of anatomical structures, or
(d) textbook-like resources with limited navigation struc-
ture. This work is limited to model organisms, and
therefore resources for human anatomy and develop-
ment are excluded.
All resources were viewed using operating system Mac

OSX 10.9.5 with Java 1.8.0 and the Firefox 41.0 browser.
Components provided as self-signed Java applications
were excluded from this survey due to security risks.
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