
nanomaterials

Article

Mobility of Cellulose Nanocrystals in Porous Media:
Effects of Ionic Strength, Iron Oxides, and
Soil Colloids

Shuang Xu 1,2 , Chongyang Shen 3, Xueyong Zhang 4, Xijuan Chen 1 , Mark Radosevich 5,
Siqun Wang 6 and Jie Zhuang 5,*

1 Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese
Academy of Sciences, Shenyang 110016, China; xushuang.iae@hotmail.com (S.X.); chenxj@iae.ac.cn (X.C.)

2 College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
3 Department of Soil and Water Sciences, China Agricultural University, Beijing 100193, China;

chongyang.shen@cau.edu.cn
4 School of Environmental Science, Liaoning University, Shenyang 110036, China;

zhangxueyong009@foxmail.com
5 Department of Biosystems Engineering and Soil Science, Center for Environmental Biotechnology,

University of Tennessee, Knoxville, TN 37996, USA; mrad@utk.edu
6 Department of Forestry, Wildlife and Fisheries, The University of Tennessee, Knoxville, TN 37996, USA;

swang@utk.edu
* Correspondence: jzhuang@utk.edu

Received: 16 January 2020; Accepted: 14 February 2020; Published: 18 February 2020
����������
�������

Abstract: Understanding the dispersivity and migration of cellulose nanocrystals (CNCs) in porous
media is important for exploring their potential for soil and water remediation. In this study,
a series of saturated column experiments were conducted to investigate the coupled effects of
ionic strength, iron oxides (hematite), and soil colloids on the transport of CNCs through quartz
sand and natural soils (red earth and brown earth). Results showed that CNCs had high mobility
in oxide-free sand and that iron oxide coating reduced the mobility of CNCs. An analysis of
Derjaguin-Landau-Verwey-Overbeek interactions indicated that CNCs exhibited a deep primary
minimum, nonexistent maximum repulsion and secondary minimum on hematite-coated sand,
favorable for the attachment of CNCs. The maximum effluent percentage of CNCs was 96% in natural
soils at 5 mM, but this value decreased to 4% at 50 mM. Soil colloids facilitated the transport of CNCs
in brown earth with larger effect at higher ionic strength. The ionic strength effect was larger in
natural soils than sand and in red earth than brown earth. The study showed that CNCs can travel
0.2 m to 72 m in porous media, depending on soil properties, solution chemistry, and soil colloids.

Keywords: nanoparticle transport; natural soil; iron oxide; solution chemistry; cellulose nanocrystals

1. Introduction

Nanoparticles have been intentionally added into contaminated soil for either immobilization or
remobilization of contaminants (e.g., leaching) because of their high specific surface area and strong
binding capability [1–6]. Nanoparticles may also be unintentionally released into the soil during
manufacturing, transportation, consumption, and disposal [7,8]. There have been concerns on the
health risk posed by nanoparticles and their potential influences on the ecosystems. For example,
a number of studies have demonstrated that many engineered nanoparticles (such as nanoscale metal
oxide and plastic particles) posed health implications to water and terrestrial biota when consumed
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above certain threshold concentration [9–15]. Such concerns gave momentum to the utilization of
renewable, biodegradable, and environmentally friendly carbon-based nanomaterials.

Cellulose nanocrystals (CNCs) are attractive candidates for environmental remediation due to their
relatively low cost, unlimited supply, biodegradability, surface functionalization capabilities [16–19]
and low biological toxicity [20]. CNCs are produced from cellulose via an acid hydrolysis process that
disrupts the hydrogen bonds and cleaves the amorphous domains of the fiber to yield well-defined
crystalline rods [21]. The dimension of CNCs is 4–20 nm in diameter and 100–250 nm in length
depending on the raw material and separation method [22–24]. The small size leads to a high aspect
ratio and a large specific surface area of CNCs [25]. Moreover, the existence of numerous hydroxyl
groups allows for the incorporation of chemical moieties [26–30]. In recent years, the use of CNCs in
wastewater treatment applications has gained increasing attention [16,18,31–34]. It has been reported
that CNCs are electrostatically stable and have high dispersivity in wastewater [35,36]. Furthermore,
surface modification can significantly enhance the ability of CNCs to remove heavy metals from
aqueous solutions [23,31,37]. Due to the strong adsorption of heavy metals, CNCs may also be useful
for remediation of heavy metal contaminated soil (i.e., removing metal ions from soil solution) if they
can be extensively distributed in the contaminated zone. However, the factors and mechanisms that
control the mobility of CNCs in porous media remain unclear to date.

Natural soils are very different from model porous media (e.g., quartz sand) in terms of soil
solution chemistry, metal oxides, and soil colloids. The mechanisms that these factors influence the
transport of nanoparticles through porous media have been well-documented [38,39]. The retention of
nanoparticles in secondary energy minima on soil surfaces is enhanced at higher ionic strength because
the secondary minimum depth increases with increasing ionic strength [40,41]. The heterogeneously
charged soils usually carry patches of iron oxides on their surfaces, and they can enhance the retention
of nanoparticles due to strong electrostatic attraction [42,43]. Soil colloids are the most active constituent
of soil, which refers to small soil particles with sizes from nanometers to a few micrometers and include
crystalline or non-crystalline silicate clays, iron and aluminum oxides, and humus. Soil colloids are
potential carriers of contaminants in the subsurface environment due to their large specific surface
area, strong adsorption, high surface reactivity, and various charge characteristics. The interaction
or association of soil colloids with nanoparticles is known to affect the fate of nanoparticles in soils.
For instance, the migration of soil colloids can promote the transport of nanoparticles [44,45] and likely
vice versa.

The objective of this study was to understand the transport behavior of CNCs in a model
porous medium (quartz sand) and two natural loam soils by quantifying the impacts of ionic
strength, iron oxides, and soil colloids. Breakthrough curves for CNCs were determined through
saturated column experiments. A classic convection-dispersion equation (CDE) that includes a
time- and depth-dependent deposition rate was employed to simulate the transport of CNCs.
The Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies were calculated to interpret
the mechanisms controlling the attachment and transport of CNCs. The maximum travel distance
was evaluated to estimate the mobility of CNCs in porous media. This study is the first to investigate
transport of CNCs, and the findings have important implications for soil remediation or other
applications with carbon-based nanomaterials.

2. Materials and Methods

2.1. Porous Media, Soil Colloids, and CNCs

The transport experiments were performed using three porous media (quartz sand and two loamy
soils). Quartz sand 20/40 (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China), containing 99.2%
of silicon dioxide and with a specific gravity of 2.7 g cm−3, was employed in the column experiments.
Prior to use, the sand was dry-sieved to select the size fraction of 0.5–0.75 mm and rinsed with deionized
water to get rid of suspended impurities. The sand was then ultrasonicated in 0.01 M NaOH solution
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for 30 min, rinsed with deionized water, and then ultrasonicated for another 30 min in 0.01 M HCl
solution [46]. The sand was finally rinsed with deionized water until the electric conductivity of water
became zero and dried in an oven at 105 ◦C, heretofore referred to as oxide-free sand. Preparation of
hematite-coated sand was carried out according to the procedure described by Benjamin et al. [47].
Specifically, 80 mL of a 2.5 M FeCl3 solution was poured over 200 mL quartz sand, and the mixture was
stirred hourly and heated at 110 ◦C for 3 h, by which time it appeared to be dry. The temperature was
then raised to 550 ◦C for additional 3 h, and the sand was cooled in air. Upon rinsing, a dark red coating
remained on the sand surface. Scanning electron microscopy (SEM, Regulus 8100, Hitachi, Japan) was
performed to reveal the morphology of the hematite-coated sand (Figure 1a), and energy-dispersive
X-ray analysis (EDXA) was used to confirm the presence of hematite on sand (Figure 1b).
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Figure 1. Scanning electron microscopy (a) and energy-dispersive X-ray analysis (b) of hematite-coated
sand.

The two loamy soils, brown earth and red earth, were collected from the topsoil (0–20 cm)
of a no-till farmland located in Shenyang Experimental Station of Agroecology (Shenyang, China;
41◦31′ N, 123◦24′ E) and the University of Tennessee’s Organic Crops Unit near Knoxville (TN, USA;
35◦53′ N, 83◦56′ W), respectively. Prior to use, both soil samples are air-dried and sieved to pass
2-mm mesh. According to the international soil texture classification, the brown earth is a silty
clay loam (18% sand, 54% silt, and 28% clay) with pH 6.3, organic matter content 17.5 g kg−1, and
citrate-bicarbonate-dithionite extractable iron 11 g kg−1. The red earth is a clay loam (30% sand,
41% silt, 29% clay) with pH 6.9, organic matter content 18.8 g kg−1, and citrate-bicarbonate-dithionite
extractable iron 55 g kg−1.

Water-dispersible colloids (<10 µm) used in this study were extracted by centrifugation from the
brown earth using the method described in Bao et al. [35]. Specifically, sampled soil was air-dried and
passed through a 100-mesh stainless steel sieve. Then, 20 g of the sieved soil samples were placed
in a centrifuge tube, followed by an addition of 600 mL of deionized water. The mixed slurry was
shaken for 1 h and further centrifuged at 54 g for 3.5 min (Universal 320, Hettich, Germany). The above
procedure was repeated twice for each 20 g of the soil samples. Finally, the colloid particles <10 µm
remaining in the suspension were decanted, freeze-dried, and stored in glass vials at room temperature
(21 ± 2 ◦C) before use. CNCs in water suspension was purchased from the University of Maine (Orono,
ME, USA) and had a solid content of 65 g kg−1 and a crystallinity index of 81%. Their dimensions were
200–400 nm in length and smaller than 10 nm in width.

2.2. Column Experiments

The experimental setup consisted of a stainless steel column (1.1-cm in inner diameter, 10.5-cm in
height), a peristaltic pump (BT100-2J, Baoding Longer Precision Pump Co., Ltd., Baoding, Hebei, China),
and a fraction collector (CF-2, Spectrum Laboratories Inc., Los Angeles, CA, USA). The chemicals
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employed in this study included NaBr, NaCl, HCl, and NaOH, which were purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). NaBr was used as a conservative tracer, NaCl served as
background solution, and HCl and NaOH were used to adjust the pH of the input solution. A 0.5-cm
quartz sand layer and a 0.5-mm glass fiber filter were placed at the top and bottom of the column,
respectively, to prevent possible blockage of the tubing by porous media grains during the transport
experiments. Thirteen one-dimensional vertical column experiments were performed under steady-state
saturated flow conditions. Among them, four experiments were conducted to investigate the mobility
of CNCs in oxide-free sand and hematite-coated sand at different ionic strengths (5 mM and 50 mM).
Four experiments focused on examining CNCs transport in natural soils (red earth and brown earth) at
different ionic strengths (5 mM and 50 mM). Four experiments were designed to investigate the effect of
soil colloids on CNCs transport through hematite-coated sand and brown earth at the above two ionic
strengths. One experiment was conducted to examine the mobility of soil colloids in brown earth at
higher ionic strength (50 mM). Detailed column experimental conditions are provided in Table 1.

The columns were dry-packed with the sand or the soils at 1-cm increment, and tapped down
after each addition to tighten the medium. After packing, CO2 was pumped into the columns for
4 h to replace entrapped air in soil pores. The columns were then saturated and flushed by injecting
~20 pore volumes of a deaerated background solution (5 mM or 50 mM NaCl at pH 7.0) upward
through the peristaltic pump. After the effluent stabilized in terms of pH and flow rate, 20 pore
volumes of experimental solution, which contained a conservative tracer (30 mg L−1 NaBr) and a
stable CNCs suspension (200 mg L−1, with or without soil colloid at 50 mg L−1), was introduced into
the column before the column was eluted with the background solution of a given ionic strength
(5 mM or 50 mM). The effluent solution was collected using the fraction collector at regular time
intervals throughout the experiments. The injection of the tracer served for estimating the dispersion
coefficients (D) by fitting the standard convection-dispersion equation to the bromide breakthrough
curves. The bromide concentrations in the effluent were determined using ion chromatography
(ICS 5000, Dionex, Sunnyvale, CA, USA).

2.3. Analysis of CNCs and Soil Colloids

CNCs concentrations in the effluent were determined using a TOC analyzer (multi N/C 3000,
Analytik Jena AG, Germany). The diameters and zeta potentials of CNCs were measured using a
Zetasizer (Nano-ZS, Malvern Instruments Ltd., Malvern, UK) in the background solutions used for the
column experiments. The concentration of water-dispersible soil colloids was determined based on
a calibration curve established for soil colloids concentration on the absorbance at 450 nm (Victor X,
PerkinElmer, Waltham, MA, USA). The calibration curve was established by diluting the 100 mg L−1 of
dispersive soil colloids suspension, which was linear within the range of 0–50 mg L−1.

The concentrations of dissolved organic carbon (DOC) and colloids were monitored to detect
their potential release from the packed soils during the pre-flush with background solution (i.e., free of
CNCs and colloids). The injection of experimental solution, which contained CNCs and/or soil colloids,
started when the effluent concentrations of DOC and soil colloids leveled off after ~13 pore volumes.
The breakthrough concentrations of injected CNCs and soil colloids were obtained after deduction of
the concentrations of released native colloids. Preliminary experimental results showed that CNCs
(200 mg L−1) had a minimal absorbance (<0.003) at 450 nm, and thus the influence of CNCs on the
measurement of soil colloid concentrations at 450 nm was negligible.

2.4. Theoretical Consideration

2.4.1. Transport Modeling

The transport behavior of CNCs through porous media under steady-state saturated flow
conditions can be described by a convection-dispersion equation (CDE) including a term for first-order
particle deposition (Kretzschmar et al. [48]):
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∂C
∂t

= D
∂2C
∂x2 − v

∂C
∂x
− kC (1)

where C (mg L−1) is CNCs concentration in the liquid phase, D (cm2 h−1) is the hydrodynamic
dispersion coefficient, v (cm h−1) is the Darcy velocity, and k is the CNCs deposition rate coefficient.
The value of kC is estimated by:

kC =
ρb

θ

∂S
∂t

= ΨkdepC −
ρb

θ
kdetS (2)

where ρb (g cm−3) is the bulk density of the porous medium, S (µg g−1) is CNCs concentration on
porous media, kdep (h−1) is the deposition coefficient, kdet (h−1) is the first-order detachment rate
coefficient, and Ψ is a dimensionless deposition function for CNCs, which accounts for time- and
depth-dependent deposition behaviors, as calculated using the following formula [49,50]:

Ψ = (1 −
S

Smax
)(

dc + x
dc

)
−β

(3)

where dc (cm) is the median particle diameter of the porous medium, x (cm) is the down gradient
distance from the porous medium inlet, Smax (µg g−1) is the maximum concentration of deposited
CNCs, and β is an empirical factor, with an optimal value of 0.432 as suggested by Bradford et al.
(2003) [49]. The above model was applied to simulate the breakthrough curves by simultaneously
inverse fitting of D, Smax, kdep, and kdet using the Levenberg-Marquardt nonlinear least squares
optimization algorithm in HYDRUS-1D. The uniqueness of the fitted results was verified by re-running
the program with different initial parameter estimates.

2.4.2. Calculation of the Maximum Travel Distance

Based on the above assumption of the first-order deposition kinetics, CNCs breakthrough curves
can be evaluated by calculating a clean-bed filter coefficient described as [51]:

λ0 = −
1
L

ln
(

Cf

C0

)
(4)

where L is the column length, C0 is the initial effluent concentration of CNCs, Cf is the effluent
concentration of CNCs after the breakthrough curve has reached a plateau. The deposition rate
coefficient k can be estimated as below:

k = λ0vp = λ0
L
tp

= −
1
tp

ln
(

Cf

C0

)
(5)

where tp represents the average travel time of CNCs through the column, the term Cf/C0 equals the
fraction of CNCs recovered at the column outlet after the breakthrough curve has reached a plateau.
Thus the maximum travel distance of the CNCs, defined by the distance at which 99% of them have
been removed from the solution, can be estimated by:

Lmax = −
vp

k
ln

(
Cf

C0

)
(6)

where Cf/C0 was set at 0.001.

2.4.3. DLVO Interaction Energy Calculations

To interpret the mechanisms controlling attachment of CNCs and soil colloids on sand or soil
surfaces, the DLVO interaction energies of a CNC or a soil colloid with a sand collector surface were
calculated at ionic strengths of 5 mM and 50 mM. The total DLVO interaction energy (U) is the sum
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of van der Waals (VDW) attraction, double layer (DL) energy, and short-range repulsion [52,53].
The short-range repulsion was considered by determining Born (BR) potential energy [54]. We assumed
the CNCs or soil colloids as spheres and sand surfaces to be planar. The surface element integration
technique (SEI) developed by Bhattacharjee and Elimelech was used to calculate the DLVO energies
for the sphere-planar surface interaction configurations [55]. Briefly, the CNC nanoparticle or soil
colloid and collector surface were discretized into small area elements. The total interaction energy
was obtained by summing the differential interaction energy between each pair of area elements on the
colloid and the surface. The expressions developed by Hamaker, Hogg et al. and Oliveira were used to
calculate VDW, DL, and BR differential energies, respectively [56–58].

The interaction energy between a CNC or soil colloid and the iron oxide surface was also determined
to evaluate the influence of surface charge heterogeneity on attachment. We only calculated the DLVO
energies between a CNC or soil colloid and the surface completely consisting of iron oxide because the
coated hematite sizes were much larger than the CNC diameters. It should be noted that although the
CNCs aggregated at 50 mM, we used the average hydrodynamic diameter (i.e., ~276.53 nm) measured
at 5 mM for the interaction energy calculations since Lin and Wiesner demonstrated that the interaction
energy for the aggregated colloids was on the same order of magnitude as those for the primary particles
of the aggregates and was significantly smaller than that for an equivalent sphere (e.g., defined by the
gyration radius of the aggregate) [59]. The calculated DLVO energies here did not address the potential
impact of aspect ratio. The relatively high aspect ratios did not affect the trend of the energy barrier
for solid (200–1000) and hollow (25–1000) cylinders, whereas a relatively low aspect ratio produces a
non-monotonic trend of energy barrier for solid (2–100) and hollow (2–10) cylinders [60].

3. Results and Discussion

3.1. Transport of Bromide

Breakthrough curves of conservative bromide from all column experiments were illustrated
in Figure 2. The reproducibility indicated that the column systems were stable and similar in the
hydrodynamic conditions among different column experiments. The breakthrough curves of bromide
were fitted with classic convection-dispersion equation to obtain the dispersion coefficients (D), which
were subsequently used to simulate the transport behavior of CNCs. Discrepancies in the values of D
are attributed to the slight differences in the flow velocity and/or the bulk density of packed porous
media (Table 1).

Table 1. Experimental conditions and fitted parameters for column experiments.

Exp. # Porous Media CNCs
(mg L−1)

Colloid
(mg L−1)

IS
(mM)

D
(cm2 h−1)

ρb
(g cm−3)

θ

(%)
Vp

(cm h−1)
Smax

(mg L−1)
kdep
(h−1)

kdet
(h−1)

R2

1
Oxide-free sand

200 0 5 0.14 1.72 36.24 14.80 0.05 0.14 4 × 10−4 0.98
2 200 0 50 0.15 1.72 36.21 14.75 0.07 0.15 2 × 10−3 0.95

3
Hematite-coated

sand

200 0 5 0.36 1.72 36.40 14.75 3.61 0.92 5 × 10−5 0.97
4 200 0 50 0.24 1.72 36.43 14.75 0.40 0.31 5 × 10−5 0.91
5 200 50 5 0.13 1.49 43.82 11.40 0.12 0.03 5 × 10−6 0.98
6 200 50 50 0.23 1.49 43.84 13.81 0.09 0.03 5 × 10−3 0.97

7
Red earth

200 0 5 0.23 1.15 57.40 9.32 0.17 0.03 4 × 10−3 0.87
8 200 0 50 0.51 1.15 57.42 12.19 15.94 5.55 4 × 10−2 0.63

9

Brown earth

200 0 5 0.15 1.37 48.24 11.44 0.08 0.05 2 × 10−3 0.98
10 200 0 50 0.44 1.33 46.61 9.34 3.56 2.87 4 × 10−3 0.85
11 200 50 5 0.15 1.33 47.03 12.02 0.04 0.17 2 × 10−3 0.89
12 200 50 50 0.50 1.33 47.01 12.06 1.57 1.10 3 × 10−1 0.89
13 0 50 50 0.32 1.33 46.64 11.44 - - - -

Is: ionic strength; D: dispersion coefficient; ρb: bulk density; θ: porosity; Vp: pore velocity; Smax: maximum
concentration of deposited particles; kdep: first-order deposition coefficient; kdet: first-order detachment coefficient;
R2: coefficient of determination.
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Figure 2. Breakthrough curves of bromide ion from columns repacked with sand (a) and soil (b) under
saturated flow conditions.

3.2. Transport of CNCs in Hematite-Coated Sand

The retention of CNCs was minimal during the transport through oxide-free sand, with the
maximum relative effluent concentration (max C/C0) larger than 0.98 and the effluent percentages at
least 99% at both ionic strengths (5 mM and 50 mM). Hematite coating hindered breakthrough of CNCs
compared with oxide-free sand by ~2.5 pore volumes and ~0.1 pore volume, decreased max C/C0 by
~0.4 and ~0.1, and decreased effluent percentages by ~48% and ~14% at 5 mM and 50 mM, respectively
(Figure 3, Table 2). The discrepancies were attributed to the change in sand surface properties after
the hematite coating. For instance, the hematite coating increased the specific surface area of sand
from 0.15 m2 g−1 to 0.35 m2 g−1 and increased the zeta potential of sand from −47 mV to 4 mV. As a
result, the increased electrostatic attraction between hematite-coated sand and oppositely charged
CNCs hindered the transport of CNCs. Different from the symmetric breakthrough curves predicted
from colloid filtration theory, the observed breakthrough and elution curves of CNCs tended to be
asymmetric in the hematite-coated sand as ionic strength increased. This trend is commonly regarded
as an indicator of blocking effect, which represents the progressive occupation of available deposition
sites on the collector surfaces over time due to dynamic blocking [61].
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4 200 0 50 85.56 13.19 98.75 622  - -  
5 200 50 5 93.67 7.87 101.54 3623  38.37 79.09  
6 200 50 50 91.44 10.40 101.84 7245  19.47 60.38  
7 

Red earth 
200 0 5 96.31 1.67 97.98 2415  - -  

8 200 0 50 4.37 94.17 98.54 24  - -  
9 

Brown earth 

200 0 5 80.39 18.20 98.59 325  - -  
10 200 0 50 37.94 52.54 90.48 102  - -  
11 200 50 5 98.79 3.14 101.93 7245  47.94 98.71  
12 200 50 50 69.19 15.20 84.39 181  30.76 65.27  
13 0 50 50 - - - -  19.02 45.00  
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Figure 3. Effect of iron oxide (hematite) on the transport of CNCs through sand at 5 mM (a) and 50 mM (b).
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Table 2. Mass recoveries of CNCs and soil colloids during the transport experiments.

Exp.# Porous Media
CNCs

(mg L−1)
Soil Colloids

(mg L−1)
Is

(mM)

CNCs Soil Colloids

Meff
(%)

Mret
(%)

Mtot
(%)

Lmax
(cm)

Meff
(%)

Lmax
(cm)

1
Oxide-free sand

200 0 5 99.78 0.68 100.46 7245 - -
2 200 0 50 99.56 1.64 101.20 5573 - -

3
Hematite-coated

sand

200 0 5 51.58 42.80 94.38 129 - -
4 200 0 50 85.56 13.19 98.75 622 - -
5 200 50 5 93.67 7.87 101.54 3623 38.37 79.09
6 200 50 50 91.44 10.40 101.84 7245 19.47 60.38

7
Red earth

200 0 5 96.31 1.67 97.98 2415 - -
8 200 0 50 4.37 94.17 98.54 24 - -

9

Brown earth

200 0 5 80.39 18.20 98.59 325 - -
10 200 0 50 37.94 52.54 90.48 102 - -
11 200 50 5 98.79 3.14 101.93 7245 47.94 98.71
12 200 50 50 69.19 15.20 84.39 181 30.76 65.27
13 0 50 50 - - - - 19.02 45.00

Is: ionic strength; Meff: effluent percentage; Mret: retention percentage; Mtot: total percentage; Lmax: the maximum
travel distance.

The one-dimensional CDE model provided a good description for CNCs breakthrough (Table 1).
Consistent with the breakthrough results, the maximum solid deposition concentration (Smax) and
deposition coefficient (kdep) of CNCs in oxide-free sand were low (less than 0.2), indicating that
the oxide-free sand had small retention capacity for CNCs at both ionic strengths. In comparison,
the values of Smax and kdep of CNCs in hematite-coated sand increased ~72 fold and ~7 fold at 5 mM,
and increased ~6 fold and ~2 fold at 50 mM, respectively. The smaller values of Smax and kdep at
higher ionic strength (50 mM) indicated that the retention capacity of hematite-coated sand decreased,
which was favorable for CNCs transport. Another index of CNCs mobility in sands is the maximum
transport distance Lmax (Table 2). Consistent with the small Smax and kdep, the largest value of Lmax of
CNCs in the oxide-free sand column were 7245 cm at 5 mM and 5573 cm at 50 mM. In contrast, these
values in the hematite-coated sand decreased to 129 cm and 622 cm at 5 mM and 50 mM, respectively.

The above large discrepancies of CNCs breakthrough behavior can be attributed to changes in
sand surface characteristics after the coating [62]. Hematite coating turned the DL interaction from
repulsion to attraction between CNCs and the sand [63], resulting in favorable retention of CNCs.
The nonexistence of the primary energy minimum and the shallow secondary energy minimum
(−0.21 kBT at 5 mM and −2.87 kBT at 50 mM) indicated the minimal attachment of CNCs on the
oxide-free sand (kB is Boltzmann constant, T is absolute temperature of fluid), consistent with the
breakthrough results (Figures 3 and 4a). In contrast, there was no primary energy barriers and
secondary energy minimum on the hematite-coated sand, suggesting that attractive forces dominated
the interaction between CNCs and sand. The presence of deep primary energy minimum (−482.35 kBT
at 5 mM and −228.73 kBT at 50 mM) indicated that irreversible retention of CNCs on hematite-coated
sand was likely under the conditions of this study (Figure 4b,c). It should be noted that CNCs particles
are solid cylinders with a relatively low aspect ratio (<100), which produces a non-monotonic decrease
trend of energy barrier, favorable for CNCs retention. In this study, the potential impact of aspect ratio
might be small due to the nonexistence of both the primary energy minimum on oxide-free sand and
energy barrier on hematite-coated sand.
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Figure 4. Predicted DLVO interaction energy profiles between CNCs and oxide-free sand (a) and
between CNCs/soil colloids and hematite-coated sand at 5 mM (b) and 50 mM (c). Subgraphs are
detailed view of primary minima or secondary minima.

Increasing ionic strength exerted different effects on CNCs transport through clean sand and
hematite-coated sand. In the oxide-free sand, CNCs exhibited high mobility with almost complete
breakthrough at both ionic strengths (5 mM and 50 mM), indicating minimal effect of electrostatic
interactions. This is due to existence of significant energy barriers and shallow secondary minima at
those ionic strengths (Figure 4a). Hence, the attachment in both primary and secondary minimum
was inhibited. In comparison, the effluent percentages of CNCs from the hematite-coated sand
columns increased from ~52% to ~86% in response to the increase in ionic strength from 5 to
50 mM, demonstrating that higher ionic strength was favorable to the transport of CNCs through the
hematite-coated sand. In order to investigate the relevant mechanism, we measured the zeta potentials
of CNCs and sands at different ionic strengths. At 5 mM, the zeta potentials of CNCs, oxide-free
sand, and hematite-coated sand were −39 mV, −47 mV, and 4 mV, respectively (Table 3). Obviously,
the strong electrostatic repulsion between CNCs and like-charged oxide-free sand favored CNCs
transport, whereas the electrostatic attraction between CNCs and opposite-charged hematite-coated
sand hindered the transport of CNCs. When ionic strength increased from 5 mM to 50 mM, the absolute
zeta potentials of CNCs, oxide-free sand, and hematite-coated sand decreased by 11 mV, 9 mV and
3 mV, respectively. Thus, CNCs experienced a decrease in electrostatic repulsion from oxide-free sand
(increasing attachment) and decrease in electrostatic attraction from hematite-coated sand (decreasing
attachment). It is worth noting that the mobility of CNCs in oxide-free sand and in hematite-coated
sand was still high, despite the ~153 nm increase in the diameter of CNCs as the ionic strength increased
from 5 mM to 50 mM (Table 3). This phenomenon indicated a negligible effect of mechanical straining
(i.e., blocking by pores) because the diameter ratio of CNCs to sand (~0.0006) was far below the
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occurrence value for mechanical straining (0.002). Thus, the aggregation of CNCs had minimal effect
on their transport through the sands.

Table 3. Measured sizes and/or zeta potentials of colloids and porous media.

Is
(mM)

dh
(nm)

ε

(mV)

CNCs
5 276.53 ± 22.82 −39.26 ± 9.04

50 429.33 ± 76.11 −28.03 ± 2.28

Oxide−free sand
5 − −47.20 ± 3.75

50 − −37.91 ± 4.72

Hematite−coated sand
5 − 3.87 ± 1.04

50 − 0.47 ± 0.10

Soil colloids
5 − −40.07 ± 5.21

50 − −30.86 ± 1.28

Is: ionic strength; dh: Hydrodynamic diameter; ε: zeta potential.

3.3. Transport of CNCs in Soils

CNCs demonstrated higher mobility in the natural soils. At 5 mM, the max C/C0 was ~1.0 in
red earth and ~0.8 in brown earth, and the corresponding effluent percentages were 96% and 80%,
respectively (Figure 5a, Table 2). In comparison, red earth was much more sensitive to the change in
ionic strength than brown earth. When the ionic strength increased from 5 to 50 mM, the max C/C0 of
CNCs decreased from ~1.0 to ~0.1 in red earth and from ~0.8 to ~0.5 in brown earth (Figure 5b). As a
result, the effluent percentages decreased by ~92% in red earth and ~42% in brown earth. Meanwhile,
the value of Lmax decreased by ~10 fold in red earth and ~3 fold in brown earth (Table 2). Such a large
effect of ionic strength on the transport of CNCs in red earth than in brown earth was attributed to
the differences in soil properties and soil surface heterogeneity. Compared to brown earth, red earth
had finer texture and higher iron oxide content, suggesting higher surface heterogeneity. Shen et al.
(2013) found that a critical size of positively charged patch was necessary for colloid attachment at
a given ionic strength, and the needed critical size decreased with increasing ionic strength, which
was favorable for the attachment [64]. This implies that large surface heterogeneities caused by
metal oxides and organic matter are favorable for CNCs attachment at higher solution ionic strength.
Unfortunately, we cannot evaluate this possibility because we do not have the heterogeneity data of
the experimental soils.Nanomaterials 2020, 10, x FOR PEER REVIEW 11 of 16 

 

0 2 4 6 8 10 12 14 16 18 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Brown earth
Red earth
 Model

C
/C

0

Pore Volume

(a) 5 mM

0 2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pore Volume

(b) 50 mM

 
Figure 5. Breakthrough curves of CNCs from natural loamy soils at 5 mM (a) and 50 mM (b). 

In addition, coagulation of CNCs (e.g., the average diameter of CNCs increased by 153 nm) 
might contribute to the ionic strength effect since larger colloids are more sensitive to the surface 
heterogeneity [53,64,65]. In general, we speculate that the higher surface heterogeneity of red earth 
grains is responsible for the larger ionic strength effect compared to brown earth. 

3.4. Effect of Soil Colloids on CNCs Transport 

Results from the co-transport experiments of CNCs and soil colloids in hematite-coated sand 
indicated that existence of soil colloids at 50 mg L−1 shortened the initial breakthrough time of CNCs 
thereby promoting their transport (Figure 6a,b). The effluent percentage of CNCs increased by ~42% 
at 5 mM and ~6% at 50 mM (Table 2). Under the same experimental condition, the effluent 
percentages of soil colloids were ~38% at 5 mM and ~19% at 50 mM. Similarly, the presence of soil 
colloids increased the effluent percentage of CNCs from the brown earth by ~18% at 5 mM and ~31% 
at 50 mM (Figure 6c,d). Meanwhile, the effluent percentages of soil colloids were ~48% at 5 mM and 
~31% at 50 mM (Table 2). The larger facilitated effect on the transport of CNCs at 50 mM than 5 mM 
might be a result of reduction of dispersive pathways and/or increase in preferential pathways for 
CNCs after a portion of narrow pore throats in the soil were blocked by aggregated colloids under 
elevated ionic strength condition. On the other hand, the presence of CNCs at 200 mg L−1 also 
promoted the transport of soil colloids through brown earth with the effluent percentage of soil 
colloids increased by ~12% at 50 mM (Figure 6d). These results demonstrate that the facilitated effect 
of soil colloids on CNCs transport was more pronounced than the influence of CNCs on the 
transport of soil colloids. 

Results from the co-transport experiments in soil demonstrated that nearly all CNCs particles 
broke through the soil at 5 mM with the effluent percentage reaching 99%, while approximately half 
of the soil colloids were retained with the effluent percentage only 48%. This result suggests the 
non-existence of mutual attachment between CNCs and soil colloids at low ionic strength. The 
reason for the facilitated effect of soil colloids on CNCs transport was not due to their carrier role, 
but because soil colloids acted as obstacles for the attachment of CNCs to the surface of soils. In this 
study, both soil colloids and CNCs were negatively charged with similar zeta potentials (Table 3). 
The soil surface was electronegative as a whole with existence of positively charged patches of iron 
oxides, which were five times as great as on red earth than on brown earth. Once the soil colloids 
and CNCs particles attached to and occupied the positively charged sites, the electronegativity of 
soil surface increased. As a result, the electrostatic repulsion between soil colloids/CNCs and soil 
surface increased to facilitate the transport of both particles. The breakthrough of soil colloids alone 
was low, probably due to the mechanical straining, as the average diameter ratio of soil colloids to 
soil particles (0.005) exceeds the threshold value of straining (0.002). Above results were consistent 
with numerical modeling results, suggesting that the presence of soil colloids could hinder the 
retention of CNCs on favorable soil sites (Table 1).  

 

Figure 5. Breakthrough curves of CNCs from natural loamy soils at 5 mM (a) and 50 mM (b).
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might contribute to the ionic strength effect since larger colloids are more sensitive to the surface
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heterogeneity [53,64,65]. In general, we speculate that the higher surface heterogeneity of red earth
grains is responsible for the larger ionic strength effect compared to brown earth.

3.4. Effect of Soil Colloids on CNCs Transport

Results from the co-transport experiments of CNCs and soil colloids in hematite-coated sand
indicated that existence of soil colloids at 50 mg L−1 shortened the initial breakthrough time of CNCs
thereby promoting their transport (Figure 6a,b). The effluent percentage of CNCs increased by ~42% at
5 mM and ~6% at 50 mM (Table 2). Under the same experimental condition, the effluent percentages
of soil colloids were ~38% at 5 mM and ~19% at 50 mM. Similarly, the presence of soil colloids
increased the effluent percentage of CNCs from the brown earth by ~18% at 5 mM and ~31% at 50 mM
(Figure 6c,d). Meanwhile, the effluent percentages of soil colloids were ~48% at 5 mM and ~31% at
50 mM (Table 2). The larger facilitated effect on the transport of CNCs at 50 mM than 5 mM might
be a result of reduction of dispersive pathways and/or increase in preferential pathways for CNCs
after a portion of narrow pore throats in the soil were blocked by aggregated colloids under elevated
ionic strength condition. On the other hand, the presence of CNCs at 200 mg L−1 also promoted the
transport of soil colloids through brown earth with the effluent percentage of soil colloids increased
by ~12% at 50 mM (Figure 6d). These results demonstrate that the facilitated effect of soil colloids on
CNCs transport was more pronounced than the influence of CNCs on the transport of soil colloids.
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Figure 6. Effect of soil colloids (50 mg L−1) on the transport of CNCs (200 mg L−1) through
hematite-coated sand at 5 mM (a) and 50 mM (b) and brown earth at 5 mM (c) and 50 mM (d).

Results from the co-transport experiments in soil demonstrated that nearly all CNCs particles
broke through the soil at 5 mM with the effluent percentage reaching 99%, while approximately half
of the soil colloids were retained with the effluent percentage only 48%. This result suggests the
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non-existence of mutual attachment between CNCs and soil colloids at low ionic strength. The reason
for the facilitated effect of soil colloids on CNCs transport was not due to their carrier role, but because
soil colloids acted as obstacles for the attachment of CNCs to the surface of soils. In this study, both soil
colloids and CNCs were negatively charged with similar zeta potentials (Table 3). The soil surface was
electronegative as a whole with existence of positively charged patches of iron oxides, which were
five times as great as on red earth than on brown earth. Once the soil colloids and CNCs particles
attached to and occupied the positively charged sites, the electronegativity of soil surface increased.
As a result, the electrostatic repulsion between soil colloids/CNCs and soil surface increased to facilitate
the transport of both particles. The breakthrough of soil colloids alone was low, probably due to the
mechanical straining, as the average diameter ratio of soil colloids to soil particles (0.005) exceeds the
threshold value of straining (0.002). Above results were consistent with numerical modeling results,
suggesting that the presence of soil colloids could hinder the retention of CNCs on favorable soil sites
(Table 1).

4. Conclusions

This study investigated the effects of ionic strength, iron oxides (hematite), and soil colloids
on the transport behavior of CNCs in a model sand and two natural soils. Results indicated that
CNCs had high mobility in oxide-free quartz sand due mainly to the strong electrostatic repulsion
between negatively charged CNCs and same charged sand. The existence of hematite hindered the
transport of CNCs, especially under low ionic strength, mainly due to the strong electrostatic attraction
between CNCs and oppositely charged hematite. Results from the DLVO interactions indicated that
CNCs suffered strong repulsive forces on oxide-free sand and experienced strong attractive forces on
hematite-coated sand. CNCs showed a relatively high breakthrough from natural loam soils with
effluent percentage higher than 80% and maximum travel distance farther than 70 m under low ionic
strength (5 mM). The mobility of CNCs was much more dependent on solution ionic strength in natural
soils than in sand. The increase in ionic strength and the presence of iron oxides on soil surfaces
hindered CNCs transport. Mass recovery results indicated that CNCs and soil colloids promoted their
transport mutually, with the facilitated effect of soil colloids on CNCs transport more than 2 fold larger
than the promotion of CNCs on the transport of soil colloids. The results of this study suggest that
CNCs has great potential for being utilized to elute contaminants from contaminated soils due to their
high dispersivity and mobility in natural soils. Future investigation should evaluate the contaminant
adsorption efficiency of CNCs and their mobility under unsaturated flow conditions.
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