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Objective. It aimed to explore the diagnostic efficacy of multimodal ultrasound images based on mask region with convolutional
neural network (M-RCNN) segmentation algorithm for small liver cancer and analyze the expression of zeste gene enhancer
homolog 2 (EZH2) and p57 (P57 Kip2) genes in cancer cells.Methods. A total of 100 patients suspected of small liver cancer were
randomly divided into Doppler group (color Doppler ultrasound examination), contrast group (contrast ultrasound exami-
nation), elastic group (ultrasound elastography examination), and multimodal group (combined examination of the three
methods), with 25 patients in each group. Images were processed by the M-RCNN segmentation algorithm. ,e results of the
pathological biopsy were used to evaluate the diagnostic efficacy of the four methods. ,e liver tissues were then extracted and
divided into observation group 1 (lesion tissue specimen), observation group 2 (liver tissue around cancer lesion), and control
group (normal liver tissue), and the expression activities of EZH2 and p57 genes in the three groups were analyzed. Results. ,e
accuracy of M-RCNN (97.23%) and average precision (AP) (71.90%) were higher than other methods (P< 0.05). Sensitivity
(88.87%), specific degree of consistency (90.91%), accuracy (89.47%), and consistence (0.68) of the multimodal group were better
than the other three groups (P< 0.05). Low and medium differentiated cancer tissues had an irregular shape, unclear boundary,
uneven internal echo, unchanged/enhanced posterior echo, blood flow level 1∼2, elastic score 4∼5, and enhancement mode fast in
and fast out. ,e positive expression rate of EZH2 in observation group 1 (75.95%) was higher than that in the other two groups,
the positive expression rate of p57 in observation group 1 (80.79%) was lower than that in the other two groups, and the positive
expression rate of p57 in the highly differentiated cancer foci (80.79%) was significantly lower than that in the middle and low
differentiated cancer foci (P< 0.05). Conclusions. M-RCNN segmentation algorithm had a better segmentation effect. Multimodal
ultrasound had a good effect on the benign and malignant diagnosis of small liver cancer and had a high clinical application value.
,e high expression of EZH2 and the decreased expression of p57 can promote the occurrence of small hepatocellular carcinoma,
and the deficiency of the P57 gene was related to the low differentiation of cancer cells.

1. Introduction

Liver cancer, one of the most common malignant tumors in
clinical practice, has a high incidence and mortality, which
poses a great threat to people’s life and health [1, 2]. During
the occurrence of liver cancer, the expressions of enhancer of
zeste homolog 2 (EZH2) [3] and p57 gene [4] of flies would
change to some extent. EZH2 is an important member of the
poly comb group gene family. Studies have found that EZH2

has high expression activity in a variety of cancer diseases
with high incidence, such as breast cancer, stomach cancer,
bladder cancer, and prostate cancer [5–8].,e p57 gene, also
known as the p57 Kip2 gene, belongs to CDK inhibitors
(CKIs), which can reduce the activity of cyclin-dependent
kinase (CDK), so as to achieve the purpose of inhibiting the
proliferation of cancer cells [9, 10]. In hepatocellular car-
cinoma, the expression activity of the two genes has a certain
influence on the development of cancer foci. ,is point was
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analyzed in this study. In liver cancer, small liver cancer is
difficult to diagnose because there are no obvious symptoms
and signs. However, if timely discovery and effective
treatment can be obtained, the prognosis is relatively good,
with a high surgical resection rate and a 5-year postoperative
survival rate [11, 12]. ,erefore, early detection and early
treatment of small liver cancer are very necessary to reduce
mortality.

Clinically, the diagnostic method for small liver cancer
is mainly pathological diagnosis, which belongs to the gold
standard for small liver cancer diagnosis [13]. However, the
diagnosis method is basically after the patient’s surgical
treatment, and the diagnosis method used before surgery is
imaging technology. Ultrasound examination technology
has no radiation, is relatively cheap, safe, noninvasive, high
resolution, and can carry out real-time dynamic detection,
so it has become the preferred method in clinical practice
[14]. In recent years, ultrasound technology has been
rapidly developed, a variety of ultrasound technologies
endlessly emerge in, such as elastic imaging, contrast ul-
trasound, and Doppler ultrasound technology. With the
rich development of ultrasound technology, the diagnostic
capability of ultrasound is further improved. Multimodal
ultrasound mode is proposed, that is, the joint application
of multiple ultrasound technologies makes a single tech-
nology complementary [15]. In an ultrasound examination,
the assessment of the scope of the lesion requires the
physician’s visual observation, but often there is an error.
Nowadays, with the extensive application of deep learning
algorithms in the field of imaging and the large scale of
datasets, experts have proposed the automatic segmenta-
tion technology of lesions [16]. However, there are am-
biguity and artifacts in ultrasonic images due to low
accuracy and instability, which are not conducive to image
recognition and segmentation [17]. ,erefore, experts
proposed to use inception network architecture to accu-
rately extract the noise from high-noise ultrasound images
and then used data enhancement and an adaptive median
filtering algorithm to enhance the stability of segmentation
performance to obtain accurate segmentation images of
lesions [18]. After research, the method has achieved good
results. ,e segmentation algorithm is called mask region
with convolutional neural network (M-RCNN) segmen-
tation algorithm. However, there are few clinical studies on
the application of the above segmentation algorithms in the
segmentation of small liver cancer lesions.

In summary, patients suspected to have small liver
cancer were taken as the research objects, and multimodal
ultrasound images based on the M-RCNN segmentation
algorithm were used for examination and diagnosis. ,e
diagnostic efficacy was evaluated based on pathological
examination results, and the tissues of patients with small
liver cancer and normal patients were examined, to analyze
the clinical significance of EZH2 and p57 gene expressions,
so as to provide more scientific and effective methods and
research basis for the diagnosis and treatment of small liver
cancer.

2. Methods

2.1. Study Object and Grouping. A total of 100 patients with
suspected small liver cancer treated in our hospital from
April 2019 to April 2021 were randomly selected as the
research objects. ,ere were 64 male patients and 36 female
patients. ,e patients’ age ranged from 24 to 69 years old,
with an average age of (45.24± 10.13) years old. ,ere was a
single lesion found in 74 cases and multiple lesions in 26
cases. ,e diameter of the lesions ranged from 0.80 cm to
3.00 cm, with an average diameter of (2.13± 0.55) cm. A total
of 100 patients were divided into four groups by the random
number table method, and they were divided into four
groups according to the examination methods: Doppler
group, contrast group, elastic group, and multimodal group,
with 25 patients in each group. Patients in the Doppler group
were mainly diagnosed by combining the results of color
Doppler ultrasound. Contrast-enhanced ultrasound (CEUS)
was used for diagnosis in the contrast group. ,e elastic
group was examined and diagnosed by ultrasonic elastic
imaging. In the multimodal group, three ultrasound
methods were combined for diagnosis. ,e ultrasound
images of patients in the four groups were processed by the
M-RCNN segmentation algorithm. ,en, the results of
pathological tissue biopsy were used as the gold standard to
evaluate the diagnostic efficacy of the four methods. ,is
study had been approved by the relevant medical ethics
committee. All patients voluntarily participated and signed
informed consent.

Inclusion criteria were as follows: (i) patients with a
history of chronic hepatitis B/C; (ii) all patients were ex-
amined for the first time and had not received any other
symptomatic treatment before; (iii) all patients were over 18
years old; (iv) ultrasound examination was performed for all
patients, and the total diameter of the lesions was no more
than 3 cm; and (v) all patients had no family history of
cancer.

Exclusion criteria were as follows: (i) patients with
intrahepatic and intrahepatic metastasis; (ii) female patients
in pregnancy or lactation; (iii) patients with malignant tu-
mors at other sites; and (iv) patients with consciousness
disorders.

2.2. Tissue Specimens and Grouping. When the patient was
biopsied, normal liver tissue around the lesion was extracted.
,e liver tissue samples of patients diagnosed with small
hepatocellular carcinoma were prepared, fixed with 40 g/L
formaldehyde, embedded in paraffin, and cut as 4 μm
thick× continuous section. Normal liver tissue (noncan-
cerous liver disease surgical specimens or necrotic speci-
mens) was collected from 39 patients as the control group.
,e lesion tissue samples of patients selected in this study
were set as observation group 1, and the liver tissue samples
around the tumor were set as observation group 2. ,en, the
expression activities of EZH2 and p57 genes in liver tissues
of the three groups were analyzed.
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2.3. Ultrasound Examination

2.3.1. Inspection Methods. ,e instrument was a color ul-
trasonic examination system (model–HI VSION Preirus,
Hitachi). Equipment and parameters were set as follows:
probe–convex array, scanning frequency was 3–5MHz.
Probe–high-frequency linear array was used, and the
scanning frequency was 5–10MHz. Scanning methods were
that the liver was scanned by conventional two-dimensional
ultrasound, and the location, number, size, and boundary of
the liver lesions were observed. Later, Doppler ultrasound
mode, ultrasound elastography mode, and CEUS were used
for specific examinations (Figure 1).

2.3.2. Assessment Methods. Doppler ultrasound mode
mainly evaluated the grade of blood flow signal of cancer foci
to diagnose benign and malignant lesions. ,e diagnostic
methods were as follows: benign lesion was grade 0∼1 blood
flow signal, and grade 2 to 3 indicated malignant lesion.
Elastic ultrasound imaging mode was mainly used to
evaluate the benign and malignant lesions according to the
color display fraction of the image. ,e diagnostic methods
were as follows: lesions with a score of 1–3 suggested benign,
while lesions with a score of 4–5 suggested malignant. CEUS
was mainly used to judge benign and malignant lesions by
the characteristics of different enhancement stages. Arterial
phase enhancement features were noncharacteristic en-
hancement, nonenhancement, and enhancement. Clearance
characteristics of delayed period and portal vein stage in-
cluded noncharacteristic clearance, no clearance, and
clearance. ,e diagnostic method was that the lesions not
observed were treated as unenhanced, uncleared, and neg-
ative diagnosis, or otherwise, positive diagnosis. ,e eval-
uation method of multimodal ultrasound was as follows. If
the evaluation results of the above single ultrasound were all
malignant, the diagnosis of multimodal ultrasound was also
malignant. If one of the results was benign, the diagnosis of
multimodal ultrasound was also benign. ,e above ultra-
sound images were jointly diagnosed by two ultrasound
doctors with ≥5a working experience. If the diagnosis results
were different, the diagnosis opinions should be unified
through discussion and analysis of the department.

2.4. M-RCNN Segmentation Algorithm. For this study, in-
ception network structure [19] was used to extract features of
ultrasonic images and ReLU was used as the activation
function [20]. ,e key point of inception block network
structure was searching for dense structures in the image and
to fit local sparse structure malformations. ,erefore, the
network removed the whole connection layer and combined
the clustering thinking, which not only increased the width
of the network but also improved the adaptability of the
network to multiple scales. Generally speaking, there are
complex noises in original images, so it is difficult to extract
and segment the features of images. ,us, before the seg-
mentation of the graph, it is necessary to denoise the graph.
An adaptive median filter was used for image denoising.

,e effect of the adaptive median filter on superposition
and long-tail noise removal is very obvious. Compared with
the conventional median filtering algorithm, the algorithm
can adjust the size of the window through the initial setting
so that the details of the signal can be completely saved. It is
supposed that Rxy is a filtered window, m × n is the size of
the window, andm and n satisfy the following requirements,
where N is any natural number.

m, n ∈ 2N + 1. (1)

,en, the minimum value in the value of the filtering
window is set to Zmin, the maximum value is set to Zmax, the
median value is set to Zmed, the arbitrary value is set to Zxy,
and the maximum size allowed by the filtering window is set
to Smax. Since the structure of the adaptive median filter
consists of two parts, namely, the first layer (Level A) and the
second layer (Level B), the expression of Level A layer can be
obtained as follows:

A1 � Zmed − Zmin,

A2 � −Zmax − Zmed.
(2)

When both A1 and A2 are greater than 0, the calculation
of Level B layer shall be carried out. Otherwise, the filtering
window shall be enlarged, and the calculation of Level A
layer shall be repeated within the maximum size Smax
allowed by the filtering window until A1 and A2 are greater
than 0. If the target result cannot be achieved within the
range of Smax, the output is directly set to any value Zxy.

Level B is expressed as follows:

B1 � Zxy − Zmin,

B2 � −Zmin − Zxy.
(3)

When both B1 and B2 are greater than 0, any value Zxy is
directly output. Instead, the median number Zmed is output.

To effectively reduce the training error and generaliza-
tion error, the method of data enhancement is used to
optimize the target image, and the training loss of the model
converges to the best range. Common data enhancement
methods include clipping, zooming, rotation, and brightness
and contrast adjustment. ,rough data enhancement, the
parameters and quantity of training data can be increased.

Part of ultrasonic images are selected, and the images are
labeled (manually segmented) by a number of experienced
ultrasound doctors. ,e group of data with the highest
reliability calculated by the coefficient of volumetric overlap
error (VOE) [21] is used as the gold standard for the de-
tection of segmentation results.

VOE � 1 −
VDr.x ∩VDr.y

VDr.x ∪VDr.y
, (4)

VDr.x refers to the segmentation results marked by doctor x.
VDr.y refers to the segmentation result that the doctor y
noted.

,e specific evaluation of segmentation effect combines
chaotic matrix [22], a conventional evaluation index, with
evaluation indexes such as calculation accuracy, accuracy,
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and recall rate. After calculation, average precision (AP)
[23], area under the precision-recall curve of a certain

threshold, and accuracy are used to evaluate the results of
this study. ,e specific calculation method is as follows:

Accuracy �
TP + TN

TP + FP + FN + TN
,

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

AP �
1
2

􏽘

n−1

i�0
Recalli+1 − Recalli( 􏼁 Precisioni+1 + Precisioni( 􏼁.

(5)

Accuracy refers to the proportion of true-positive (TP)
and true-negative (TN) samples in the total sample number.
Precision refers to the percentage of TP in a positive sample
of predicted results. Recall refers to the proportion of TP in
positive samples that have actually been identified. FN refers
to the number of negative samples in the negative sample.
TN refers to the number of negative samples in the positive
sample. ,e higher the AP result is, the better the seg-
mentation effect is. i and n indicate that the value range of
precision, and recall is within the range of [0,1].

2.5. Detection of Specimens. Immunohistochemical assay
[24] was used to detect the expression activities of EZH2 and
p57. ,e selected materials included EZH2/p57 mouse anti-
human monoclonal antibody/biotin detection kit/DAB
chromogenic agent (Beijing Zhongshan Jinqiao Biotech-
nology Co., Ltd.), mouse anti-human PCNA monoclonal
Antibody (M12) (Abnova, China), Elivision two-step de-
tection reagent (Fuzhou Maixin Biotechnology Develop-
ment Co., Ltd.), and cell apoptosis in situ detection kit
(Abcam Biotechnology Co., Ltd.). ,e EZH2 detection
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procedure referred to dewaxing and hydration of the paraffin
section first and then repairing the specimen with high
antigen pressure. Subsequently, the tissue samples were
treated with 3% H2O2 to block endogenous peroxidase, and
the primary antibody was dropped after 20min and incu-
bated at 37 °C for 1h.,en, polymer adjuvant was added and
incubated for 20min. Horseradish enzyme-labeled sheep
anti-rabbit IgG polymer was added. After incubation for
20min, DAB was used for chromogenic treatment, hema-
toxylin was redyed, dehydration was transparent, and tablets
were sealed.

,e p57 detection steps were as follows: dewaxed and
hydrated sections were treated with 3% H2O2, placed in
citric acid buffer with a pH value of 6.0, and underwent high-
temperature and high-pressure antigen thermal repair for
5min. It was taken out and cooled at 37°C, incubated with
sheep serum for 30min, and added with primary antibodies
(p57 and PCNA antibodies), which was placed in a wet box
and incubated at a constant temperature of 37°C for 2 h.
,en, 50 μL of the two reagents A and B each in the two-step
detection kit was successively added in two times and in-
cubated at room temperature for 1 h. In the same way, color
was developed and redyed. ,en, p57 detection required
differentiation of hydrochloric acid and alcohol, dehydration
and transparency, and neutral gum sealing.

,e observation method was double-blind [25], that is,
each specimen was randomly observed in five high-power
fields (×400, counting 120 tumor cells/each field). ,e
semiquantitative integral method [26] and the percentage
score of positive cells were used for evaluation. When the
product of the two scores was more than three, the result was
positive.

2.6. Observed Indexes. Based on pathological diagnosis re-
sults, the sensitivity, specificity, and accuracy of the four
diagnostic methods were calculated and compared.
Edmondson-Steiner method was used to classify small he-
patocellular carcinoma into highly differentiated grade I,
moderately differentiated grade II, and poorly differentiated
grade III and IV.,e three grades of differentiation and their
corresponding grades were observed to illustrate the ul-
trasound signs of patients in the multimodal group under
different pathological grades.

,e positive expressions of EZH2 and p57 in liver tissue
samples of the three groups were observed, and the positive
expressions of EZH2 and p57 in different pathological
differentiation grades were observed.

2.7. StatisticalMethods. SPSS 25.0 was used for data analysis.
,e chi-square test or Fisher’s exact probability method was
used to analyze the difference of multimodal ultrasound
features between benign and malignant nodules and small
liver cancer with different pathological grades. Measurement
data were expressed as x± s. Kappa test was used to analyze
the consistency of diagnosis results of small liver cancer by
Doppler ultrasound, ultrasound elastography, CEUS, and
multimodal ultrasound. If 0.70>Kappa≥ 0.45, the diag-
nostic consistency was good. Kappa≥ 0.7 indicated

satisfactory diagnostic consistency. Kappa< 0.45 indicated
poor diagnostic consistency, and P< 0.05 indicated a sta-
tistically significant difference.

3. Results

3.1. Segmentation Results. ,e effectiveness of the adopted
M-RCNN segmentation algorithm was compared with that
of the inception network segmentation algorithm alone (IN),
IN optimized only by adaptive median filtering (M-IN), and
IN optimized only by data enhancement (S-IN). ,e results
of accuracy and AP are shown in Figure 2.,e segmentation
accuracies of M-RCNN, IN, M-IN, and S-IN were 97.23%,
87.34%, 90.46%, and 89.67%, respectively. ,e AP values
were 71.90%, 60.88%, 63.78%, and 62.91%, respectively. ,e
accuracies of M-RCNN and AP were significantly higher
than the other three segmentation methods (P< 0.05).
Figure 3 shows the segmentation effect diagrams of four
algorithms for different ultrasonic images, which indicated
that M-RCNN segmentation was relatively more detailed.

3.2.ComparisonofGeneralClinicalData. ,e distribution of
gender, age, and course of disease were compared among the
four groups. In terms of gender and mean age distribution,
male patients in the Doppler group, contrast group, elastic
group, and multimodal group accounted for 21.88% (14/64),
26.56% (17/64), 25.00% (16/64), and 26.56% (17/64), re-
spectively. Female patients accounted for 27.78% (10/36),
25.00% (9/36), 22.22% (8/36), and 25.00% (9/36), respec-
tively. ,e mean ages were (44.94± 10.44) years,
(45.99± 11.22) years, (43.24± 10.67) years, and
(46.14± 9.89) years, respectively. After comparison, there
was no significant difference in the distribution and average
age of male and female patients in the four groups (P> 0.05),
as presented in Figure 4. In terms of the distribution of the
number and mean diameter of lesions, of 74 patients with
single lesions, the percentages of Doppler group, contrast
group, elastic group, and multimodal group were 25.68%
(19/74), 27.03% (20/74), 24.32% (18/74), and 22.97% (17/74),
respectively. Of 26 patients with multiple lesions, the pro-
portions of the Doppler group, contrast group, elastic group,
and multimodal group were 26.92% (7/26), 23.08% (6/26),
23.08% (6/26), and 26.92% (7/26), respectively. Average
diameter was (2.24 + 0.48) cm, (2.01 + 0.59) cm, (2.11–0.57)
cm, and (2.14–0.61) cm, respectively. After comparison,
there was no significant difference in the number and av-
erage diameter distribution of lesions among the four groups
(P> 0.05, Figure 5).

3.3. Diagnosis Effect. A total of 152 foci were found in 100
patients, among which 110 were diagnosed as malignant
lesions (79 patients in total). A total of 42 patients were
diagnosed as benign, for a total of 21 patients. ,e results of
pathological diagnosis distribution and ultrasonic diagnosis
distribution of Doppler group, contrast group, elastic group,
and multimodal group are shown in Table 1. ,e diagnostic
sensitivities of the Doppler group, contrast group, elastic
group, and multimodal group were 57.69%, 58.06%, 61.54%,
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and 88.87%, respectively. ,e specificities were 66.67%,
66.67%, 70.00%, and 90.91%, respectively. ,e accuracies
were 63.16%, 60.00%, 63.89%, and 89.47%, respectively.

Kappa values were 0.46, 0.49, 0.48, and 0.68, respectively.
Analysis and comparison showed that the multimodal group
had better diagnostic sensitivity, specificity, accuracy, and
consistency (Kappa) than the other three groups (P< 0.05,
Figure 6).

3.4.MultimodalUltrasoundFeatures atDifferent Pathological
Grades. According to the statistics, the pathological
grading distributions of 110 malignant lesions were 49 (38
cases) with low differentiation, 40 (26 cases) with medium
differentiation, and 21 (15 cases) with high differentiation.
,e signs of multimodal ultrasound images of small liver
cancer lesions with different differentiation grades were
observed, including shapes, boundaries, internal echoes,
posterior echoes, blood flow grading, ultrasonic elastic
score, and enhancement mode, as presented in Figure 7. In
terms of shape, low and medium differentiation were
mainly irregular (79.59%, 70%), and high differentiation
was mainly regular (66.67%). In terms of boundary def-
inition, low and middle differentiation were mostly un-
clear (75.51% and 70.00%), while high differentiation was
mostly clear (66.67%). In terms of the uniformity of in-
ternal echo, the low and medium differentiation were
mainly inhomogeneous (93.88%, 72.5%), and the well-
differentiated lesions were mainly homogeneous
(66.67%). In terms of whether the posterior echo was
enhanced or not, the low and medium differentiation were
mostly unchanged/enhanced (89.8% and 72.5%), while the
high differentiation lesions had no main features. In terms
of blood flow grading, the proportion of low, medium, and
high differentiation was higher than that of high differ-
entiation (95.92%, 90.00%, and 66.67%, P< 0.05). In terms
of ultrasound elastic score, low and medium differentia-
tion were mainly 4–5 points (89.8% and 40%), while high
differentiation lesions had no main features. In terms of
enhancement mode, the low, medium, and high differ-
entiation were mainly fast in and fast out, but the low and
medium differentiation were significantly higher than the
high differentiation (83.67%, 80.00% vs. 57.14%)
(P< 0.05).
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3.5. Expression of EZH2 Protein and p57 Protein. EZH2 was
mainly expressed in the nucleus as brownish yellow gran-
ules, while p57 protein was mainly expressed in the cyto-
plasm or nucleus as brownish or brownish yellow granules,
which were distributed in different tissues (Figure 8). ,e
sample numbers of observation group 1 and observation
group 2 were the number of small liver cancer patients

diagnosed in this study, so the sample numbers were 79. ,e
positive expression rate of EZH2 in observation group 1
(75.95%) was higher than that in observation group 2 and
control group (15.19% and 10.26%). ,e positive expression
rate of p57 in observation group 1 (40.04%) was higher than
that in observation group 2 (79.75%, 94.87%) and control
group (P< 0.05, Tables 2 and 3).

Table 1: Statistical diagnosis results of patients in four groups.

Doppler group Pathological diagnosis (n� 38)
Total

Malignant Benign

Doppler ultrasound diagnosis (n� 38) Malignant 16 4 22
Benign 10 8 18

Total 26 12 38

Contrast group Pathological diagnosis (n� 40) Total
Malignant Benign

CEUS diagnosis (n� 40) Malignant 18 3 21
Benign 13 6 19

Total 31 9 40

Elastic group Pathological diagnosis (n� 36) Total
Malignant Benign

Ultrasound elastography diagnosis (n� 36) Malignant 16 3 19
Benign 10 7 17

Total 26 10 36

Multimodal group Pathological diagnosis (n� 38) Total
Malignant Benign

Multimodal ultrasound diagnosis (n� 38) Malignant 24 1 25
Benign 3 10 13

Total 27 11 38
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3.6. !e Positive Rate of EZH2 and p57 at Different Levels of
Pathological Differentiation. ,ere were 38 cases of poorly
differentiated foci, 26 cases of moderately differentiated
foci, and 15 cases of highly differentiated foci at

pathological grade. ,e expressions of EZH2 and p57 at
different differentiation grades were compared. ,e
positive rate of EZH2 expression was 55.26% in poorly
differentiated cancer foci, 53.85% in moderately
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Figure 8: Expression of EZH2 and p57 in various liver tissues.

Table 2: Expression of EZH2.
Group Observation group 1 (n� 79) Observation group 2 (n� 79) Control group (n� 79) χ2 P

EZH2 Negative 19 67 35 8.23 0.01Positive 60 12 4
χ2 8.09 —
P <0.01

Table 3: Expression of p57.
Group Observation group 1 (n� 79) Observation group 2 (n� 79) Control group (n� 79) χ2 P

p57 Negative 49 16 2 8.13 0.01Positive 34 63 37
χ2 8.01 —
P 0.01
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differentiated cancer foci, and 53.33% in highly differ-
entiated cancer foci, with no significant difference
(P> 0.05). ,e positive expression rate of p57 was 16.83%
in poorly differentiated cancer foci, 20.59% in moderately
differentiated cancer foci, and 80.79% in highly differ-
entiated cancer foci. After comparison, it was found that
the positive expression rate of p57 in highly differentiated
cancer foci was significantly lower than that in medium
and low differentiated cancer foci (P< 0.05, Figure 9).
Figure 10 shows the expression activity of small liver
cancer tissues of different pathological grades. Among
them, the expression activity of A2 cancer cells was the
highest, and the expression activity of A1 was the lowest.

4. Discussion

Abdominal ultrasound has become the preferred method for
liver examination because of its high safety and high display
of liver structure [27]. However, due to the influence of
anatomical sites, operating techniques, experience, and
examination instruments and equipment, the accuracy of
diagnosis is insufficient [28]. ,erefore, multimodal ultra-
sound emerged, and various single technologies comple-
ment each other to improve the diagnostic effect of diseases,
especially malignant tumors [29].

Patients suspected of small liver cancer were divided into
the Doppler group, control group, elastic group, and mul-
timodal group. ,e results of pathological diagnosis were
used as the gold standard to evaluate the diagnostic effect.
,e diagnostic sensitivity (88.87% vs. 57.69%, 58.06%, and
61.54%), specificity (90.91% vs. 66.67%, 66.67%, and
70.00%), accuracy (89.47% vs. 63.16%, 60.00%, and 63.89%),
and consistency (0.68 vs. 0.46, 0.49, and 0.48) of the mul-
timodal group were better than the other three groups
(P< 0.05). ,is is consistent with the results of Hu et al. [30]
and Yao et al. [31]. Xiang et al. [32] indicated that multi-
modal ultrasound has a high effect on benign and malignant
diagnosis of breast tumors, which provides support for this
study. In addition, multimodal ultrasound showed that the
multimodal imaging of poorly differentiated and moderately
differentiated cancer tissues mainly showed irregular mor-
phology, unclear boundary, uneven internal echo, un-
changed/enhanced posterior echo, blood flow grade 1–2,
and ultrasonic elastic score 4–5. Seehawer et al. [33] also
proposed that the high aggressiveness of cancer cells would

lead to irregular ultrasound images and uneven internal
echoes of lesions. In poorly differentiated cancer tissues, the
intercellular bridge is not clear, and the nuclear atypia is
obvious, while the cell tissue necrosis exists in nuclear di-
vision, which leads to the adhesion of surrounding tissues,
reducing their activity and tissue elasticity, and increasing
their hardness [34]. Deng et al. [35] proposed that vascular
density in cancer foci is closely related to the degree of tissue
differentiation in cancer foci, and patients with a lower
degree of differentiation have higher blood flow grade. It is
consistent with the results of this study, which indicates that
there are differences in the ultrasound signs of small liver
cancer tissues with different pathological grades, and ul-
trasound examination can be used for the diagnosis of
pathological grades.

Expressions of EZH2 and p57 proteins in small liver
cancer lesions were studied. ,e results showed that the
positive expression rate of EZH2 in observation group 1
(75.95%) was higher than that in observation group 2 and
control group (15.19% and 10.26%), suggesting that ab-
normal expression of EZH2 was related to the occurrence of
small liver cancer. Studies suggested that EZH2 is highly
expressed in small liver cancer, which affects the survival rate
of patients [36]. Several studies pointed out that EZH2 is
significantly (P< 0.05) expressed in human hepatocellular
carcinoma tissues and cell lines. ,e positive expression rate
of p57 in observation group 1 was lower than that in ob-
servation group 2 and control group, suggesting that the
insufficient expression of p57 protein was associated with the
occurrence of small liver cancer.,is was consistent with the
research results of Li et al. [37]. Mei et al. [38] also proposed
that reduced P57 protein would lead to further development
of cancer foci.

To improve the accuracy of this study, the M-RCNN
segmentation algorithm was adopted in ultrasonic image
processing to improve the display effect of lesions. ,e
results showed that the accuracies of M-RCNN (97.23%) and
AP (71.90%) were significantly higher than the other three
segmentation methods (P< 0.05), indicating that the
adopted segmentation algorithmwas effective. In addition, it
was proposed that the combination of data enhancement
and adaptive median filtering has a good optimization effect
[39]. ,e inception network module combining these two
methods should be more effective in medical image seg-
mentation processing, which reflects the results of this study,
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Figure 9: Positive rates of EZH2 and p57 at different levels of pathological differentiation.

Computational Intelligence and Neuroscience 9



but there are few related studies and further confirmation is
needed.

5. Conclusion

In this study, multimodal ultrasound images based on the
M-RCNN segmentation algorithm were used to examine
and diagnose small liver cancer patients, and the diag-
nostic performance was evaluated. ,en, the expressions
of EZH2 and p57 genes in cancer cells were studied. ,e
results showed that the M-RCNN segmentation algorithm
was more effective in ultrasonic image processing. Mul-
timodal ultrasound had high accuracy in benign and
malignant diagnosis of small liver cancer and had high
consistency with pathological results, which was of good
clinical application value. Both the high expression of
EZH2 and the low expression of the p57 gene promoted
the occurrence of small hepatocellular carcinoma, and the
deficiency of the p57 gene in tumor foci was related to the
low differentiation of cancer cells. However, due to the
small number of cases in each group, the calculation of the
results was not accurate, and the results were not rep-
resentative enough in this study, which will be corrected
in the future study. In conclusion, multimodal ultrasound
technology has a good application prospect in the diag-
nosis of clinical tumor diseases and is worthy of pro-
motion and application.
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