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ABSTRACT: Allosteric drug development holds promise for delivering medicines that
are more selective and less toxic than those that target orthosteric sites. To date, the
discovery of allosteric binding sites and lead compounds has been mostly serendipitous,
achieved through high-throughput screening. Over the past decade, structural data has
become more readily available for larger protein systems and more membrane protein
classes (e.g., GPCRs and ion channels), which are common allosteric drug targets. In
parallel, improved simulation methods now provide better atomistic understanding of
the protein dynamics and cooperative motions that are critical to allosteric mechanisms.
As a result of these advances, the field of predictive allosteric drug development is now
on the cusp of a new era of rational structure-based computational methods. Here, we
review algorithms that predict allosteric sites based on sequence data and molecular dynamics simulations, describe tools that
assess the druggability of these pockets, and discuss how Markov state models and topology analyses provide insight into the
relationship between protein dynamics and allosteric drug binding. In each section, we first provide an overview of the various
method classes before describing relevant algorithms and software packages.
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1. REVIEW MOTIVATION AND ORGANIZATION

To date, most allosteric drugs have been discovered through
high-throughput screening. But growing databases of biomo-
lecular structure and sequence data, in conjunction with increases
in computing power and improvements in predictive algorithms,
are enabling the rational de novo design of allosteric drugs. Given
the large number of published algorithms for predicting allosteric
mechanisms, it can be difficult to select the most appropriate
method for a given target. This review serves as an introduction
for those who wish to use computational techniques to develop
allosteric drugs.
After a broad overview of allosteric drug discovery, this review

is divided into three sections. First, we discuss bioinformatics and
molecular-dynamics methods to identify allosterically important
sequence positions. Second, we summarize the computational
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methods to predict druggable pockets at these functionally
relevant sites. Finally, we describe how Markov state models and
topological analyses can tie these single sequence sites to global
protein function and dynamics.

2. INTRODUCTION
Allosteric drugs offer a number of advantages that make them
desirable as drug candidates. Allosteric effectors, by definition,
alter protein activity by binding to a site distinct from the
orthosteric pocket. One example of an allosteric system is
fructose 1,6-bisphosphatase (shown in Figure 2). Because
allosteric sites are typically less evolutionarily conserved,
allosteric drugs can be highly selective, even among other
members of the same protein family.1−8 In some cases, allosteric
sites are so unique among proteins that an effector is said to have
“absolute subtype specificity.”2,3,9,10

Allosteric modulators may have spatiotemporal specificity. For
example, they can be active only in the presence of the
endogenous ligand, thus restricting their effect to certain tissues
at certain times,2−4,9,11 which may slow desensitization.10,12

Allosteric effectors are generally saturable, meaning that they
have a maximal effect that does not necessarily correspond to
complete inhibition or activation.2,4−6,8,10,11 This saturability
enables safer dosing. For example, if the maximal effect is an 80%
reduction in signaling, overdosing will not fully eliminate an
essential signal.1,2,4

Other advantages can include noncompetitive inhibition (i.e.,
drug activity cannot be “overwhelmed” by high concentrations of
the endogenous ligand) and pathway- or substrate-specific
modulation, which reduces unwanted activity by specifically
targeting a single protein function.2,4,10 For example, if a protein
is involved inmultiple pathways, an allosteric effector may impact
the activity of each pathway differently depending on the
systems-biology context. If a protein acts on multiple substrates,
the impact on activity may depend on the biological context.
Despite many potential advantages of allosteric therapeutics, it

has been challenging to identify predictive approaches to
discovering allosteric drugs. In recent decades, the pharmaceut-
ical industry has favored more traditional targets for three
primary reasons: the relative ease of assay development around
orthosteric sites; access to high-throughput, high-resolution X-
ray crystallography; and advances in ligand- and receptor-based
computational methods to optimize ligand-binding affinity at a
substrate-competitive site. This structure-based approach is
thought to significantly reduce the time and cost of hit-to-lead
and lead-to-drug development by reducing the number of
compounds that need be synthesized.13,14 Work by Doman et al.
comparing computer-aided drug discovery (CADD) and high-
throughput screening (HTS) reported that the two methods had
hit rates of 35 and 0.021%, respectively.15

In contrast, allosteric drugs are uniquely challenging from a
rational drug-design perspective. Because experimental assays
typically measure orthosteric function rather than ligand binding
at the allosteric site, efficient development of allosteric drugs
requires that the complex structure−activity relationships
(SARs) governing both binding affinity and allosteric activity
be considered simultaneously.5,10,16 Further, allosteric sites are
less likely to be evolutionarily conserved. While this enables
increased subtype specificity, it also increases the chances of
evolved resistance5,9,10 and can complicate testing in evolutio-
narily distant animal models.10

Additionally, allosteric effectors are particularly susceptible to
“mode switching,” where relatively minor chemical changes can

drastically affect ligand efficacy.10,16 Structurally similar drug
metabolites, therefore, may have varying and unpredictable
distributions and allosteric effects.10,16 Optimizing allosteric
modes of action requires methods that are very different from
those used in orthosteric drug discovery.5

Multifunctional allosteric proteins are particularly challenging.
While drug designers may desire to target a single protein
function, an allosteric effector may also alter other functions,
hindering a full mechanistic understanding of the pharmacol-
ogy.10 Also, the benefits of spatiotemporal specificity are lost if
the distribution of the endogenous ligand changes with
progression of the disease state.10 Finally, assessment of the
limited number of known allosteric pockets indicates that they
are generally shallow5 and present flat SARs.10 These structural
features similarly challenge existing rational drug-discovery
paradigms and the general practice of developing selective
compounds by optimizing affinity.
Despite these challenges, allosteric drug discovery has gained

momentum recently due to a number of developments.10 First,
several allosteric drugs across a broad range of pharmacological
target classes have been rationally designed,17−23 encouraging
pursuit of others, as evidenced by the number of allosteric drugs
currently in clinical trials.24 The recent elucidation of new
membrane protein crystal structures for GPCRs25,26 and ion
channels27,28 have assisted in the structure-based design
approach to these successes. Finally, advances in our under-
standing of allosteric mechanisms have supported development
of additional rational design strategies (see below).
Our understanding of allosteric mechanisms has advanced

considerably since the initial conception of Monod, Wyman, and
Changeux.29 Modern models of allostery consider conforma-
tional ensembles.5,8,9,30−43 This revised view supports newly
established and emerging computational advances that compre-
hensively map conformational landscapes and predict commu-
nication between allosteric and orthosteric sites. For example, the
physical mechanisms of allostery generally alter the entropic and
enthalpic factors that define the conformational landscape and,
therefore, govern protein function.5,8,9 The observed correlation
between allosteric modulation and protein structural dynamics is
varied: Major conformational rearrangements occur in some
cases, as compared with subtle shifts in conformational
populations in others.4−6,9,10,35,37,44 An excellent metaphor for
these phenomena is Kornev and Taylor’s classification of
“domino” versus “violin” models of allosteric signal trans-
duction45 (Figure 1). Further, allosteric signals are transmitted
through a range of structural motifs, from rigid core regions to
flexible linkers.46 Allostery may occur through essential residues
along a single allosteric path47 or through many weak pathways
connecting one site to another, acting in concert.48 As such, it is
not surprising that many of the allostery-prediction methods
discussed in this review (some of which do not use structure/
geometry information at all) in practice may identify non-
contiguous groups of residues as being allosterically linked. Such
predictions should not immediately be assumed to be wrong but
rather may indicate a non-“domino” model of allostery.
Recent work has also revealed that protein allostery is not

merely a transition between two discrete protein conformations,
as initially thought, but rather a shift in the equilibrium
populations of many conformations, induced by effector
binding.31,35,38,41,42,51,52 It is becoming increasingly clear that
the kinetics of these transitions define the mechanisms of
allostery.38,51 Empowered with these new understandings and
advances in molecular simulation (in terms of speed of
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calculation and improved methodologies), the era of allosteric
drug discovery is now on the cusp of radical advancement. I’
2.1. Emerging Rational Design Principles

So-called tried-and-true “design principles” are still being
developed. However, a few general principles have begun to
emerge. For example, many argue that it is insufficient to design a
ligand that merely binds to an allosteric site; rather, the effector
must make contact with certain key binding-pocket atoms to
have the desired effect.5,10 These key atoms can often be

identified through mutagenesis experiments and crystallographic
studies of other allosteric ligands.
A promising set of design principles is encapsulated in the

“allo-network” strategy, a rational approach that adopts two
simultaneous but orthogonal approaches to ligand design.6 On
the protein-structure level, the primary focus is to target a single
protein function or an interaction with a single partner. On the
signaling-pathway level, the “allo-network” strategy suggests
targeting less-connected upstream proteins instead of the more
direct, though potentially highly connected, signaling proteins
themselves. When applied to early stage design, the allo-network
method is predicted to increase the likelihood that a given
allosteric effector will proceed through the drug-approval
process.6,12,55

Several published examples for recently approved allosteric
drugs serve to illustrate the current state of the art for emerging
allosteric drug design principles. They also represent the
significant advances that have been made to utilize structure-
based methods for challenging druggable sites such as protein−
protein interfaces and for membrane proteins such as ion
channels. The available details of the discovery and optimization
of these compounds do not include the methods discussed in this
review; however, they highlight where these predictive
techniques could contribute to the allosteric design process.
In 2011, Gilmartin et al. of GlaxoSmithKline reported the

discovery of a pharmacokinetically optimized allosteric MEK
inhibitor, GSK1120212.56 The first generation inhibitor was
discovered by high throughput screening,57 and the subsequent
ternary crystal structure showed the allosteric pocket to be
adjacent to the orthosteric ATP-bound site.58 By 2012 there were
14 allosteric MEK1/2 inhibitors in clinical trials,59 because it was
recognized that an inhibitor developed for this allosteric pocket
afforded two very unique opportunities to avoid adverse clinical
effects: the high doses required to compete against 1 mM cellular
ATP concentrations and inhibition of closely related ATP-
binding sites in other kinases. The unique efficacy properties of
GSK1120212 highlight both the opportunity and challenge of
allosteric drug design. Gilmartin et al. report that, although some
other MEK allosteric drugs demonstrate inhibition of the ERK1/
2 pathway in vitro, this has not translated into efficacy in
patients.56 GSK1120212 has since been approved in the United
States under the name Trametinib for treatment of metastatic
melanoma caused by the V600E mutation.
In 2012, Saalau-Bethell et al. of Astex reported the discovery of

allosteric inhibitors for the HCVNS3 protein.17 These inhibitors
produce an allosteric effect by binding at an interdomain
interface and stabilizing a preexisting autoinhibited state of the
protein. The original discovery of the allosteric site was
accomplished using a fragment-based HTS technique, followed
by optimization using X-ray crystallography and structure-based
SAR. The authors discuss their experience with a few
confounding factors in the allosteric design process, namely
the need to use the full-length protein in their screening
construct to observe the exerted allosteric effect, and the
subsequent directed evolution study of resistance mutations that
could occur at the allosteric site.
Hackos et al. of Genentech published on the discovery of

positive allosteric modulators (PAMs) for GluN2A-containing
NMDA receptors in 2016.60 PAMs are allosteric ligands which
increase the effect of the endogenous signaling molecule and do
not cause a change in its absence. The allosteric site in this case
was at a protein−protein interface, and was discovered using
HTS. Subsequent medicinal chemistry efforts then optimized the

Figure 1.When a small molecule binds to the allosteric site of a protein,
information is transferred through the protein molecule to its active site.
Two different methods of transmission can be defined. The first
mechanism, here defined as the “domino model”, is a sequential set of
events propagating linearly from the allosteric site to the active site.
Binding of the effector triggers local structural changes that sequentially
propagate via a single pathway to the active site. It was suggested that
this mechanism is applicable for the PDZ domain family,49 G protein-
coupled receptors, the chymotrypsin class of serine proteases, and
hemoglobin.50 The second mechanism, defined here conceptually as a
“violin model”, is based on vibration pattern changes inside the protein.
In a violin its pitch can be changed by a slight movement of the violin
player’s finger on the fingerboard. Information about the finger
movement is, thus, transferred throughout the whole body of the violin
with no specific pathway for the signal transduction. By analogy, protein
allosteric site is a fingerboard of the protein and a small signaling
molecule is the player’s finger. If a protein is in a particular vibration
mode, it is possible to suggest that binding a small effector molecule to a
specific site can change this mode. The signal, thus, will be spread
throughout the whole protein including its active site. The “domino
model” is a reliable way to transfer information in a macro world, but on
a molecular level, with significant thermal motions of the protein, this
mechanism will be prone to random triggering of the domino chain
reaction, creating noise in the signaling system. Thermal motions in the
case of the “violin model” do not hinder the transduction. In fact, the
permanent motion of the molecule is a prerequisite for this mechanism.
Reproduced with permission from ref 45. Copyright 2015 Cell Trends
in Biological Sciences.
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early hit molecule. The authors note that the validation of this
allosteric site was reinforced by its similarity to an analogous
allosteric site in AMPA receptors, but that the NMDA receptor
site has elements of asymmetry that the AMPA receptor site did
not. In comparing two similar compounds, GNE-6901 andGNE-
8324, the authors make comments that indicate evidence of
mode switching or a shallow SAR landscape, and they further
characterize the details of the allosteric mechanism using
mutagenesis experiments.
In summary these examples demonstrate allosteric drug

discovery can be successful at protein sites often considered to
be undruggable. It is apparent that these successes can be further
built upon through computational methods that allow for
rational rather than serendipitous HTS discovery of new
allosteric binding sites and a deeper understanding of allosteric
mechanisms that overcome design challenges such as mode
switching.

3. COMPUTATIONAL METHODS FOR STUDYING
ALLOSTERY

3.1. Protein-Sequence Analysis Methods

3.1.1. Introduction. Protein-sequence analysis is a useful
tool to detect and characterize allosteric pathways and pockets.
Here, we classify sequence-based methods into two groups: (1)
“single site” methods, which produce a list of individual
functional sequence positions; (2) “coupled site” methods,
which produce a list of groups comprised of two or more
sequence positions that appear to be functionally linked based on
their coevolution.
All sequence-based analysis methods share some challenges.

These challenges include how to select and aggregate clean,
relevant sequences as input; interpret the output; and integrate
sequence-analysis results with other forms of data. Determining
the biological meaning of a strong signal is also problematic.
While many analysis methods identify evolutionarily important
residues, the specific biological role of these residues cannot be

inferred without additional knowledge. For example, it is difficult
to determine, based on sequence alone, whether an evolutio-
narily significant residue plays an allosteric role, or whether its
role is related to another essential process (e.g., substrate
binding, maintaining protein structure, etc.).61,62 Indeed, it is
likely that a given residue serves multiple purposes simulta-
neously.
Input sequence selection and alignment also present

challenges. Most techniques require many sequences to establish
statistical significance. To obtain the required number of
sequences, researchers often lower the stringency of their search
parameters, resulting in alignments that contain sequences with
lower similarity or incomplete coverage of the original query.
While some analysis methods manage to detect meaningful
coevolution over a wide range of multiple sequence alignment
(MSA) conservation and noise levels, others are more
susceptible to messy data.63,64 For a more complete discussion
of these topics and how they affect coevolution analysis methods,
readers are directed to an excellent recent review by de Juan et
al.65

3.1.2. Single-Site Evolutionary Analysis Methods. By
our definition, single-site evolutionary analysis methods return a
list of predicted functional sequence positions but do not suggest
specific linkages between sites. Once a researcher has constructed
an MSA, the conservation or phylogenetic relevance of each
column can be used to infer the evolutionary importance of each
sequence position. This importance is sometimes a hallmark of
thermodynamically critical residues that participate in allostery.
Though single-site methods only return a list of single high-
scoring sequence positions, the inner workings of some single-
site methods are based on the aggregate or correlated behaviors
of multiple sequence positions (e.g., to determine baseline
residue probabilities within a multiple-sequence alignment or
construct a phylogenetic tree).
Single-site methods for detecting allostery are advantageous

because they lack much of the noise often associated with

Figure 2. Allosteric protein fructose 1,6-bisphosphatase, shown for illustration. Orthosteric and allosteric pockets (yellow and red, respectively) are
bound to an endogenous ligand and an allosteric effector, respectively. Note that the allosteric site is distant from the orthosteric site such that there is no
overlap between the bound poses of the allosteric and orthosteric ligands. Despite the distance between them, the allosteric effector measurably modifies
the enzymatic activity at the orthosteric site. Illustration derived from PDB IDs 2Y5K53 and 3IFC.54
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correlation analysis. These analyses are also appealing because of
their simplicity: There are usually fewer parameters to set, and
the results can be visualized directly by highlighting key residues
on a three-dimensional (3D) protein structure.
3.1.2.1. Single-Position Entropy. Shannon entropy, one of the

simplest nontrivial sequence-analysis metrics,66 was used widely
in early works to identify conserved sequence positions for drug-
design or mutagenesis experiments.67 Similar in form to
thermodynamic entropy from statistical mechanics, Shannon
entropy measures the population diversity of residues at a single
MSA position. It is also central to mutual information (MI), a
popular coupled-pair metric. The MI of two sequence positions
is defined as the sum of the individual position entropies, minus
the entropy of the positions considered jointly. While we do not
cover the mathematical details of these methods here, interested
readers are directed to previous articles on these topics.64,68

Shannon entropy does not consider amino acid similarity (e.g.,
in the Shannon entropy framework, a leucine-to-isoleucine
mutation is consideredmathematically equivalent to a leucine-to-
arginine mutation). Other entropy measures, such as the relative
Shannon entropy (also called the Kullback−Leibler divergence
(KLD))69 and the von Neumann entropy,70,71 attempt to
overcome this limitation and, as a result, may be more useful in
the search for allosteric sites. Relative Shannon entropy/KLD
accounts for some measure of the protein’s chemical environ-
ment by considering each mutation with respect to the
background amino acid frequencies calculated from the MSA.
This analysis may be particularly useful when searching for
allosteric sites in proteins that reside in membranes or other
noncytosolic compartments, where background residue proba-
bilities or mutational preferences may be biased due to different
biochemical contexts. In contrast, von Neumann entropy, a
concept borrowed from quantum statistical mechanics, is
calculated using amino acid similarity matrices. Identifying an
optimal amino acid similarity metric is nontrivial and may well
depend on the nature of the system (e.g., in a well-packed
protein, residue size may be a sensitive metric, whereas surface-
site comparison may require the user to prioritize charge). In a
recent publication describing these types of entropy, Johansson
and Toh explored how the two metrics can be mixed to detect
enzyme active sites with maximum sensitivity.64

Zhang et al. constructed a variety of new analysis methods in
2008 by combining Shannon or von Neumann entropy,
phylogenetic tree structure, and a novel gap-treatment
approach.70 In benchmarking their method, they compared
their results to Evolutionary Trace and ConSurf (discussed in
greater detail below). Two of their hybrid approaches out-
performed all other techniques in detecting significant residues
across a variety of proteins: the Improved Zoom method, which
incorporates a tree breakdown of subalignments, and the
Physiochemical Similarity Zoom method, which extends the
Improved Zoom method with von Neumann entropy and tree-
branch-size normalization.
3.1.2.2. Evolutionary Trace. Lichtarge, Bourne, and Cohen

pioneered the evolutionary trace (ET) method. The approach
has become quite popular, largely because the algorithm is
intuitive and its results are readily visualizable.72 ET aligns a
number of sequences and constructs a phylogenetic tree, and
then monitors the conservation of sequence positions at major
tree branching points. By slicing the tree at different similarity
cutoffs, the algorithm extracts the cluster-defining sequence
positions. The evolutionary significance of these sequence
positions is implied by their conservation in the sequences

beyond the next branch. In their first paper,72 the authors
demonstrated that ET can detect functionally important sites in
SH2, SH3, and DNA-binding domains. Work has since been
published on ET validation, parameter optimization, and best-
use practices.73

In a method often referred to as “difference-ET,” the user runs
ET on two related proteins and considers differences in the high-
ranking residues and their scores. The sequence positions with
strongly varying scores may suggest specificity determinants or
differences in allosteric and/or orthosteric mechanisms. Notably,
difference-ET has been used in the study of GPCR
specificity.73−75

To better account for varying rates of evolution in different
subtrees and correlated mutations, in 2004 Mihalek et al.
developed real-valued ET.76 This method incorporates entropy
information into the standard ET framework. This work also
introduces the zoom ETmethod (not related to improved zoom,
above), which adds higher weight to sequences that are more
similar to the protein of interest. In the introductory work, they
used real-valued and zoomET to detect the functional residues in
a kinase domain, and then compared the performance of both
methods to regular (integer-valued) ET and entropy. Given
unpruned sequence data sets, the real-valued ET and zoom ET
methods outperformed the others by a significant margin. In
contrast, integer-valued ET prevailed in most respects when
pruned data was available. An automated web server is available
to perform real-valued ET calculations, generate reports, and
visualize results (http://mammoth.bcm.tmc.edu/ETserver.
html).77

3.1.2.3. H2r(s). In 2008, Merkl et al. introduced a method
called H2r that serves as a segue between single-site and coupled-
site approaches.78 H2r generates a mutual-information matrix for
an MSA, and then discards all but the strongest detected coupled
pairs. For each sequence position k, the method returns conn(k),
the number of top-ranked pairs that include k. Initial work
proved that H2r can successfully detect functionally significant
residues across a range of proteins. More recently, H2rs, an
improved version of H2r, has been released.79 This method
modifies the original by using von Neumann instead of Shannon
entropy and performing more detailed checks for statistical
significance. H2rs is available as a web server and a stand-alone
application at http://www-bioinf.uni-regensburg.de/.

3.1.3. Coupled-Site Evolutionary Analysis Methods.
Second-order sequence analysis detects residue pairs that mutate
in concert more frequently than would be expected given
random genetic events. Coevolving residue pairs are assumed to
be functionally linked, often because they serve essential roles in
allostery or structural integrity.
The immediate output of second-order allostery analysis is a

list of residue pairs with associated correlation strengths.
Combining these individual pairwise correlations into a single
picture of the entire protein is a separate task. On the most basic
level, the strongest correlations that include a residue or site of
interest can suggest thermodynamic coupling to other sites,
possibly related to allostery. More complex analyses use
hierarchical clustering or principal component analysis to analyze
these linkages and uncover strongly linked networks of
coevolving residues.

3.1.3.1. Basic Coupled-Site Analyses. Several simple yet
reliable residue-coupling analyses have maintained a presence in
the literature over the past decades. These basic approaches are
advantageous because they are easier to understand and have
been shown to score consistently well in a wide range of tests.
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However, they may fail to detect correlations in more complex
cases.80,81 Though more complex methods exist, many of these
basic methods still appear as analysis options in coevolution-
detection software packages and web servers. In this review, we
focus on a few that are still widely used.
3.1.3.2. Mutual Information.Mutual information (MI) is one

of the most straightforward and long-lived coupling metrics. The
MI between two sequence positions is defined as the sum of the
Shannon entropies of both positions, minus their joint entropy.
Due to its simplicity and favorable mathematical properties, MI
analysis is the basis for a number of more complex coevolution
methods. However, MI does present certain shortcomings. For
example, uncorrelated pairs of high-entropy sequence positions
are likely to have a higher MI than uncorrelated pairs of low-
entropy positions.82,83 To compensate for this and other
shortcomings, various software packages have implemented a
number of mathematical corrections to MI.84−88 Further,
methods to estimate baseline values for correlation (e.g.,
resampling or sequence shuffling) can improve MI anal-
ysis.83,89,90

Another relatively direct coevolution metric, the McLachlan-
based substitution correlation (McBASC),91 looks for similar
patterns of variation in the columns of an MSA, weighting for
residue similarity using the McLachlan scoring matrix.92

Analogous methods can be constructed using different
substitution matrices, but McBASC continues to be a popular
choice in the literature.63,83,93

In 2002, Kass and Horovitz94 analyzed the GroEL complex
using a chi-squared test to detect significant residue coevolution
in an MSA. The analysis suggested intra- and interchain contact
pairs and has continued to appear in the literature under the
name “observed minus expected squared” (OMES).63,80,81,83,95

3.1.3.3. Statistical Coupling Analysis.The statistical coupling
analysis (SCA) method developed by Lockless and Ranganathan
is perhaps the most widely used sequence-based method for
allostery prediction.49 SCA draws an analogy to statistical physics
by calculating a “coupling energy” between each sequence-
position pair. The original SCAmethod computes a conservation
value for each sequence position i in an MSA, applies one of
several types of perturbation to another position j (depending on
the SCA version96), and finally recalculates the conservation at
position i for the sequences that satisfy the perturbation. By
calculating the change in individual and joint conservation over a
variety of perturbations, SCA establishes a “coupling energy” that
indicates the evolutionary coupling of positions i and j.
The output of the SCAmethod is anN ×Nmatrix of coupling

energies, where N is the number of sequence positions in the
alignment. In early work, the researchers manually identified
strongly coupled residue pairs that included one functional
member (per experiment). More recent versions of SCA have
grouped this matrix into meaningful clusters of coevolving
residues using hierarchical or spectral clustering.50

Refinements of SCA have achieved improved statistical
properties by resampling the original distribution.97 In a 2011
paper, SCA was effectively used to engineer a light-sensitive
LOV2 domain onto the surface of DHFR at a location that SCA
had identified as energetically linked to the enzyme active site.
Some variants of the resulting protein chimera were found to
have acquired light-dependent activity.98

Further work has used SCA to design artificial WW
domains.99,100 In 2011, an SCA analysis of antigen 85C from
Mycobacterium tuberculosis suggested new sites that potentially
could be exploited in drug design.101 A number of projects have

also demonstrated how SCA can be used to target mutations that
affect protein function.102−108

Inspired by earlier work on the sequence correlation entropy
(SCE) method,109 Dima and Thirumalai published an SCA
variant in 2006.110 This variant controls for specific protein
composition by calculating the background probability that a
given amino acid will be present at a random sequence position.
This probability is determined by considering only the sequences
being analyzed, as opposed to all sequences in the SWISS-PROT
database.111,112 Further, they borrowed a coupled two-way
clustering procedure from gene-sequence analysis to define the
sectors.113 In validating this method, the authors analyzed the
PDZ, GPCR, and lectin families of proteins and were able to
quantitatively predict functional residues, which were in
agreement with experimental findings.

3.1.3.4. Explicit Likelihood of Subset Covariation. As
mentioned above, SCA is a “perturbation-based” method in
which correlation is established by excluding certain sequences
from an MSA and monitoring how entropies change. Another
popular perturbation-based method was published in 2004 by
Dekker et al.114 This method, explicit likelihood of subset
covariation (ELSC), relies on similar principles but returns
correlation scores in the form of probabilities rather than
statistical energies. ELSC was shown to be superior to SCA in
contact prediction when tested on a range of protein families. It
has since been implemented on web servers115,116 and has been a
popular benchmark method in the literature.80,81,93,95

3.1.3.5. Direct Coupling Analysis. In 2009, Weigt et al.
proposed a mutual-information-based method called direct
coupling analysis (DCA) that disentangles directly interacting
residues from large networks of indirectly coupled sequence
positions.117 While this method is typically used in structure
prediction to identify spatially adjacent sequence positions, it
may find application in the study of short-range allosteric
interactions. A more efficient implementation of the DCA
method, known as “mean field” (as opposed to the original
“message-passing” implementation) was published in 2011.118

Both introductory papers show that DCA is a robust predictor of
both intra- and interprotein contacts and that it can hint at the
existence of unobserved protein conformations. Related work
has shown that DCA can be used in conjunction with structural
models to generate predictive models of protein com-
plexes,119−121 determine the sequence positions that contribute
to protein-interaction specificity,122 and describe the conforma-
tional ensembles of proteins in crystallographic or near-
crystallographic states.123 A web server and software package
are available to perform DCA analysis at http://dca.rice.edu/
portal/dca/home.

3.1.3.6. PSICOV. PSICOV is another popular contact-
detection method that may find productive use in the study of
allostery.124 Mathematically, PSICOV relies on an estimated
inverse of the MSA covariance matrix, which acts as a matrix of
correlations between all sequence-position pairs that inherently
controls for the variations in all other positions. PSICOV was
successful at predicting contacting protein residues based on
MSA data. The code has been published online at http://
bioinfadmin.cs.ucl.ac.uk/downloads/PSICOV/.

3.1.3.7. Recurrence Quantification Analysis. Recurrence
quantification analysis (RQA), another second-order sequence-
analysis technique, is best used when much is already known
about the mechanism under investigation (e.g., physiochemical
amino acid properties such as charge or hydrophobicity are
known to drive the allostery). RQA itself is a general method in
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nonlinear dynamics:125 In the context of protein sequences, it
considers a scalar-value vector that represents some property of a
given sequence. In introductory work by Zbilut et al.,126 the
method was used to properly classify 56 TEM-1/β-lactamase
mutants with impaired function based on their hydrophobicity
profiles. Further RQA work used hydrophobicity scores to
classify proteins as allosteric or nonallosteric,127 study p53
mutants,128 and reveal interaction partners in viral-envelope
proteins.129

In 2005, Colafranceschi et al. investigated the effect of
choosing different physicochemical amino acid descriptors and
changing the numerical parameters of the RQA algorithm.130

More recently, a comparison method based on RQA measure-
ments, known as cross-RQA, effectively detected protein
allostery.131 Interested readers are directed to a review by
Zbilut-Webber, which provides examples of RQA applied to a
range of computational biology problems.132

3.1.3.8. Comparative Analyses. Some work has been done to
competitively benchmark the performance of these methods. In
2004, Fodor and Aldrich compared OMES, MI, SCA, and
McBASC in a variety of tests. In short, the study found that
performance is largely dependent on the way that different
methods determine background residue probabilities and handle
positional conservation.63 A follow-up study investigated how
effectively coevolution analysis finds thermodynamically linked
residue pairs.62 In general, spatially contiguous linked pairs were
detected, but long-range couplings did not agree with experi-
ments.
In 2010, Brown and Brown introduced a new pair-scoring

method, called Z-scored-product Normalized Mutual Informa-
tion (ZNMI), and compared it to the accuracy and
reproducibility of MI, two versions of SCA, OMES, and
ELSC.81 The authors presented a thorough meta analysis of
method performance and the impact of input-parameter
selection. Though none of the tools tested was particularly
powerful, ZNMI was the most robust prediction tool. Brown and
Brown also found that the use of multiple subalignments
produced more accurate and reproducible results.
A comparative analysis of SCA and DCA revealed that the top

35 “sectons” found via spectral clustering of the DCA matrix
corresponded to pairs, triplets, and quadruplets of spatially
contiguous residues.133 In contrast, a similar analysis of the SCA
matrix produced spatially adjacent clusters of many residues
each. These different results validate the stated goals of each
method: DCA aims to find contacting pairs, whereas SCA aims to
find potentially distant groups that are thermodynamically linked
in a certain function.
In 2014, Pele ́ et al. investigated seven coevolution analysis

methods to find the hallmark covarying pairs in GPCR
alignments.80 They considered three variants of MI, McLachlan
based substitution correlation, SCA, ELSC, and OMES. OMES
and ELSC were the most robust methods for finding the residues
responsible for subfamily divergence. Their article also included
an insightful discussion of the methods.
Mao et al. published a comparative analysis in 2015.134 Their

study tests OMES, two variants of MI, SCA, PSICOV, and DI,
and finds that PSICOV and DI are best at identifying contacting
residues. OMES and MIp excel at removing false positives from
the lists of predicted contacts. While the authors focused on
detecting inter- and intramolecular contacts, their analysis also
provided useful insights to guide the productive use of each
method. For example, all methods benefit from repeatedly
shuffling the MSA and rerunning the analyses in order to provide

a baseline and remove false positives. Finally, the authors found
that the consensus of DI and PSICOV provides a more robust
prediction of contacting residues than any single prediction
method alone. The software used to perform this analysis is
available through the ProDy Evol program (http://prody.csb.
pitt.edu/evol/).135

In the course of introducing new types of MI analysis
(dbZPX2, dgbZPX2, and nbZPX2) and evaluating the
effectiveness of MSA simulation (a topic beyond the scope of
this paper), Ackerman et al. in 2012 compared many different
coevolution analyses in their ability to predict contacting residue
pairs.95 These comparisons found that the “new” methods (the
ZPX2 family, DCA, and log(R) (not discussed here)) were
significantly superior to the “old” methods (OMES, McBASC,
ELSC, and SCA).

3.1.3.9. Web Servers. Several web servers perform and
visualize sequence analyses. Given a PDB code, Contact Map
WebViewer (CMWeb)116 automatically constructs an MSA and
visualizes a variety of coevolution analyses: mutual information,
SCA, ELSC, OMES, and an early method presented by Göbel et
al.136 The same server can also compare the results of these
methods to user-uploaded data (e.g., results the user obtained
using some other type of analysis). The CMWeb server can be
accessed at http://cmweb.enzim.hu/.
The Coevolution Analysis of Protein Residues server hosted

by the Gerstein Lab115 (http://coevolution.gersteinlab.org/
coevolution/) can perform a large number of the coupled-site
analyses presented in this review, including SCA, ELSC, MI, and
McBASC-type methods employing different scoring matrices.
The server can also validate the results of these methods in
predicting residue distances in a crystal structure.
MISTIC (Mutual Information Server to Infer Coevolution) is

an automated web server that accepts user-submitted MSAs or
collects them from PFAM.82 MISTIC uses a corrected form of
MI to infer coevolving pairs and offers several analysis methods
that combine structure and coevolution.87 It can be accessed at
http://mistic.leloir.org.ar/.
CAPS (Coevolution Analysis using Protein Sequences) is a

unique algorithm that combines phylogenetic, 3D, andMSA data
to predict coupled sequence positions.137,138 Versions 1 and 2 are
hosted on web servers at http://bioinf.gen.tcd.ie/caps/ and
http://caps.tcd.ie/, respectively.
The Interprotein-COrrelated Mutations Server (I-COMS,

http://i-coms.leloir.org.ar/index.php) focuses on detecting
contacts at protein−protein interfaces, though it can also return
intrachain correlations.139 The server automatically builds
alignments; performs MI, DCA, or PSICOV analysis; generates
visualizations of the results; and allows users to download data
taken from various points in the data-collection and analysis
workflow.
In 2012, Jeong and Kim published a study describing a close

MI variant.140 They employed an automated workflow to control
for various types of noise in sequence alignments, using the MSA
sequence profile to establish prior knowledge about the protein.
While the authors only studied a few MI variants, they stressed
that their profile-based method could be extended to more
complex analysis techniques. Their approach, Correlated
Mutation Analysis Tool (CMAT), is available on a web server
at http://binfolab12.kaist.ac.kr/cmat/.
Access to ConSurf, a single-site detection method similar to

ET, is available at http://consurf.tau.ac.il/.141−146

3.1.3.10. Software. The ProDy Python package, referred to
above, can compute a variety of coevolution metrics.134,147,148 In
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2014, Skjærven et al.149 released the latest version of the powerful
Bio3D R package for protein structure and sequence analysis.150

While it focuses on structural analysis, the package can compute
Shannon entropy and offers useful functions to create and
manipulate sequence alignments. Also in 2014, Li et al.151

published the CorMut software package for R, which computes
MI, a metric called the “Jaccard index,”152 and the conditional
selection pressure metric Ka/Ks.

153 Table 1 summarizes the
selected coevolution web servers/software packages and their
capabilities discussed here.

3.2. Simulation Methods/Correlated Motions

3.2.1. Molecular Dynamics and Monte Carlo Methods.
Protein allostery is intimately tied to protein dynamics. Allosteric
effectors communicate with orthosteric pockets by altering
protein dynamics, either through large-scale structural changes
or through more subtle changes in correlated residue motions. A
proper understanding of the allosteric mechanism is impossible
unless one fully appreciates the underlying dynamic conforma-
tional flexibility and energetic landscape.
Computational methods to characterize receptor flexibility

includemolecular dynamics (MD) andMonte Carlo simulations.
Briefly, MD simulations represent molecular systems as beads
(e.g., atoms) connected by springs (e.g., bonds). Newton’s
equations of motion are numerically integrated to propagate the
dynamics of this classically formulated system.154−157 Simulation
time is typically discretized into steps of 1 or 2 fs, as required to
accurately simulate the fastest atomic motions (i.e., hydrogen
bond stretching). At each step, the potential energy of the system
is calculated by considering the energies associated with bonded
atoms (e.g., due to bond stiffness, angle bending, torsion
rotation, etc.) and nonbonded atom pairs (e.g., due to
electrostatic and van der Waals forces). The forces on each
atom, calculated from the negative gradient of the potential
energy, are then used to update the atomic positions at each step.
In a related method, called “accelerated MD” (aMD),158−163 the
underlying potential energy landscape is modified by raising the
energy wells. These modifications facilitate transitions between
states that do not normally occur on the time scales of traditional
MD simulations. Interested readers are directed to recent reviews
that describe MD simulations in the context of drug
discovery.164−167

In contrast, Monte Carlo based methods take a stochastic
approach to conformational sampling.168,169 At each Monte
Carlo step, a Markov-chain procedure is used to generate a
slightly modified system conformation. This new conformation
is then accepted or rejected at random, biased by the relative
potential energy of the new conformation as compared to that of
the previous step (the so-called “Metropolis criterion”168). As
these simulations are stochastic, they do not typically explore
conformational space via the same time-dependent path traced in
an MD simulation. Indeed, a key limitation of the Monte Carlo
method is that the time information connecting the states is lost.
Nevertheless, Monte Carlo simulations are widely used because
they tend to more efficiently sample system conformations that
are statistically representative of the equilibrium state. A recently
published book by Landau and Binder describes the technique in
detail.170

3.2.2. Network Representations and Protein Allostery.
As mentioned above, allosteric signals can be transmitted
through large-scale conformational changes or subtle shifts in
the correlated motions/interactions of individual residues.31,35

Accessing the time scales required to observe many large-scale

conformational changes is presently computationally intractable
using unbiased simulation-based methods,171,172 but these
simulations are well-suited to the study of allosteric signals that
are transmitted via fast, local fluctuations (i.e., nanosecond-scale
changes in the coordinated motions of adjacent residues).
Distilling the dynamics sampled by these simulation-based

methods into a simple network representation of protein
motions often facilitates allosteric analysis.173−179 Rather than
tracking the position of every atom, each protein constituent
(e.g., amino acid) is represented as a single node (located, for
example, at the residue center of mass). Each pair of nodes is
connected by an edge whose length is inversely proportional to
the degree of interdependence between their motions, such that
nodes connected by short edges are highly interdependent.
Different metrics of “interdependence” have been used, including
metrics based on correlated motions (e.g., mutual informa-
tion,180,181 fluctuations in atomic positions,182 etc.) or the
number of specific noncovalent interactions.182

Once a network representation of protein dynamics has been
constructed, various network-analysis techniques (described
below) can identify important pathways of communication
between distant residues that may contribute to allostery.
Interested readers are directed to a recent review by Atilgan et
al. for more detailed information.183

3.2.3. Dynamical Network Analysis. A number of
simulation-analysis techniques consider the interdependence of
individual residues along an allosteric path or paths. In 2008,
Bradley et al. analyzed molecular dynamics simulations of
Escherichia coli NikR, a transcriptional repressor of the
NikABCDE nickel permease, using a novel network-space
clustering approach.182 Two types of residue−residue inter-
dependence were considered, based on fluctuations in residue
motions and the number of polar contacts between residue-pair
members. Bradley et al. first identified sets of residues whose
motions and/or contact counts were correlated with residues in
both allosteric and orthosteric pockets. These sets were then
clustered using the “unweighted pair group method with
arithmetic mean” (UPGMA), a hierarchical agglomerative
approach that groups residue sets according to the degree of
similarity in their correlation patterns. The authors ultimately
identified residue sets likely to mediate communication between
the NikR allosteric Ni2+-binding pocket and the orthosteric
DNA-binding pocket.
Others have pursued orthogonal methods to represent and

analyze protein dynamics in silico. In 2009, McClendon et al.
introduced MutInf, a novel MD-analysis technique for
identifying statistically significant correlated motions.180 Unlike
other techniques, MutInf uses an internal coordinate scheme.
Rather than considering the positional coordinates of residue
atoms directly, it quantifies correlated motions using a mutual-
information metric derived from residue torsion angles. This
approach makes MutInf particularly well-suited to study
allosteric signals transmitted through the gearlike correlated
motions of side-chain rotamers. Using multiple short simu-
lations, the authors were able to identify statistically significant
correlations. Applying the technique to interleukin-2 provided a
viable theory of allosteric transmission involving a population-
shift-mediated signal transmitted between the allosteric and
orthosteric pockets via a hydrophobic core. More recent work
has incorporated the Kullback−Leibler divergence metric to
improve the sensitivity of MutInf analysis.181

A paper by Van Wart et al., published in 2012, studied
imidazole glycerol phosphate synthase (IGPS), an important
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enzyme in the histidine biosynthetic pathway of plants, fungi, and
microbes.177 Following a molecular dynamics simulation of the
enzyme, they built a representative network of residue
interactions as inferred by correlated motions. The edges
connecting physically distant protein residues were ignored to
emphasize correlations resulting from immediate physical
interactions. The single shortest path (in network space)
between the allosteric and orthosteric sites was then identified.
Two of the residues along this path had been shown previously
by experiment to be involved in allostery.
Van Wart et al. later expanded on their work by creating the

freely available Weighted Implementation of Suboptimal Paths
(WISP) program.184 WISP can identify not only the single
optimal path connecting allosteric and orthosteric sites, but also
multiple other near-optimal paths. While allosteric signaling may
occur through a single optimal path in some cases, for many
proteins it is likely the summed (or perhaps synergistic) effect of
signaling through multiple near-optimal pathways.
While several efficient algorithms exist to calculate the single

optimal path between two nodes in a network space (e.g., the
Floyd−Warshall algorithm, Dijkstra’s algorithm, etc.), calculat-
ing near-optimal pathways is far more computation intensive.
WISP uses several methods to first simplify the network
representation of system dynamics. First, the edges between
physically distant nodes are removed regardless of the
interdependence of their motions, as in Van Wart’s original
paper. Second, all nodes that cannot possibly participate in
optimal or near-optimal pathways of allosteric communication
are deleted. For each node, Dijkstra’s algorithm is used to
calculate the shortest path connecting the source node, the node
being considered (ni), and the sink node. If this shortest path is
still too long (in network space) to be an optimal or near-optimal
pathway, no other path passing through ni can be optimal or near-
optimal. Therefore, ni is deleted from the network. After thus
greatly simplifying the network, it becomes computationally
tractable to calculate notable pathways of allosteric communi-
cation between source and sink residues using a recursive,
bidirectional approach.
In 2014, LeVine et al. introduced a novel analysis framework,

called N-body Information Theory (NbIT), that uses multi-
variate mutual information to measure residue interdependence.
This technique is unique in that it considers not only the
interdependence (mutual information) between two residues,
but also the mutual information between groups of up to N
residues. Specifically, a metric called “coordination information”
is used to measure the degree to which the correlated motions of
a set of residues are shared with another residue not in the set
(i.e., the “contribution of a site to all possible n-body correlations
with another site”). The authors use this technique to analyze
MD simulations of the bacterial transporter LeuT and identify
many of the same residues previously found through experi-
ment.185

3.2.4. Community Analysis. A number of simulation-
analysis techniques expand on calculations of residue−residue
interdependence to consider how highly interconnected (and
often rigid) communities of residues interact with one another. In
this view, allostery is achieved when largely isolated communities
of highly interconnected residue nodes (“small-world networks”)
engage in long-range interactions. For example, in 2012, Rivalta
et al. studied the allosteric mechanism of PRFAR binding to the
IGPS heterodimer.186 After simulating the system in both the
absence and presence of the allosteric modulator, they calculated
the mutual information between the positional vectors of all

residue−residue pairs. Ignoring the correlations between nodes
that were not frequently physically adjacent (≤5.0 Å for at least
75% of the simulation), the authors next used the Girvan−
Newman algorithm to identify communities of highly
interconnected nodes. This analysis provides a powerful
illustration of how an allosteric modulator might manipulate
entire protein “modules” to transmit a signal. Supported byNMR
experiments, the authors ultimately concluded that PRFAR
binding decreases the correlated motions at sideL of the
heterodimer and induces conformational changes in sideR that
ultimately impact the hydrogen-bond network near the active
site.186 Sethi et al. used a similar technique in 2008 to study
allostery in tRNA:protein complexes.173

The use of accelerated MD (aMD) simulations in this same
mutual-information/community-analysis workflow has also
proved fruitful. aMD simulations are particularly helpful when
the allosteric mechanism being studied occurs on time scales that
are longer than those accessible through traditional MD. For
example, in 2012, Gasper et al. used a mutual-information/
community-analysis technique to study α-thrombin.174 Ulti-
mately, their results suggested that α-thrombin may have two
allosteric pathways. One occurs on slower time scales that might
not have been accessible were it not for the aMD. Others have
used aMD to similarly study allosteric effects in the M2
muscarinic receptor.187

In 2014, Blacklock and Verkhivker used a similar technique to
analyze MD trajectories of the Hsp90 chaperone in various
functional states.188 To verify the existence of communities in
this system, they first calculated force constants for each residue,
corresponding to the energy cost of residue displacement over
the course of the equilibrium simulation. As residues with high
force constants are typically rigid, community boundaries (e.g.,
the boundary between a rigid module and a flexible interdomain
hinge site) often correspond to locations where these constants
change abruptly. In fact, the “hot spot” regions did correspond to
residues known experimentally to be important hinge sites or
sites of dimerization.
To further characterize this community-based organization,

the authors next used protein-structure network analysis to build
a network representation of Hsp90 dynamics. They calculated
cross-correlation matrices from the MD simulations and
identified residues with high degrees of “centrality” (the number
of interacting residues) and “betweenness” (the frequency with
which a given node lies along the shortest path in network space
between two other nodes). Based on this analysis, the authors
concluded that Hsp allosteric communication is mediated by
highly stable central nodes, surrounded by residues with high
degrees of betweenness that may “shield” the more critical
residues from the random Brownian/thermal motions common
to all proteins.

3.3. Pocket Detection

3.3.1. Introduction. Simple pocket-finding techniques can
be useful to identify potential allosteric sites. One straightforward
approach is to consider any identified pocket other than the
orthosteric to be allosteric. Pocket-detecting algorithms can be
used to analyze static crystal structures. However, coupling these
algorithms with techniques that account for pocket dynamics is
often useful. Some allosteric pocket conformations are extremely
rare in the absence of the allosteric effector itself. These “cryptic
pockets” are not readily evident in static apo- or ligand-bound
crystal structures, but they may be predictively sampled with
molecular dynamics simulations.189−193 Computational methods
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for pocket detection can be classified as geometry, knowledge,
and energy based. We describe these three types of methods in
sections 3.3.2, 3.3.3, and 3.3.4.
3.3.2. Geometry-Based Pocket Detection. Geometry-

basedmethods identify pockets by considering only the positions
of the receptor atoms themselves. These methods are well-suited
to situations where speed of computation is critical (e.g., when
pocket detection is applied to conformations extracted from
entire MD trajectories) or where pockets are particularly well-
defined. On the other hand, accuracy in pocket detection suffers
when pockets are shallow, partially collapsed, or highly flexible.
And pocket ranking by simple geometric metrics (e.g., volume)
does not always correlate strongly with ligand binding affinities
or druggability because geometry-based methods do not
consider the chemical properties of a given pocket.194−204

Many geometry-based algorithms have been described in the
literature. They can be classified into three subcategories: sphere
based, α-shape based,205 and grid based. Sphere-based methods,
such as PASS,197 PHECOM,206 POCASA,207 and SURFNET,208

first cover protein surfaces with spheres. Each sphere is evaluated
and eliminated if judged unlikely to occupy a surface cavity. The
locations of the remaining spheres identify likely binding
pockets.
In contrast, methods such as APROPOS,209 CAST,210

CASTp,211 and Fpocket198 use α-shape schemes to identify
protein pockets. In brief, an α-shape is like a convex hull, except
that it potentially follows the surface of the source points more
closely than a convex hull. The degree to which it deviates from
the convex hull is controlled by the α value (for more details, see
Edelsbrunner et al.212). APROPOS compares multiple α-shape
representations of a protein at different values of α.209 Pockets
are identified by subtracting “higher-resolution” α-shapes from
“lower-resolution” shapes. In contrast, CAST generates a
Voronoi diagram based on protein-atom locations, removes
any Voronoi edges and vertices that fall completely outside the
receptor, and identifies pockets as collections of empty triangles
(for details, see ref 210). Fpocket uses a Voronoi tessellation to
calculate receptor α-spheres (i.e., spheres that include four
protein atoms on their surface but no protein atoms in their
interior).198 When clustered, these spheres tend to congregate at
potential pocket sites.
Grid-based geometric methods for pocket detection include

GHECOM,213 LIGSITE,214 LIGSITECSC,215 POCKET,216

Pocket-Picker,217 PocketFinder,218 Q-SiteFinder,219 and
POVME/POVME Pocket ID.194,220 These techniques consider
points spaced along a grid that encompasses the protein receptor.
Each point is evaluated for the likelihood of pocket occupancy,
and high-scoring points are clustered to identify binding pockets,
whether orthosteric or allosteric. Various metrics are used to
evaluate the points, depending on the algorithm. They include
the presence of steric clashes with the protein, detected protein−
solvent−protein events,214,216 buriedness indices,217 predicted
methyl−probe interaction energies,218,219 etc.
As a representative example of the geometry-based class,

consider POVME/POVME Pocket ID, a grid-based pocket-
finding algorithm.194,220 POVME Pocket ID identifies surface
and internal cavities by first creating a low-resolution 3D grid of
equidistant points that encompasses the entire protein. Points
are removed if they are physically near any protein heavy atom or
fall outside the convex hull defined by the protein α-carbons. The
volumes corresponding to the remaining low-resolution points,
which tend to encompass protein pockets, are then replaced with
smaller, higher-resolution 3D grids, and the same point-

eliminating process is repeated. Finally, any remaining high-
resolution points that have fewer than a user-defined number of
neighbors are eliminated iteratively until no such points remain,
and stretches of contiguous points are grouped together into
distinct pockets.
The locations of these identified pockets can be fed into the

POVME program, which calculates pocket metrics such as
volume and shape. The latest version of POVME can efficiently
analyze entire MD trajectories, allowing the user to monitor
pocket changes over time and identify sampled conformations
that are geometrically distinct. This approach is useful for
identifying cryptic pockets that only occasionally manifest
themselves over the course of an MD simulation.

3.3.3. Knowledge-Based Pocket Detection. Knowledge-
based algorithms draw on large structural and genomic databases
to determine binding-pocket locations based on sequence and
overall structure rather than pocket shape. Algorithms such as
3DLigandSite,221 FINDSITE,222 and Pocketome223 infer these
locations by querying existing databases for ligand-bound
proteins that are structurally similar to the target protein.
These algorithms work particularly well when the target protein
has a highly conserved binding site. Other methods, such as
FRpred, use sequence conservation, in conjunction with
supporting methods like surface-residue-prediction algorithms,
to identify surface residues that are likely biologically
important.224 Finally, some hybrid methods, such as the
evolutionary-trace method,225 ConSeq,141 and ConCavity,226

combine sequence and structural homology to identify likely
binding pockets. The section Single-Site Evolutionary Analysis
Methods describes methods like these in further detail.

3.3.4. Energy-Based Pocket Detection. Energy-based
methods identify binding sites by evaluating whether or not a
given protein region interacts favorably with docked small
organic probes. These methods are particularly useful to detect a
given pocket and assess its druggability. This additional
information does come at a cost; energy-based methods are
more computationally demanding and so do not scale well,
limiting their applicability when analyzing large-scale structural
data sets or MD trajectories.
Methods such as SiteMap201 and SITEHOUND227 use single

probes (typically methane or water molecules) to assess the
likelihood of small-molecule/protein binding. In contrast,
methods such as FTMap,202,228,229 GRID,230 and MCSS231

consider multiple chemically diverse probes and so identify not
only pockets, but also druggable hot spots that are more likely to
function as orthosteric or allosteric binding sites.
FTMap202,228,229,234 in particular warrants further discussion.

FTMap is the computational equivalent of the multiple solvent
crystal structures (MSCS) technique.232,233 Rather than super-
imposing multiple crystal structures obtained by soaking a
protein in six to eight different organic solvents, FTMap
computationally docks 16 distinct organic probes into a user-
provided protein model. The docked positions of these probes
are then clustered, and the clusters are ranked by their
Boltzmann-averaged energies. In an alternate implementation
called FTSite,287 adjacent, mutually accessible clusters are
combined into “sites” that are then ranked by the number of
nonbonded contacts between the protein and the corresponding
probes. Both these techniques can be applied to multiple
structures, whether derived from X-ray crystallography or
simulation, to potentially identify cryptic sites that are not
always evident when single structures are considered. FTMap
can be used to identify possible allosteric sites. For example,
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Ivetac et al. used it to detect five potentially druggable sites on
β1AR and β2AR.

235,236 It has also been used to evaluate the
druggability of p53 cryptic pockets, which were subsequently
used to prospectively discover novel reactivation compounds.191

3.4. Markov State Models

3.4.1. Introduction. Over the past 10 years, Markov state
models (MSMs) have been used increasingly to analyze
molecular dynamics simulations, suggesting that they are already
promising tools to study allostery in a drug-discovery
context.193,237−241 In brief, a Markov state model is a stochastic
kinetic model that describes the probability of transitioning
between discrete states at a fixed time interval.237,242,243 These
models are required to have theMarkovian property (i.e., that the
probability of transitioning between discrete states is independ-
ent of previous transitions).
By clustering protein structures extracted from an MD

trajectory, it is possible to identify discrete conformational states
for use in MSMs.237,242,243 Transitions between conformational
clusters observed over the course of an MD trajectory are tallied,
and the MSM is then built from the transition probabilities
between these distinct clusters. As they are built solely on these
transition probabilities, MSMs can draw upon multiple
trajectories, enabling efficient sampling of the entire conforma-
tional space through many independent simulations carried out
in parallel. MSMs can be built with the software package
MSMBuilder, available at http://msmbuilder.org/latest/.242

EMMA,244 available at http://www.emma-project.org/latest/,
is another useful building tool. Because independent trajectories
are aggregated as a postprocessing step, the simulations can be
carried out on a variety of computational resources, including
independent desktop machines, local clusters, or high-perform-
ance computing resources. A recent example carried out by
Kohlhoff et al. used tens of thousands of trajectories carried out
on Google’s exascale cloud computing resources. By sub-
sequently “knitting together” the simulation data within a
MSM framework, the researchers elucidated the activation
pathway of GPCR β2AR.

245

MSM/MD analysis provides access to the thermodynamic,
kinetic, and structural characteristics of the protein conforma-
tional ensemble (i.e., a robust description of the free-energy
landscape of the protein).237,242−244,246,247 The thermodynamics
of the various conformational states can be calculated from the
equilibrium distribution. It is also possible to resolve the
transition kinetics between individual states, the concerted or
principal protein motions, metastable states, and the transition
pathways between discrete states.242,244,246 Lastly, the MD
trajectories also provide representative receptor snapshots for
use in structure-based drug design.247

3.4.2. MSMs and Drug Discovery.MD-based MSMs were
originally developed to study protein folding,238,248−253 but they
can also be used to study molecular phenomena that are directly
applicable to allostery and drug discovery, including cryptic site
identification,190,193,245 protein−ligand interactions,254,255 and
protein function.51,245,248,256

MSMs have been used to study binding-site conformational
heterogeneity, revealing conformations that are not readily
evident in any crystal structure. In 2012, Bowman and co-
workers used MSMs to identify and validate cryptic allosteric
sites in TEM-1 β-lactamase, interleukin-2, and RNase H.190,193

Similarly, in a recent study of GPCR conformational transitions,
Kohlhoff et al. identified intermediate conformations that they
used successfully in a subsequent virtual-screening campaign.245

Shukla and co-workers also identified a key conformational
intermediate in the Src kinase activation pathway that could be
used as a target for drug discovery.257While traditional molecular
dynamics simulations have been used to identify cryptic allosteric
sites and elucidate binding-site conformational diversity, Markov
state models can characterize the probability and dynamics of
these conformations, permitting rational design against dynamic
pockets.
Researchers have also employed MSMs to gain insights into

ligand−protein binding that are critical to both allosteric and
orthosteric structure-based drug discovery. Buch et al. used
MSMs derived from multiple independent MD simulations to
accurately determine the kon and binding free energy of
benzamidine to trypsin.254 Building on that work, Tiwary et al.
used MSMs in conjunction with metadynamics, a variant of
molecular dynamics, to determine the koff for the same system.

255

While this approach is currently too computationally demanding
for virtual screening, it has identified transitory sites important
for binding and shed new light on the interactions that govern
ligand-binding kinetics.
MSMs also provide useful insights into how a protein

conformational ensemble begets function and transmits
allosteric signals. Most studies have focused on the transition
between two functional states. In this context, MSMs have been
used to study Src kinase,257 the β2 adrenergic receptor (β2AR),

245

and bacterial response regulator NtrC.52,256 Malmstrom et al.
recently used this same technique to study allostery in the cyclic-
nucleotide binding domain (CBD) of protein kinase A.51 By
building and simulating models of the CBD, with and without
bound cAMP, the study provided insight into how ligand binding
modulates the protein conformational ensemble.
As it is challenging to determine the impact of an effector

molecule on the conformational ensemble, most MSM studies to
date have not examined allostery directly. Nevertheless, two
relevant themes emerge from existing studies. First, kinetics play
an important role in the transition between functional
states.51,52,256 This is best shown in our study of the PKA
CBD, where the effector molecule cAMP significantly modulates
the kinetics of the transition from the active to the inactive states
of the protein, while simultaneously leaving the reverse transition
between the inactive and active states unmodified.51 This
modulation seems to be regulated by transient interactions
between the effector molecule and the protein. Second, recent
MSM studies suggest that there is not one but many pathways
between functional states. Studies of β2AR,

245 NtrC,52,256 and the
PKA CBD51 each revealed multiple transition pathways that
arose from transient interactions within the system, suggesting a
probabilistic model of allostery in addition to one that describes
allostery in terms of concerted pathways.256 Studies like these can
provide useful insights applicable to structure-based drug
discovery targeting transitional conformational states.
MSMs can provide significant insights into protein−ligand

interactions and allostery, but building these models is
computationally demanding, limiting their use as screening
tools. This weakness aside, MSMs do provide a strong
foundation for rational drug discovery and enhanced under-
standing of allosteric mechanisms.
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4. ENERGY LANDSCAPE AND TOPOLOGICAL
ANALYSES

4.1. Introduction

LikeMSMs, energy-landscape theories were originally developed
to study protein folding. But they too can be applied to the study
of allosteric mechanisms and protein dynamical modes. Per
statistical mechanics, the underlying free-energy landscape of a
system determines the probability of observing a particular
configuration. Any topological analysis aimed at understanding
allostery must be based on a thermodynamic understanding of
the impact that effector binding has on this energy landscape.

4.2. Protein Frustration

It is helpful to view allosteric binding as an event that perturbs the
conformational exchange, or folding pathways, of a protein. The
principles of statistical mechanics applied to polymers in solution
have provided much insight into the protein-folding process. As
proteins fold, the number of native contacts increases, and the
entropy of the polymer decreases. Folding is impossible when the
required conformational transitions are occluded by large free-
energy barriers or wells. For example, a large local minimum
along the folding pathway could force a protein to undergo a
glass transition, leading to a kinetically trapped state. Typical
folding must be governed by the “principle of minimum
frustration” (i.e., the folding pathway must be funnel shaped
and relatively smooth).258−263

In terms of allostery and energy-landscape theory, a positive
allosteric modulator can be seen as a compound that increases
the likelihood of the binding state by deepening the binding-state
well or decreasing the depth of competing wells. On the other
hand, a negative allosteric modulator may shift the location of the
binding-site well, shallow out the well, or increase the depth of
competing wells. Using these guiding principles, heuristics can be
designed to identify each of the above scenarios.
Ferreiro et al. have developed a heuristic to pick out locally

frustrated residues.264,265 While the overall folding process obeys
the principle of minimum frustration, this does not preclude the
possibility of having small local barriers that must be overcome to
fold. To detect these local frustrations, the authors systematically
perturbed the amino acid sequence and compared the perturbed
total energy with that of the native state. This comparison
provides the effective stabilization energy associated with each
amino acid pair. If a given native-state interaction is highly
stabilizing (i.e., the interaction energy is favorable compared to
mutants), it is said to be “minimally frustrated.” On the other
hand, if a pair of residues is sufficiently destabilizing (i.e., the
interaction energy is weak compared with that of the mutants), it
is “frustrated.” Frustrated residues can be thought of as weak
points in the global structure, contributing to barriers that may
introduce slow degrees of freedom. As such, they may be
involved in ligand binding or allostery. Jenik et al. have
implemented this heuristic as a web server http://www.
frustratometer.tk/.266

Weinkam et al. used a dual-topology Go̅ model267 to survey
the free-energy landscape of the calmodulin-GFP Ca2+ sensor
protein, the maltose binding protein, and the CSL transcription
factor. They introduced a truncated Gaussian distance term to
the soft-sphere atom overlap term implemented in MOD-
ELLER,268−271 resulting in either one basin corresponding to the
bound/unbound distances or two corresponding to both,
depending on the pairwise distance and cutoff. Subsequent
MD simulations of the resulting model were analyzed using their

pseudocorrelation map algorithm.272 They found that their
model reproduces allosteric motions and sheds insight into the
macroscopic mechanism.
4.3. Normal-Mode Analysis

Protein dynamics and subsequent perturbations from binding
events can also be studied using normal-mode analysis
(NMA).273−275 NMA assumes that the potential energy
landscape in the vicinity of a minimized atomic structure is
approximately harmonic. This simplifying assumption allows for
diagonalization of the Hessian matrix. Solving the eigenvalue
problem produces the eigenvectors (movement direction) and
eigenvalues (vibrational frequencies). NMA is known to
reproduce the slow degrees of freedom of protein motion
well.273,276 Applying additional constraints to simulate the
impact of an effector on binding-site residues can yield new
fundamental modes that may provide insight into the allosteric
mechanism.
Ming and Wall applied normal-mode analysis to investigate

the effect of tri-N-acetyl-D-glucosamine upon lysozyme.277 They
assumed that greater perturbation to the conformational
distribution corresponds to increased likelihood that a binding
event will occur at a regulatory or active site. The degree of
perturbation is monitored by comparing the distributions
predicted by NMA of the protein with and without the ligand
bound, via the Kullback−Leibler divergence. In this work, Ming
and Wall generated many arbitrary poses and investigated the
allosteric potential, defined by the KLD. They showed that sites
with large KLD correspond with identified functional lysozyme
residues.
The use of normal-mode analysis removes the need to

integrate the equations of motion. However, for the harmonic
approximations to be accurate, the starting structure needs to be
in a local minima. An initial molecular mechanics minimization
can ensure that proteins of interest are near what might be seen in
their native environments (e.g., a GPCR embedded in a lipid
bilayer with heterogeneous composition). However, alternate
options include simplified interaction Hamiltonians such as
those offered by elastic network models (ENMs).

4.3.1. Elastic Network Models. The complexity and
computational cost of simulating detailed atomic potentials
inspired development of simpler ENMs in which uniform
harmonic potentials are used to model all interactions.278−280 A
popular ENM is the Gaussian network model (GNM), wherein
neighboring residues are connected by virtual springs to create a
network/graph of interactions. Here the interatomic potential
energy, U, of the system can be expressed as
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2
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where Rc is a residue cutoff distance.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.5b00631
Chem. Rev. 2016, 116, 6370−6390

6382

http://www.frustratometer.tk/
http://www.frustratometer.tk/
http://dx.doi.org/10.1021/acs.chemrev.5b00631


Ming and Wall have developed a backbone-enhanced elastic
network model (BENM) in which the interactions between
connected residues are scaled by an additional factor. Using an
objective function defined by the KLD of the marginal
distribution of all-atom and Cα atomic coordinates, the authors
showed that BENM can reproduce the atomistic mean-squared
displacement for bovine pancreatic trypsin inhibitor (BPTI).281

To consider the effects of allostery, the authors again used the
KLD of local conformational distributions before and after ligand
binding.281

To locate allosteric binding sites, Su et al. recently identified
allosterically coupled regions in a GNM using a thermodynamic
method.282 All neighboring residues (represented by their
corresponding Cα atoms) were connected by virtual harmonic
springs of equivalent strength. A spherical probe then sampled
the protein surface to locate the potential effector interaction
points. Additional springs were attached between the effector
point and the local residues in the protein−effector model. The
free-energy difference (ΔΔG) between the protein−ligand and
protein−effector−ligand systems was calculated. Regions with
largeΔΔG values were assumed to be important for the allosteric
mechanism. Using this method, Su et al. studied the Hsp70 and
the GluA2 AMPA receptors. These allosteric predictions
corresponded to experimental results.282

Berezovsky et al. used a similar coarse-grained network-
interaction model to predict the location of allosteric sites.283 To
identify potential pockets for effector/substrate binding, the
authors generated a “residue interaction graph” (RIG), with
residues as nodes and interatomic contacts as edges. They then
evaluated the “local closeness,” defined as the number of total
neighboring residues weighted by 1/r, where r is the inter-residue
distance.284 Regions with high local closeness were likely to be in
pockets and, thus, were putative binding sites. The extent to
which each binding site was coupled to the intrinsic protein
motions was then explored by estimating the strain (so-called
“binding leverage”) on ligand−protein contacts under deforma-
tions described by NMA. A ligand that bound to a site with high
binding leverage could restrict protein dynamics.285

The binding leverage describes the extent to which changes in
binding sites and protein conformational degrees of freedom are
coupled; it does not specifically predict allosterically linked sites.
To predict allostery, Mitternacht and Berezovsky introduced
“leverage coupling,” which selects for sites that are strongly
coupled to the same degree of freedom.285 The mode associated
with themost binding leverage is consideredmost relevant, based
on the assumption that there is one dominant motion promoting
allostery. These methods have been implemented in the online
SPACER server http://allostery.bii.a-star.edu.sg/.286

5. CONCLUSIONS
Over the past decade, advances in computing power and
predictive algorithms coupled with the increased availability of
structural and biochemical data have revealed new opportunities
for rational design of allosteric drugs. The emergence of novel
computational approaches to describe and predict allosteric
phenomena across a range of scales, from the coordinated atomic
movements in a single receptor molecule to complex allosteric
signaling networks, is ushering in a new era wherein computa-
tional methods can be used to prospectively predict, discover,
and characterize allosteric sites and effector molecules. Within
the context of a drug-discovery program, such approaches hold
the potential for developing drugs with increased specificity and
selectivity, as well as the ability to gain new and more

comprehensive understanding of old targets. The convergence
of advances in (i) theoretical MSM-based frameworks and MSM
building software, (ii) community MD codes that can achieve
>100 ns/day sampling for realistic sized systems on single
gaming/commodity GPU processors, and (iii) pocket and
druggable site-detection algorithms now make it possible for
researchers even in industrial settings, with fast-paced timelines
and stringent quality standards, to apply these approaches to
drug targets already in their arsenals. The application of these
methods to kinases and GPCRs seems particularly worthwhile,
given the existence of assays and structural data, and the
challenges faced by existing drug candidates in the clinic.
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