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Hierarchical counterstream via feedforward and feedback interactions is a major

organizing principle of the cerebral cortex. The counterstream, as a topological feature

of the network of cortical areas, is captured by the convergence and divergence of paths

through directed links. So defined, the convergence degree (CD) reveals the reciprocal

nature of forward and backward connections, and also hierarchically relevant integrative

properties of areas through their inward and outward connections. We asked if topology

shapes large-scale cortical functioning by studying the role of CD in network resilience

and Granger causal coupling in a model of hierarchical network dynamics. Our results

indicate that topological synchronizability is highly vulnerable to attacking edges based

on CD, while global network efficiency dependsmostly on edge betweenness, a measure

of the connectedness of a link. Furthermore, similar to anatomical hierarchy determined

by the laminar distribution of connections, CD highly correlated with causal coupling in

feedforward gamma, and feedback alpha-beta band synchronizations in a well-studied

subnetwork, including low-level visual cortical areas. In contrast, causal coupling did

not correlate with edge betweenness. Considering the entire network, the CD-based

hierarchy correlated well with both the anatomical and functional hierarchy for low-level

areas that are far apart in the hierarchy. Conversely, in a large part of the anatomical

network where hierarchical distances are small between the areas, the correlations were

not significant. These findings suggest that CD-based and functional hierarchies are

interrelated in low-level processing in the visual cortex. Our results are consistent with the

idea that the interplay of multiple hierarchical features forms the basis of flexible functional

cortical interactions.

Keywords: network resilience, oscillation, granger causality, anatomical hierarchy, hierarchical dynamics,

hierarchical counterstream, network topology, shortest path

1. INTRODUCTION

Cognition emerges as the result of dynamics on the large-scale network of the cerebral cortex.
Although large-scale cortical dynamics are rooted in the anatomical network formed by axonal
connections between neuronal structures, the relationship of network architecture and function
represented by coordinated network dynamics is far from clear. It is thought that modularity,
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core-periphery, and hierarchy are fundamental organizing
principles of the anatomical network that constrain functioning.
However, even the fundamental topological features exhibit
large flexibility in temporally evolving functional networks
(Bastos et al., 2015; Avena-Koenigsberger et al., 2018; Griffa and
Van den Heuvel, 2018; Vezoli et al., 2021). A central question
in understanding how network structure gives birth to the rich
dynamics of cortical functioning is the role of topological features
in identifying network paths of communication dynamics
(Avena-Koenigsberger et al., 2018).

Shortest paths (the fewest number of links connecting
any two nodes) play a fundamental role in exploring
network characteristics (Newman, 2003); for an extensive
review regarding brain networks see Avena-Koenigsberger
et al. (2018). The brain network, constrained by its physical
embedding, exhibits near-minimal path lengths, supporting the
importance of shortest paths in large-scale neural functioning
(Chklovskii et al., 2002; Chen et al., 2006). Accordingly,
communication along shortest paths is highly efficient. However,
it should be noted that shortest paths represent only a minor
portion of possible communication paths and therefore are
non-resilient, i.e., communication exclusively via shortest
paths is prone to congestion, causing delays and loss of
information. Consequently, multiple routing strategies have
been suggested as functionally sensible alternatives to shortest
paths (Avena-Koenigsberger et al., 2018). Besides network-
wide communication, shortest paths play a significant role in
determining the integrative and coordinative capacities at the
level of network elements. It was shown e.g., that in a functional
brain network the closeness centrality of an area (how easy it is to
reach a node via the shortest paths) influences the path length of
anatomical connections between active loci, resulting in a small
but not negligible elongation (∼10%) compared to the shortest
path length (Csoma et al., 2017).

An important but often neglected property of the cortical
network is that it is composed of directed axonal pathways.
Only the anatomical network constructed by way of tract-
tracing can represent the direction of neural connections,
which provide further opportunities to identify functionally
relevant topological features (Passingham et al., 2002; Kaiser,
2007; Markov et al., 2013a, 2014). Exploiting information in
the distribution of directed edges and using edge betweenness
centrality as a measure of connectedness (proportional to the
number of shortest paths traversing an edge), an edge-based
index called convergence degree (CD) was formulated, which
uniquely characterizes the flow properties of networks (Négyessy
et al., 2008; Bányai et al., 2011b). Considering all directed shortest
paths traversing a given edge, the CD determines convergence
or divergence by the difference in the number of source and
target nodes, i.e., convergent edges convey information from
a larger number of nodes to a smaller set, while divergent
edges from a smaller to a larger set. In the cerebral cortex, CD
revealed the mostly complementary divergent and convergent
nature of reciprocal links and that this complementarity resulted
in the formation of nearly symmetrical forward and backward
subnetworks. Furthermore, the sum of the inward and outward
convergence degrees of a node provided the node-centric

representation of convergence/divergence, which is a useful
measure of the coordinative function of cortical areas (Négyessy
et al., 2008, 2012). Specifically, low-level areas including
primary sensory cortices, serve as sources of information via
their mostly divergent outputs and convergent inputs. On
the contrary, high-level areas such as the prefrontal cortex
receive mostly divergent inputs and provide convergent outputs,
which make such regions information allocating structures,
consistent with the role of controlling the flow of information
in the cerebral cortex. In large-scale anatomical networks, in
the same fashion as with the anatomical hierarchy, which
is determined by the laminar distribution of projections, the
areas’ role changes gradually between source and allocating
due to the combination of convergence/divergence properties
in their inputs and outputs (Felleman and Van Essen, 1991;
Markov et al., 2013a, 2014). Considering that the anatomical
network represents cortical areas as single nodes and axonal
bundles as links, these observations suggest that CD determines
a fundamental, functionally relevant structural property of
networks. More importantly, the dissociation of the reciprocal
forward and backward subnetworks resemble very closely the
counterstream hierarchical architecture of the cerebral cortex
(Markov et al., 2013a; Vezoli et al., 2021). However, it remained
to be seen to what extent CD determines cortical dynamics, most
notably synchronization, where convergence and divergence are
crucial network properties.

In the cerebral cortex, rhythmic synchronous oscillations
are distinguishing neurophysiological indicators of different
cognitive operations (Buzsáki and Draguhn, 2004; Wang, 2010).
Amongst the rich pattern of oscillatory activity, theta, alpha-
beta, and gamma band synchronizations play a pivotal role
in cognitive functions. Remarkably, experimental evidence
indicates that hierarchical cortical processing is characterized
by a feedforward-related enhancement of gamma and theta
band synchronization, and a feedback-related increase of alpha-
beta band synchronization (Bastos et al., 2015, 2018, 2020;
Lundqvist et al., 2020). Cortical computation is based on the
interplay of synchronous oscillatory activities resulting in e.g.,
suppression, enhancement, and phase locking (Buzsáki and
Draguhn, 2004; Wang, 2010). What are the circuit mechanisms
of hierarchical computation is less understood. Considering that
middle and upper layers are the major targets of feedforward
afferents, and feedback pathways are mostly associated to the
deep layers, hierarchical processing is surmised to be the result
of the interaction of these connectional activities across cortical
laminar circuitries (Vezoli et al., 2021). Large-scale hierarchical
cortical dynamics were recently studied by Mejias et al. (2016)
using a laminar neuronal mass model in a weighted and
directed anatomical network. The model faithfully reproduced
different physiological phenomena of cortical interactions, both
within and across the upper and lower layers, by using
an experimentally measured coupling parameter determining
anatomical hierarchical relationship, which is defined as the
proportion of supragranular layer projecting neurons (Barone
et al., 2000; Markov et al., 2014). Most notably, a specific,
hierarchically dependent causal functional connection was
reproduced between the areas in gamma and alpha-beta band
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synchronization, as shown by electrophysiological observations
(Bastos et al., 2015). These observations were in great agreement
with the hierarchical counterstream organization of the large-
scale anatomical network (Markov et al., 2013a; Vezoli et al.,
2021).

The major goal of this study was to examine if the CD-
based topological hierarchy, representing network-wide cortical
convergence, plays a role in functional hierarchical interactions
in the primate cerebral cortex. Our studies were focused on
the large-scale anatomical network in the form of directed and
either weighted or binary (considering only the existence of a
connection) graphs (Sporns, 2007, 2010).

In the first part of the study, we aim to provide evidence
that the CD is a sensitive measure of network integrity and
synchronizability, i.e., a non-specific measure of a network’s
dynamic potential (Papo and Buldú, 2019). To this end,
targeted and random edge removals were performed on an
updated version of the binary, directed anatomical network
representation of the macaque sensorimotor-visual cortex used
in our previous investigations (Négyessy et al., 2006). Edges
were removed on the basis of CD and edge betweenness
(EB) values and the effects were compared to that obtained
in similar experiments on randomized control networks. The
lack of correlation between CD and EB (Négyessy et al., 2008)
suggests that these two measures are independent. The effects
of edge deletion were measured on network indices related
to the efficiency of information transfer as well as robustness
and synchronizability. Communication efficiency was studied via
analyzing changes to the global topological distance, expressed as
the average shortest path, and the diameter of the network (the
longest of the shortest paths), while undergoing edge removal.
Network synchronizability was studied by computing spectral
graph metrics of the graph Laplacian (Chung, 1997; Boccaletti
et al., 2006; Arenas et al., 2008; Chen et al., 2012). Specifically,
the second smallest eigenvalue, λ2, which is known as algebraic
connectivity (Fiedler, 1973), and is an important measure of
graph robustness, i.e., its magnitude indicates connectedness. If
λ2 is small, fewer edges are needed to be removed to disconnect
the graph. In addition, the largest absolute eigenvalue (λN),
called the spectral radius was also computed. Synchronizability,
as the stability of a synchronized state, is maximal in unweighted,
fully random networks with uniform degree distribution, and
depends strongly on λ2 (Nishikawa et al., 2003; Atay et al.,
2006; Almendral and Díaz-Guilera, 2007; Chen et al., 2012). The
higher themaximal eigenvalue, the easier the network reaches the
synchronization regime. Also, a wider spread of the eigenvalues
indicates an increased probability that the synchronous state will
be unstable. The spread of the eigenvalues can be estimated by
the ratio of the largest and smallest non-zero eigenvalues, called
eigenratio (λ2/λN). The closer the eigenratio is getting to 1 the
more stable the synchronous state of the system becomes.

In the second part, the role of CD in hierarchical cortical
interactions was studied by implementing the model of Mejias
et al. (2016), simulating the oscillatory dynamics of a weighted
and directed anatomical network of the macaque visual cortex.
We used the only complete anatomical network consisting of 29
areas of the visual and prefrontal cortex available in primates

(Markov et al., 2013b, 2014). It is a highly realistic structural
representation that includes the direction and numerosity of
axonal connections at the highest possible resolution (i.e., single
axon or projection neuron). Large-scale hierarchical network
dynamics were simulated by a bilaminar Wilson–Cowan model,
suitable for studying the oscillatory characteristics of feedforward
and feedback interactions (Mejias et al., 2016). First of all,
we aimed to extend the use of CD to weighted networks,
as this index has been defined and applied only for binary
graphs before (Négyessy et al., 2008, 2012; Bányai et al., 2011b).
To this end, a refined combination of existing methods was
developed for finding shortest paths in weighted graphs, which
favors robustness at the expense of a winner-take-all approach
(Newman, 2001, 2005; Opsahl et al., 2010; Avena-Koenigsberger
et al., 2018). The role of CD in cortical hierarchy was studied
by way of correlations, both with an anatomy-based hierarchical
index, and a frequency-dependent Granger causal coupling
measure that was previously used in unraveling the functional
hierarchy of the network (Bastos et al., 2015; Mejias et al.,
2016). Furthermore, several hierarchically relevant features of
the cerebral cortex are known that change gradually across
the large-scale network of areas (Barone et al., 2000; Markov
et al., 2014; Hilgetag et al., 2019; Hilgetag and Goulas, 2020;
Wang, 2020; Vezoli et al., 2021). Therefore, to better understand
the relationship between anatomical and topological features,
we examined the role of anatomical hierarchical distances, i.e
the pairwise difference in the levels that areas occupy in the
anatomical hierarchy.

2. MATERIALS AND METHODS

2.1. Networks
The network used for the edge removal experiments included
areas of the macaque visual, somatosensory and motor cortices
plus areas 46 and FEF of the prefrontal cortex. This network,
referred to as the visuo-tactile network from now on, is the
updated version of the one analyzed in our previous studies
(Négyessy et al., 2006, 2008). The updated network consists
of 44 nodes and 630 unweighted and directed edges. The
connectivity and areal designation of the visuo-tactile network
were updated with data from the core-nets.org database1

(Markov et al., 2014), complemented by extensive literature
search (the connectivity matrix along with differences compared
to the original network and the sources of information are
summarized in the Binary_Visuotact_44x44.xlsx table
included in the Supplementary Material).

Following Mejias et al. (2016) the dynamical simulations
were based on a graph of 29 macaque visual areas, connected
by 536 directed and weighted edges, which can be found
in multiple datasets publicly available from core-nets.org
(Markov et al., 2014); all data used were collected in the
Weighted_Visual_29x29.xlsx table included in the
Supplementary Material. This network comprises three types
of edge information based on retrograde tracing experiments:
(i) the physical distance of the projection, (ii) the anatomical

1http://core-nets.org/
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strength of the projection (fraction of labeled projection neurons,
FLN) used as network weights, and (iii) a hierarchical index of
the connections (ratio of the supragranular labeled projection
neurons, SLN) (Markov et al., 2014). Based on a single retrograde
tracer injection in area j, the FLN and SLN for the directed
connection from area i to area j can be written in equation
forms as:

FLN(i, j) =
No. of labelled neurons in i

Total no. of labelled neurons
, (1)

SLN(i, j) =
No. of supragranular labelled neurons in i

No. of supragranular + infragranular labelled neurons in i
.

Due to computational limitations, the final analyses, involving
spectral Granger causal interactions, were primarily done in a
selected 8 × 8 subgraph composed of areas V1, V2, V4, DP, 8l,
8m, TEO, and 7A, which were also the subject of previous studies
(Bastos et al., 2015; Mejias et al., 2016).

2.2. Graph Metrics
For every pair of nodes i and j ∈ V , one can define the length
of the shortest path between i and j, as the minimum number of
edges onemust traverse to reach j from i (dij). The diameter of the
cortical network is defined as the maximum of all shortest path
lengths over all i-j pairs. If the network is disconnected (i.e., there
exist i and j such that j cannot be reached from i), then the global
diameter is taken to be the largest of the diameters computed
for the individual components. The average shortest path length
(ASP) of the network is the average of the length of all shortest
paths for all i-j pairs:

ASP =

∑|V|
i=1

∑|V|
j 6=i dij

|V|(|V| − 1)
. (2)

The sum of the fractions of the number of shortest paths (ndij ) for
all node-pairs that traverse a given edge (e) is denoted as the edge
betweenness centrality (EB):

EB(e) =
|V|
∑

i=1

|V|
∑

i6=j=1

ndij (e)

ndij
. (3)

The cluster index (CI) of a given node quantifies how close the
node and its neighbors are to being a clique (a complete subgraph
where every node is connected to every other node in the clique)
(Watts and Strogatz, 1998). The global transitivity was calculated
as the cluster index of the whole network, which is the ratio of the
triangles and connected triples in the graph:

CI =
No. of triangles in the network

No. of triplets in the network

=
No. of connected triplets in the network

3×No. of triplets in the network
. (4)

The direction of the edges was ignored in computing CI. A
strongly connected component of a directed graph is a subgraph

in which there is a directed path between any two vertices in
both directions.

Eigenvalues characterizing robustness and synchronization
related to the topological properties of the graph were derived
from the graph Laplacian (Boccaletti et al., 2006). The second
smallest (λ2) and the largest (λN) eigenvalues were computed.
Since the Laplacian is a positive semidefinite matrix with zero
row sums, it always has the smallest eigenvalue zero with the
corresponding eigenvector [1, 1, 1, 1 . . . ]T . The second smallest
(and the largest) eigenvalue can be found by minimizing
(maximizing) the eigenvalue equation, xTLx, where x can be
vectors perpendicular to [1, 1, 1, 1 . . . ]T (Fiedler, 1973).

For the eigenratio, λ2/λN was used, which better indicated the
dependence of the effect of edge removal on λ2 compared to λN .

2.3. Convergence Degree (CD)
The degree of convergence and divergence was quantified by
the analysis of all shortest paths using the notion of CD
(Négyessy et al., 2008; Bányai et al., 2011b). CD is defined
as the normalized difference between the number of input
and target areas connected via a particular link of a directed
graph, specifically

CD(i, j) =
|In(i, j)| − |Out(i, j)|

|In(i, j) ∪ Out(i, j)|
, (5)

where In(i, j) denotes the set of nodes from where the shortest
paths containing edge (i, j) emanate, while Out(i, j) denotes the
set of nodes in which the shortest paths containing edge (i, j)
terminate. |In(i, j)| denotes the cardinality of the set In(i, j). In
the denominator the union is used because the input and output
sets may have non-empty intersections, which are not considered
here; see Bányai et al. (2011b) for a thorough treatise on the
overlap. Positive CD value indicates a convergent connection
since the input field of the connection contains more nodes than
the output field, while the opposite is true for divergent edges
characterized by negative CD values.

2.4. Node-Centric CD Representation
The positive and negative CD values of the incoming and
outgoing edges were summed separately for each area, resulting
in the node-centric CD representation of the network, called
node-reduced, or nrCD (Négyessy et al., 2008). Thus, every area
of the network is characterized by four numbers: the CD sum of
incoming edges with positive and negative CD values, and the CD
sum of outgoing edges with positive and negative CD values. The
four equations are:

nrCD+
in(i) =

1

n− 1

∑

j∈Ŵin(i)

2(CD(j, i))CD(j, i), (6)

nrCD−
in(i) =

1

n− 1

∑

j∈Ŵin(i)

2(−CD(j, i))CD(j, i), (7)

nrCD+
out(i) =

1

n− 1

∑

j∈Ŵout(i)

2(CD(i, j))CD(i, j), (8)
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nrCD−
out(i) =

1

n− 1

∑

j∈Ŵout(i)

2(−CD(i, j))CD(i, j), (9)

where 2 is a left-continuous unit step function, Ŵin and Ŵout are
the respective sets of neighbors of the given node i, and 1

n−1 is
a simple normalization term (n − 1 is the number of possible
incoming or outgoing edges a node can have in a network of n
nodes). These values are plotted as coordinates in a Cartesian
coordinate system, where the horizontal axis represents the total
incoming CD of the area, and the vertical axis represents the total
outgoing CD of the area (see Figure 5B for an example). The two
axes divide the coordinate system into four quadrants and each
area is represented in each quadrant according to Equations (6–9)
as follows:

1. In the top left quadrant, the outgoing positive CD sums
(Equation 8) are plotted as a function of the incoming negative
CD sums (Equation 7) for each area.

2. In the top right quadrant, the outgoing positive CD sums
(Equation 8) are plotted as a function of the incoming positive
CD sums (Equation 6) for each area.

3. In the bottom left quadrant, the outgoing negative CD sums
(Equation 9) are plotted as a function of the incoming negative
CD sums (Equation 7) for each area.

4. In the bottom right quadrant, the outgoing negative CD sums
(Equation 9) are plotted as a function of the incoming positive
CD sums (Equation 6) for each area.

The quadrants represent different functional properties in terms
of integration in the cortex: the combination of divergent
input (negative incoming CD sum) and convergent output
(positive outgoing CD sum) is, considering the information flow,
equivalent to allocating information in the network. This is
represented in the top left quadrant. In the opposite quadrant,
the combination of convergent input and divergent output
corresponds to source characteristics of the nodes (bottom
right quadrant).

To further characterize each area with a single value, the CD-
flow was defined as the difference in the means of incoming and
outgoing edge CD-s (Bányai et al., 2011b).

8(i) =
1

dout(i)

∑

j∈Ŵout(i)

CD(i, j)−
1

din(i)

∑

j∈Ŵin(i)

CD(j, i), (10)

where Ŵin and Ŵout are the respective sets of neighbors of
the given node, while din and dout denote its in- and out-
degrees. As the CD-flow is derived from the CD, it serves as
a topological hierarchical index: nodes lower in the hierarchy
have mainly convergent input and divergent output, while
hierarchically higher nodes have divergent input and convergent
output (Bányai et al., 2011b).

2.5. Randomization
To understand the organization of the macaque visuo-tactile
cortex, its properties were compared to random graphs generated
in two different ways. Erdõs-Rényi random graphs were
constructed with the same number of nodes and edges as in the
macaque visuo-tactile cortex. The other type of control network

TABLE 1 | Graph metrics of the cortical visuo-tactile network and its randomized

counterparts, the rewired and the Erdős-Rényi (ER) random graphs.

ER Visuo-tactile Rewired

Density 0.33 0.33 0.33

Reciprocity 0.33 ± 0.02 0.77 0.44 ± 0.02

Diameter 3 3 3.27 ± 0.45

ASP 1.671 ± 0.002 1.78 ± 0.67 1.71 ± 0.01

EB max. 11.26 ± 1.68 43.1 44.65 ± 4.98

EB mean 5.02 ± 0.07 5.33 ± 4.4 5.14 ± 0.03

CI 0.55 ± 0.01 0.61 0.62 ± 0.01

λ2 8.27 ± 1.28 2.84 4.1 ± 0.05

λmax 21.64 ± 1.26 30.08 29.77 ± 0.1

λ2/λmax 0.38 ± 0.07 0.09 0.14 ± 0.002

Mean ± sd are shown. In the randomized networks, standard deviation (sd) was

computed from 30 graph instances. ASP, average shortest path; EB, edge betweenness;

CI, global transitivity; λ2, algebraic connectivity; λmax , the largest eigenvalue; λ2/λmax ,

eigenratio.

was generated by rewiring the visuo-tactile network without
changing the degree distribution of the original cortical graph.
Each calculation was performed on 30 random graph instances
and the averaged graph properties are compared to the ones
obtained from the visuo-tactile cortical network. It should be
noted that the resulting randomized networks included a smaller
ratio of reciprocal connections, than the visuo-tactile network.
Basic properties of the visuo-tactile network and the randomized
counterparts are summarized in Table 1.

2.6. Edge Removal
Graph edges were attacked with two strategies: targeted and
random removals. In case of targeted edge removal, links
were successively eliminated according to the following criteria:
descending order of edge betweenness, descending and ascending
order of CD. The CD-based elimination was made by three
different means: (i) minimum CD (minCD, divergent edges), (ii)
maximum CD (maxCD, convergent edges), and (iii) absolute CD
(absCD, representing the convergence/divergence potential of an
edge). In targeted removal, all the relevant edge measures were
recalculated after each removal and edges were deleted according
to the recalculated values.

2.7. Weighted Shortest Paths
The standard Dijkstra’s algorithm for finding weighted shortest
paths works by minimizing the cost of traveling a sequence
of edges between the starting and ending nodes. The cost of
traversing an edge is generally taken to be the reciprocal of
its weight. Notably, this algorithm does not take into account
the number of edges (i.e., jumps) in a path, thus it returns
shortest paths in which the cost is minimized, but the number
of jumps might be quite high. Depending on the network,
this may lead to shortest path structures that are not accurate
representations of the most efficient communication channels
(Opsahl et al., 2010; Avena-Koenigsberger et al., 2018). One
option for resolving this problem is the inclusion of an extra
parameter in computing the costs: exponent α, quantifying a
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trade-off between the importance of the weights and the number
of jumps (Opsahl et al., 2010). The shortest path between nodes i
and j is then:

d(i, j) = min

[

1

wα
ik

+ . . . +
1

wα
lj

]

, (11)

where wxy is the weight of the edge (x, y), k . . . l are indices of
the areas in the path and the exponent α is the tuning parameter.
It can take any real positive value, but if α = 0, then the weights
lose influence and Dijkstra’s algorithm returns the binary shortest
paths, while α = 1 returns the standard procedure where the
number of jumps is neglected; between 0 and 1 the trade-off
is manifested.

Another problem with the standard approach for finding
weighted shortest paths is purely numerical. In fact, binary graphs
can be understood as a subtype of weighted ones, where the
path costs are “binned,” that is, they are integers, instead of
real numbers. Since integers provide much smaller variability
in a given interval, binary path lengths will fall into only a few
“categories,” i.e., many of them will have the same length. This
leads to the fact that in a binary graph usually there are several
shortest paths connecting any given node-pair. In weighted
graphs, on the other hand since the weights (and therefore the
costs) are real numbers, it is extremely rare that two path lengths
coincide, resulting in a shortest path structure that relies on a few
very popular edges. A side effect is that most of the edges are
excluded from the communication in the graph. There are a few
options for resolving this problem, one being to take multiple,
i.e., k-shortest paths between every node pair instead of only one
(Avena-Koenigsberger et al., 2017).

2.8. SLN-Based Anatomical Hierarchy and
Hierarchical Distance
Within an area the ratio of labeled supragranular layer projection
neurons (SLN) quantifies the hierarchical properties of an edge
in the large-scale anatomical network (Markov et al., 2014).
Specifically, an edge with a zero SLN value is assumed to
represent only feedback axonal projections, while an edge with
a maximal SLN of 1 is assumed to represent solely feedforward
projections. Any value between signifies a ratio of FF and
FB projections comprising that edge. Note that SLN is not
complementary for reciprocal edges, there can be FF- and FB-
type communication in both directions (e.g., between areas at
nearby hierarchical levels). Following Markov et al. (2014), the
hierarchical level of an area, based on the SLN values of its edges,
was computed by fitting a generalized linear model with a beta-
binomial distribution and a logit link function [note that Markov
et al. (2014) actually used a probit link, but as they point out the
two link functions give very similar results]. Refer to section 2
of the Supplementary Methods and to Markov et al. (2014) for
further details on the implementation.

In addition, the (anatomical) hierarchical distance was defined
as the pairwise difference in the SLN-based hierarchical levels
of areas. The sum of hierarchical distances (SHD) for a given
subnetwork equals to the summation of all pairwise hierarchical
differences between areas that make up the subnetwork.

2.9. Multi-Scale Dynamical Model
In order to investigate the relation between network structure
and dynamical interactions, a Wilson–Cowan-type multi-
scale dynamical model was implemented following closely
(Mejias et al., 2016). The model describes four embedded
levels of neuronal structure: (i) a mutually connected pair
of local excitatory and inhibitory populations forming the
basic circuitry of a given cortical layer, (ii) a macroscopic
cortical area is considered as a bilaminar structure modeled
by the interconnected basic laminar circuitry representing
the supragranular and infragranular layers, (iii) inter-areal
interactions were modeled by connecting the bilaminar
circuitries of two areas in a way that represents the hierarchical
laminar distribution of the feedforward and feedback anatomical
connectivity, and (iv) the large-scale cortical network was
modeled as the interconnected 29 areas, mainly in the
visual pathways.

The coupling of the supragranular and infragranular
circuits was tuned to oscillate in the gamma and alpha-beta
range, respectively. In laminar interactions, supragranular to
infragranular connections originated in, and targeted excitatory
populations, whereas infragranular to supragranular excitatory
connections targeted inhibitory populations. Inter-areal
connections were excitatory to model associational connections
of the pyramidal cells. Feedforward (FF) interactions were
formed between the excitatory populations of the supragranular
layers. In contrast, feedback (FB) excitatory connections targeted
both excitatory and inhibitory populations of the supra- and
infragranular layers. The ratio of FF and FB communication upon
a directed edge was determined by the ratio of supragranular
labeled projection neurons, SLN (SLN = 1 for solely FF, SLN
= 0 for solely FB, and a mixture of the two in-between). The
overall strength of inter-areal connections was determined by the
fraction of labeled projection neurons, FLN, and delay was added
to the coupling terms according to the physical distances of the
projections. This architecture reproduced the experimentally
observed bilaminar large-scale hierarchical dynamics of cortical
interactions with feedforward evoked gamma-range oscillation
in the supragranular layer and feedback induced alpha-beta-
range oscillation in the infragranular layer (Bastos et al., 2015).
A detailed description of the model including a table with the
parameters used (Supplementary Table 1) is provided in section
1 of the Supplementary Methods.

The simulated time series were used to compute the
conditional spectral Granger causality and the functional
connectivity in form of a frequency-dependent, directed
asymmetry index (DAI, detailed below) between nodes,
as described in Mejias et al. (2016), main text and
Supplementary Methods.

2.10. Conditional Spectral Granger
Causality Analysis
Granger causality (GC) quantifies the directed influence between
two processes, based on the ability to predict future values. In
particular, if the accuracy of predicting future values of process
X is improved by including information about process Y, with
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respect to the prediction considering solely values of X itself, then
one may say that Y “Granger causes” X. The spectral version of
the GC analysis works in the frequency domain instead of the
time domain. Conditional spectral GC is needed when one wishes
to compare more than two frequency spectra because a pairwise
comparison would include indirect effects from other sources,
making the comparison unreliable (Wen et al., 2013). Refer to
Wen et al. (2013) (Equations 2.22–2.36) for the exact formulation
used in the present work. The model we used was focused on GC
in the gamma and alpha-beta frequency ranges.

2.11. Directed Influence Asymmetry Index
(DAI)
Based on findings that show the layer-specificity of
synchronization frequency of cortical interactions, Bastos
et al. (2015) defined an index of functional hierarchy, called
directed influence asymmetry index (DAI). The DAI is the
normalized difference of the conditional Granger causality (GC)
spectra taken in the two directions between a pair of time series
recorded from a pair of cortical areas:

DAIs→t(f ) =
GCs→t(f )− GCt→s(f )

GCs→t(f )+ GCt→s(f )
, (12)

where the indices s and t signify the source and target area,
respectively. Note that DAIs→t(f ) = −DAIt→s(f ). The DAI
is a spectrum itself, and Bastos et al. (2015) found that
DAI values exhibit positive correlation with the anatomical
hierarchical index SLN in the gamma- and theta-frequency
bands, and negative correlation in the alpha-beta-band, in the
8 × 8 subnetwork they measured. A point estimate of the DAI
spectrum is the multifrequency-band DAI (mDAI), which is
calculated by averaging the DAI of the theta, beta and gamma
ranges (after inverting the beta values because of their negative
correlation with the SLN). Note that following (Mejias et al.,
2016) the theta band was not included in the analyses due to its
minuscule influence, therefore the mDAI is computed as:

mDAIi→j =
DAIi→j(γ )− DAIj→i(α)

2
, (13)

where the DAI for a given frequency range ω is:

DAI(ω) =

∫ ωmax

ωmin

DAI(f )df , (14)

where the alpha/low-beta range was taken to be 6–18 Hz, while
the gamma range was 30–70 Hz. Bastos et al. (2015) found
that the mDAI correlates well with SLN in the studied 8 × 8
subnetwork, and Mejias et al. (2016) showed that all correlations
can be reproduced by their multi-scale dynamical model applied
in the present study.

2.12. Implementation
For computations and illustrations concerning efficiency and
synchronizability, the Octave and the R environment was
used with the addition of the free igraph package2 for

2http://igraph.org/r/

graph generation, randomization, and shortest path calculation
(Csárdi and Nepusz, 2006). For the relaxed shortest paths,
the weighted convergence degree and dynamical simulations
a Python environment was used with the freely accessible
packages Numpy, Scipy, Pandas, Matplotlib, and Networkx. The
dynamical model of Mejias et al. (2016) was implemented in
Python with the help of their Matlab code that can be reached
on ModelDB3. The conditional spectral GC analysis had to be
implemented in Python, which was done based on Wen et al.
(2013) and relying on the framework of the spectral connectivity
package4.

3. RESULTS

3.1. Network Efficiency and
Synchronizability Depend Differently on
Edge Betweenness and Convergence
Degree
3.1.1. Effects of Edge Removal on Structural Integrity

and Global Efficiency
As a general observation regarding the results of the role of
edge properties on network resilience, there appeared to be a
broad overall similarity of the pattern of changes between the
cortical and control networks upon edge removal (Figures 1–
3). This finding indicates the generality of the studied network
properties. However, there were notable differences between
the different networks, which indicate the dependence of edge
property on the specificity of network architecture. Our analysis
was focused on the differences in vulnerability observed for the
different networks.

First, we were interested in how quickly the cortical network
disintegrates upon edge removal by different strategies. To
this end, the effect of attack was tested on global transitivity
(based on the cluster index, CI) (Figures 1A–C) and strong
connectedness (Figures 1D–F). In the cortical network, CI
was found very robust against edge removal with the highest
sensitivity to random attack (Figure 1B). Compared to the
cortical network, control networks were more vulnerable with
the highest sensitivity to the random attack, similarly as found
for the cortical network at least in the initial phase of edge
removal (Figures 1A,C). The CI can be especially sensitive to the
level of reciprocity, as it is computed by ignoring directedness
(i.e., disconnecting the triangles requires removing both of
the reciprocal edges). The CI was the highest in the cerebral
cortex (Table 1). Since clustering is proportional to the number
of triangles in the network, this finding also pints on the
importance of connected community structures of the cortical
network, which cannot be explained by its degree distribution.
Also, considering the balanced magnitude of convergence and
divergence via the reciprocal connections (Négyessy et al., 2008),
the lack of effect of absolute convergence degree (absCD) on CI
suggests that removing one of a reciprocal link results in the

3https://senselab.med.yale.edu/ModelDB/showmodel.cshtml?model=249589
4https://github.com/Eden-Kramer-Lab/spectral_connectivity
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FIGURE 1 | Effect of edge removal on the cluster index and strong connectedness. Cluster index and the number of strongly connected components are shown as

the function of stepwise edge removals in the upper (A–C) and lower (D–F) rows, respectively. Middle column shows results obtained in the binary visuo-tactile

network (B,E). Left and right columns show the results obtained in the Erdős-Rényi (ER) random graphs (A,D) and rewired randomized control networks (C,F),

respectively. The graphs show the result of the first 100 edge removals, while the insets contain the process for the entire graph. Edge properties were recomputed

after each step of removal. In randomized networks, the average of 30 graph instances is shown with shading indicating the standard deviation. Targeted edge

removal was executed according to maximum CD (maxCD), minimum CD (minCD), absolute CD (absCD), and edge betweenness (EB) values. The results of random

edge eliminations are also shown for reference.

decrease of absCD of the remaining link, i.e., the reorganization
of the CD properties among the remaining edges.

In contrast to CI, strong connectedness was very sensitive
to targeted edge removal in the cortical network, which
increased the number of disconnected components (i.e., in
terms of strong connectedness) right after deleting the first few
edges (Figure 1E). Strong connectedness was equally sensitive
to targeted removal based on edge betweenness (EB) and
CD with a smaller effect of absCD, but very robust against
random attack. In contrast to the cortex, randomized networks
showed high vulnerability of strong connectedness exclusively
to EB-based elimination (Figures 1D,F). Although, comparing
the control networks, it should be noted that the rewired
network behaved more like the cortical than the Erdõs-Rényi
(ER) random network upon edge removal, which indicates the
higher vulnerability of networks with non-homogeneous degree
distribution (Figures 1D–F). In the case of strong connectedness,
reciprocity can also play an important role as a large number of
random attacks were probably needed to eliminate both links of a

reciprocal pair. However, in strong connectedness the large effect
of EB indicates the additional role of high transmission links,
which usually connect network clusters. Based on the sensitivity
of strong connectedness to attack against edges, here and in the
following we graphically represent the results of removal of the
first 100 edges, while the results of removing all the edges will be
shown in the insets of the figures.

The average shortest path (ASP) as a measure of global
efficiency exhibited similar sensitivity to edge removal as found
for strong connectedness with the highest vulnerability shown
by the cortical network (Figures 2A–C). Also, regarding the
control networks, ASP of the rewired network was affected
similarly by edge removal to that of the cortical network while
the ER network exhibited higher robustness (Figures 2A–C). The
ASP was affected strongly by targeted attack and was resilient
to random edge removal (Figures 2A–C). Among the edge
properties, ASP was the most sensitive to EB-based elimination.
Contrary to what was observed on measures of network integrity
(Figure 1), which was vulnerable to the removal of both of
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FIGURE 2 | Effect of edge removal on global network efficiency. (A–C) present changes of the average shortest path, while (D–F) show changes of the diameter, as

the function of stepwise edge removals. Changes in diameter were smoothed by moving average with a 31 step window size. However, the non-smoothed original

data is also indicated by the lighter coloring of the lines. All the conventions and the layout of the plots are the same as in Figure 1.

the convergent and divergent connections but was resilient to
attacking edges based on absolute CD, ASP was vulnerable to
targeting edges irrespective of the links’ CD properties including
absCD. This result shows that ASP was not sensitive to the
convergence properties of the connections.

Diameter, the other index used as an indicator of global
efficiency, exhibited similar changes following edge removal
to that found in the case of strong connectedness and ASP
(Figures 2D–F). Accordingly, diameter decreased the most after
targeted attack by EB. In contrast, random attack resulted in a
different pattern by increasing the diameter due most probably
to the increase of the size of connected components which
disconnects in the later phase of edge deletion. That network
efficiency was mostly dependent on EB suggest the importance of
clustering, which is the highest in the cortical network (Table 1),
as inter-cluster links are usually high traffic “short cuts.”

3.1.2. Effects of Edge Removal on Synchronizability
The spanning of eigenvalues was the largest in the cortical
network exhibiting the smallest λ2 and the largest λN (Table 1).
In contrast, the range of eigenvalues was the smallest in the
ER random network. The λ2 and λN of the rewired network
differed less from those of the cortical than from the ER network,

which indicates the importance of degree distribution, and the
diversity of connectedness in the spectral properties of the graph
(Barahona and Pecora, 2002; Nishikawa et al., 2003; Chen et al.,
2012). These findings suggest that compared to the ER network,
which reaches a stable synchronous state easily, the architecture
of the cortical network supports a relatively slowly emerging but
richer pattern of synchronous oscillations (Almendral and Díaz-
Guilera, 2007; Arenas et al., 2008; Chen et al., 2012). Also, the
small λ2 suggests that cortical network is sensitive to bottleneck
properties, i.e., structural and functional disintegration upon
attack (Boccaletti et al., 2006), which is consistent with the
vulnerability as shown for indices of network efficiency and
strongly connected component (Figures 1D–F, 2).

The most remarkable difference of vulnerability between
the cortical and control networks appeared in the case of
synchronizability measured by λ2 (used in the plots as algebraic
connectivity) (Figure 3). Synchronizability was affected the most
by removing edges in the order of their minCD (Figures 3A–C).
In the cortex, synchronizability dropped to near zero after
removing just a few edges based on minCD, which indicates
the appearance of a strong bottleneck effect in the network
through divergent links. Although with some lag compared to
that seen for minCD, the cortical network was also vulnerable
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FIGURE 3 | Effect of edge removal on network integrity. (A–C) shows changes of the algebraic connectivity, (D–F) illustrate changes of the largest eigenvalue and

(G–I) demonstrate changes of the eigenratio, as the function of stepwise edge removals. Note the almost identical pattern of changes of the algebraic connectivity

and the eigenratio. The layout of the plots and the conventions are the same as in Figure 1.

when targeting edges according to absCD, which suggests the
sensitivity of the magnitude and/or sign of CD to edge removal
similar to that seen for the cluster index. Interestingly, in term
of synchronizability the cortical network was more robust to
EB-based deletion than both of the control networks. This
finding suggests that bottlenecks are not necessarily the links
with the highest traffic as determined by EB due to existing

alternative routes. Instead, our findings show the importance of
the impact of nodes on each other through the directed paths
in the networks. Most notably, it seems that global divergence
is an especially important network property by determining the
strength of influence (i.e., “sourcness”) via the links. In other
words, cutting away sources have a highly devastating effect on
network interactions as shown by synchronizability.
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In contrast to algebraic connectivity, the largest eigenvalue
was relatively resilient to targeted and random edge eliminations
(Figures 3D–F). However, it was notable that in the cerebral
cortex targeting edges by their minCD and maxCD values had
the opposite effect on the largest eigenvalue then seen in the
case of algebraic connectivity. The largest eigenvalue was highly
robust to edge removal by the minCD in the cortical network.
In addition, although, the highest vulnerability was found in
maxCD-based attacking, the effect of EB-based removal exhibited
similar susceptibility of the largest eigenvalue (Figure 3E). Also,
random and absCD-based attacking resulted in relatively small
differences of the change of the largest eigenvalue from that
observed following maxCD-based link elimination. In the ER
graph, all edge targeting strategies exhibited a similar effect on the
largest eigenvalue (Figures 3D–F). A further notable difference
was the relatively high resilience of the largest eigenvalue to
EB-based link targeting in the ER than in the other two
networks. Accordingly, in the cortical and rewired networks
the similarity of changes of the largest eigenvalue compared to
that seen in the ER network indicated the dependence of this
topological measure on the heterogeneity of degree distribution
(Figures 3D–F). Finally, the eigenratio was determined by the
higher vulnerability of algebraic connectivity than the largest
eigenvalues, and exhibited almost exactly the same pattern of
changes as shown for algebraic connectivity (Figures 3G–I).

It should be noted that in contrast to measures related
to global efficiency, graph spectral values, especially
synchronizability and eigenratio were affected differently
by edge removal in the cortical network and its randomized
counterparts including both the rewired and ER networks. This
observation is in accordance with the nature of graph metrics as
eigenvalues uncover unique, distinguishing topological features
of the networks unlike the other more simple indices used here.

3.2. Role of CD in Hierarchical Network
Dynamics
3.2.1. A Relaxed Weighted Shortest Path Structure
To compute the weighted shortest paths of the graph the
cost was defined as the product of the projection distance in
millimeters (the “length” of the edge) and the reciprocal of
the FLN (fraction of labeled projection neurons; the “strength”
of the edge). Thus, for a given connection, its distance was
directly, while its FLN value was inversely proportional to the
cost of traversing it. Note that neither the SLN (ratio of the
supragranular labeled projection neurons) nor any other explicit
hierarchical information was incorporated in the cost.

Applying the standard Dijkstra’s algorithm to these weights
resulted in shortest paths that take long detours (sometimes up
to 20 jumps) in pursuit of minimum cost instead of taking the
direct, although more expensive route. This is clearly unrealistic
since the signal arriving into an area has to pass through a myriad
neuronal somas, axons, and synapses, all of which impose a delay
on its flow that cannot be neglected respective to the relatively
quick propagation of action potentials along interareal axonal
bundles. The algorithm also returned a very sparse shortest
path structure, with only a few extremely popular edges being

responsible for the entirety of the signal flow upon the graph
(Figure 4C).

To resolve these problems, a major development of our
work was the joint employment and optimization of two extra
parameters in finding the shortest paths in a cortical graph. The
α tuning parameter was added to the cost as an exponent, and its
value determined a trade-off between the weighted cost (i.e., the
strength of edges) and binary cost (i.e., the number of jumps).
This way, the shortest weighted path between areas i and j can be
found as:

d(i, j) = min

[

(

FLNik

distik

)α

+ . . . +

(

FLNlj

distlj

)α]

, (15)

where dist is the distance in millimeters and k . . . l are indices
of nodes making up the path. To find the optimal value for α

both the number of zero EBw values (edges excluded from the
signal flow) and the highest EBw (the burden on themost popular
edge) were minimized while keeping α the highest possible
(to maintain the influence of the empirical weights). Figure 4A
shows this optimization process, which resulted in the optimal
α = 0.07, assigning much more cost to jumps than to weights.
Any value greater than that brings us back into the realm of long
detours, while lower values discard the information of weights.

The resulting shortest path structure was much closer to what
one would expect for a real-world network, although the number
of shortest paths was still less than a third of those found in the
binary case (812 against 2,903), which itself has a sparse structure.
This can be observed in Figure 4D, as a prevalence of edges that
support only a few shortest paths, and only a few that are 4-5
times more popular. In fact, at this point moderately meaningful
results can already be computed for the weighted convergence
degree (CDw), although due to the small number of shortest
paths, and the large number of edges with only one shortest path
(i.e., the edge itself), the CD will give a lot of zero values (both the
in- and out-set having only one element). This is not the case for
the CD computed on the binary graph (CDb) which shows very
few zero values, nor it is in line with previous findings that show a
very hierarchical order based on the CD, with a minimal number
of balanced edges.

These concerns were addressed by considering not a single,
but multiple, i.e., k shortest paths for each node-pair. This
method also increases robustness in the face of damage or
malfunction in the network structure, which is an observed
feature of many real-life networks, including the brain (Avena-
Koenigsberger et al., 2017, 2018). Investigating the statistics of
the EBw distribution in response to changes in k, the kurtosis
of the distribution emerged as the only statistic that changed
appreciably. This should not be surprising since more alternative
shortest paths reduce the load on the most popular edges by
dividing the communication among other edges, thus decreasing
the “tailedness” of the distribution (Figure 4B).

In response to these findings, optimization was done by joint
minimization of the kurtosis and the number of zero CDw edges,
resulting in the optimal parameter value k = 8 (Figure 4B).
With α and k chosen this way, this relaxed weighted shortest path
structure became similar to the binary case (i.e., it has several
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FIGURE 4 | Optimization of the parameters α and k. (A) The number of unused edges (those with a zero weighted edge betweenness, or EBw value) and the

exclusive popularity of a few edges (the maximum of all EBw values) were minimized while keeping the significance of the weights (α) at the highest value possible.

(B) Normalized EBw statistics and number of edges with a zero weighted convergence degree (CDw) as a function of k, i.e., the number of shortest paths considered

for each pair of nodes. The maximum, mean and standard deviation of the EBw did not change considerably. The kurtosis fell to a minimum around k = 6 and started

to increase again, while the number of zero CDw values reached a minimum around k = 8 and did not change significantly afterwards. Jointly minimizing the kurtosis

of the EBw and the number of zeros in the CDw resulted in an optimal parameter value k = 8. (C–E) Three adjacency matrices showing the EBw values as weights.

(C) Without the extra parameters, most edges were unused and the workload was unrealistically huge on a few super-popular edges. (D) The shortest path structure

resulting from the optimal α had a much more reasonable distribution. The number of zeros was the lowest possible (white cells in the matrix are absent edges),

although most edges supported only a single shortest path (i.e., the edge itself connecting the two nodes at its ends). (E) Applying the optimal k distributed the

communication load more evenly by placing more weight on barely frequented edges.

alternative but similarly short paths between any two nodes),
while also taking into account the empirical characteristics
of cortical projections (in the form of empirical weights;
Figure 4E).

3.2.2. Analysis of the Weighted CD
The relaxed weighted shortest path approach described in
the previous section allowed the exploration of the degree of
convergence/divergence in the weighted cortical network for the
first time. First we computed the binary (CDb) and the weighted
convergence degree (CDw) of the graph. The joint distribution
of CDw and CDb showed a highly significant positive correlation
according to the expectations since the binary network serves as
a backbone for the weights defined in the previous subsection.
Importantly, CDw exhibited a much more refined distribution
than the CDb, due to the larger number of shortest paths detected
by the relaxed shortest path approach, thus providing a more

realistic representation of the convergence degree in the weighted
than in the binary cortical network (Figure 5A).

For the complete understanding of CD characteristics of
the weighted network, the node-centric convergence degree
measures (nrCD and CD-flow) were also computed. Figure 5B
shows the nrCDw representation of the graph, which presents
the characteristic shape shown by Négyessy et al. (2008)
and Bányai et al. (2011b). Every node is present in all four
quadrants, quantifying different aspects of the CD-based signal-
coordinating capacity of the area the given node represents in the
network. In the (–,+) and (+,–) quadrants nodes align clearly in
a negative correlation between allocating and source attributes,
respectively. Area V1, which is on the bottom end of the CD-flow
hierarchy (totally source), is close to the origin in the (–,+) and
furthest from the origin in the (+,–) quadrant. The relay attributes
of the nodes represented in the (–,–) and (+,+) quadrants show
hyperbolic-like shapes, signifying a minimized relay character
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FIGURE 5 | Weighted convergence degree of the 29× 29 graph. (A) Linear correlation between the binary and weighted convergence degree values (CDb and CDw,

respectively). The binary graph had a relatively sparse shortest path structure, leading to a higher probability for zero CDb values. The weighted CD appeared more

“fine-grained,” i.e., most edges have a unique CDw value. (B) Weighted node-reduced CD (nrCD) plot following the convention of Négyessy et al. (2008) and Bányai

et al. (2011b). Note that every node is present in all four quadrants. The (–,+) and (+,–) quadrants show a clear negative correlation, while the other two quadrants

show hyperbolic-like distributions, signifying a highly hierarchical composition. (C) Average incoming and outgoing CDw values for the entire graph. The areas are

ordered by the CD-flow from the bottom-up. The same hourglass shapes can be seen as was reported by Négyessy et al. (2008), with mostly source areas residing in

the bottom half and allocating areas in the top half. (D) CDw values for the weighted 29× 29 graph, ordered by the CD-flow, revealing several interesting details about

the hierarchical organization of the signal flow structure. Most striking is the almost perfect gradient, perpendicular to the diagonal, moving from extremely convergent

(orange) to extremely divergent (blue) edges, with the zero CD edges mostly aligning in the middle, along the diagonal. Another clear feature is a densely connected,

rich club-like cluster of higher-order areas in the bottom right quadrant, in stark contrast with lower areas that exhibit a much sparser connection pattern. Note that

neither the edge betweenness nor the experimentally measured SLN shows such structure.

and therefore a markedly hierarchical organization of the signal
flow structure. Notably, the weighted version of the nrCD plot is
a more specific representation with fewer outliers than its binary
version (not shown).

Figure 5C shows the average incoming and outgoing CD
values of nodes, which were ordered by the CD-flow. The
observable hourglass shape also corresponds well to that reported
previously (Négyessy et al., 2008). According to the CD-flow
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FIGURE 6 | Relationship of the additive inverse of the weighted convergence degree (invCDw) with the SLN (fraction of supragranular labeled neurons) and the DAI

(directed influence asymmetry index, see the main text for complete descriptions) in the 8× 8 subgraph. (A) The invCDw and the SLN matrices of the 8× 8 subgraph,

the latter based on the data from Markov et al. (2014), as in Mejias et al. (2016). Both distributions are highly asymmetric. Both are ordered according to the

anatomical (SLN-based) hierarchy, therefore it shows that for this subgraph, convergent edges highly coincide with feedforward connections (upper triangle from the

diagonal), while divergent edges coincide with feedback connections (lower triangle). It is also clear just by looking at the color distributions, that area TEO would be

much lower, while frontal eye field areas 8m and 8l would be higher according to the CD-based ranking. Gray cells are NaNs, where there is no edge in the graph.

(B) There is a significant positive correlation between the SLN and the invCDw (p < 10−5). Note that invCDw was derived solely from the topology of the weighted

network; neither SLN, nor DAI were used in its calculation. Note also that except omitting extreme SLN values (0 and 1) similarly to Mejias et al. (2016), no outlier

exclusion was done in any of the plots in this work. (C) Spearman rank correlations for the invCDw and the DAI (green line) and the SLN and the DAI (gray line, a

reproduction of results by Mejias et al., 2016) as functions of frequency. The inset shows the p-values. The invCDw shows a significant negative correlation in the

alpha-band and a significant positive correlation in the gamma-band similar to that found for the SLN. Interestingly, the invCDw shows almost the exact level of

correlation in the alpha-band (for feedback connections) as the SLN, whereas in the gamma-band (for feedforward connections) it is somewhat lower. (D) There is a

significant positive correlation between the invCDw and the multifrequency DAI (mDAI, p < 10−6).

ranking, the hourglass shape signifies a gradient from source
to allocating nodes, in the bottom-up direction similarly as
found in the binary network (Négyessy et al., 2008). These
observations (Figures 5B,C) supported the usefulness of CDw as
an index of topological hierarchy in the weighted network of the
cerebral cortex.

Visualized by an adjacency matrix with areas ordered
by the CD-flow (Figure 5D) the asymmetric distribution
of CD-s is salient, with mainly convergent edges in the
lower triangle, divergent edges in the upper triangle and a
gradual change through more neutral CD-s between these
two extremes. Remarkably, a clear tendency can be discerned
with higher-order areas forming significantly more connections

than lower-order areas. This clusterization resembles a rich
club that was not reported in the case of SLN and adds
further support for the reliability of using CDw in exploring
the unique topological properties of the cerebral cortex
(van den Heuvel and Sporns, 2011).

3.2.3. Correlations of Topology, Anatomy, and

Dynamics in the 8 × 8 Susbgraph
The relationship between the topological, anatomical and
functional hierarchies, namely CDw, SLN, and DAI was studied
on the 8 × 8 subnetwork that was also analyzed by Mejias
et al. (2016) (Figure 6A). Previous studies have shown a close
relationship between SLN and DAI (Bastos et al., 2015), a fact
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FIGURE 7 | Relationship between the DAI and the edge betweenness (EBw with α and k) for the 8× 8 subgraph. The layout is the same as for Figures 6C,D. In

contrast with the CD, no significant correlations can be seen either with the DAI (A) or with the mDAI (B).

that Mejias et al. (2016) built their model upon. Here we asked if
CDw is correlated with SLN and especially withDAI. AsNégyessy
et al. (2008) reported, there is an inverse relation between
CD and the hierarchical characteristics of the connections:
positive CD values represent convergent edges, which in turn
correspond to feedback communication, and an SLN value
close to zero; conversely, negative CD edges are divergent and
match feedforward connections, i.e., SLN values close to one.
Accordingly, to make the comparisons more evident, the additive
inverse of the CD (denoted as invCD) was used in the analysis.
This did not change the results in any way, it only serves the
purpose of a more consistent visualization.

It is important to emphasize that the invCDw was derived
from edge properties that did not include any anatomical
(SLN) or functional (DAI) hierarchical information, only the
anatomical strength (the fraction of labeled projection neurons,
FLN) and length (physical length of the projection inmillimeters)
of the connections used for the “relaxed” shortest path analysis.
Therefore, it is quite remarkable, that a significant positive
correlation was found between invCDw and SLN (r = 0.643, p <

1e − 5, Figure 6B), as well as between invCDw and DAI/mDAI
(r = 0.668, p < 1e − 6 for mDAI, Figures 6C,D). Note that
both comparisons were computed also with the binary CD of
the graph, but the correlations were weaker in this case (r =

0.554, p < 1e−3 with the SLN and r = 0.497, p < 1e−3 with the
mDAI, not shown), which is an indirect proof of the reliability
of the relaxed weighted shortest path structure. Note also that
in Figure 6C the frequency-dependent correlation between SLN
and DAI (see SLN×DAI, gray line) was reproduced fromMejias
et al. (2016). A remarkable finding was the close correspondence
of the invCDw- and SLN-based correlations shown in Figure 6C,
which was further studied as described in the following section.
In contrast, the edge betweenness of the relaxed weighted shortest
path structure did not show any of these correlations (Figure 7).

Since the shortest path structure of the weighted graph has two
arbitrary parameters it was important to see how these affect the

observed correlations. To test this, the joint optimization of the α

and k parameters was computed (Figure 8). In general, for both
the SLN- and the mDAI-correlation increasing α (i.e., assigning
greater importance to the weights and less to the number of
jumps) decreases the magnitude of the correlation. After setting
α to the optimal range ca. between 0.25 and 0.75 increasing k also
increased the correlations in both cases.

According to Figure 8A, to achieve a maximal correlation in
the invCDw × SLN case, an α of 0.1 and a very high value for
k (specifically 19 by limiting its maximal value to 20) would fit
the most; in the EB-based tuning procedure for k (Figure 4B)
such high values were not even considered (only k ∈ [1, 15]).
Notably, the correlations of CDw with SLN and mDAI differed
regarding the most optimal values of α and k. According to
Figure 8B, the correlation between invCDw and mDAI shows
a maximum for the parameter values α = 0 and k = 10,
but there are several other combinations that are only slightly
lower. Although the results of our EB-based optimization (α =

0.07 and k = 8) were slightly less optimal for both cases, it
can be surmised that using the higher values determined by
invCDw× SLN and invCDw×mDAI would mean overfitting
the data. Therefore, the EB-optimized values provide a more
general solution, showing indirect support for the usefulness of
our relaxed weighted shortest path detection technique. Further
testing might illuminate the exact nature of the dependency of
the correlations on α and k.

3.2.4. Correlations in Samples of 8 × 8 Subgraphs
To unravel the correlations found on the previously selected 8×8
subgraph, the simulations were repeated on random samples of
subgraphs withmatching size taken from the entire visual cortical
network. Reducing the size of the network to 8 nodes was also
justified by the necessity to keep computational requirements
below the capacity limit since the inclusion of more nodes in the
dynamical simulations and especially the calculation of causality
is computationally highly demanding tasks; the computation
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FIGURE 8 | The tuning parameter dependencies of the linear correlations for the invCDw with the SLN (A) and with the mDAI (B) for the 8× 8 subnetwork. Blue

markers show the optimized α and k (see Figure 4), while red markers denote the absolute maxima of the 2D arrays. Note that the blue markers fall in the highly

optimal regime in both cases. The notations are the same as in the previous figures.

of the anatomical and topological correlations did not require
such extra computational capacities. The correlation of SLN
and invCDw was therefore computed in 10,000 (Figure 9A),
while mDAI correlations were computed only for 200 unique
random samples (Figure 9B). In both cases the histograms
show that the correlation coefficients vary in a wide range
([−0.619, 0.928] for SLN and [−0.387, 0.889] formDAI), and that
the reference 8 × 8 subgraph resides in the positive tail of the
distributions (r = 0.643 with SLN and r = 0.668 with mDAI);
although there were subgraphs in which the correlations were
even higher.

The joint distribution of invCDw× SLN and
invCDw×mDAI values exhibited a highly significant positive
correlation (Figure 9C) implying that the invCDw correlates
with mDAI through the SLN. The reason for this strong
correlation is that SLN is includedas a parameter in the dynamical
model (Mejias et al., 2016; see also Supplementary Table 1).
However, it is also clear that high correlations exist only for
a small set of the randomly selected 8 × 8 sub-networks
(Figure 9C). The joint distribution of the invCDw×mDAI and
the SLN×mDAI values (Figure 9D) supported this observation
by exhibiting a stronger relationship toward higher values.
However, there was also a relatively large variability, especially
for lower values.

Therefore we looked for other factors that might determine
the correlation magnitudes, especially considering the CDw-
and the SLN-based hierarchies. As shown in Figures 10A,B

both hierarchies change gradually. However, the majority of the
areas had a very different position in the two hierarchies, i.e.,
areas exhibited different anatomical and topological properties
(Figure 10B). Furthermore, in the topological, CDw-based

hierarchy the areas align mostly linearly, while in the anatomical,
SLN-based hierarchy the hierarchical distances have a long-tailed
distribution (Figure 10C). Exploratory analysis suggested that
the SLN× invCDw correlation depends primarily on the sum of
SLN-based hierarchical distances in the random subgraphs, i.e.,
the total sum of the given 8 × 8 adjacency matrix containing
the absolute differences in the anatomical hierarchical values
between each pair of areas (sum of hierarchical distances, SHD;
SLN× invCDw corr. with SHD in 10,000 samples, r = 0.541;
Figure 10D). The correlation was similar in the 200 samples,
where dynamics and causality were computed (invCDw×mDAI
corr. with SHD in 200 samples, r = 0.479, p < 1e− 12). This fact
is mostly due to area V1, which acts almost as an outlier, making
the distribution of the sample sum of hierarchical distances
bimodal (Figure 10E). The hypothesis that SLN× invCDw
correlation depends mostly on the magnitude of hierarchical
distances is further corroborated by the finding that leaving
out areas in the random sampling procedure according to their
place in the SLN-based hierarchy changes the SLN× invCDw
correlation in a predictable manner (Figures 10F,G). Specifically,
if areas from the top of the hierarchy (where hierarchical
distances are small) were left out, the SLN× invCDw correlation
increases. In contrast, leaving out areas from the bottom
of the hierarchy (where distances are large) decreased the
SLN× invCDw correlation.

4. DISCUSSION

Despite its clinical relevance (van den Heuvel and Fornito,
2014; Griffis et al., 2019; Horien et al., 2020), few studies
investigated the effects of link failure on the structural and
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FIGURE 9 | Relationship between SLN, DAI, and invCDw in 8× 8 subgraphs sampled randomly from the entire 29× 29 graph. (A) Distribution of the SLN× invCDw

correlation values in 10,000 unique 8× 8 subgraphs. (B) Distribution of the invCDw×mDAI correlation values in 200 unique 8× 8 subgraphs. The relatively small

number of samples is due to the simulation of the dynamics (and therefore the DAI) being very expensive computationally. (C) A strong correlation was found between

the invCDw×SLN and the invCDw×mDAI correlations in the 200 random samples. (D) In general, invCDw×mDAI and the SLN×mDAI did not correlate in the 200

random samples. Strong correlation appeared only in a relatively small number of higher values (upper right quadrant demarcated by the dashed lines). The orange

dot indicates the reference 8× 8 subgraph studied with higher detail. The notations are the same as in the previous figures.

functional integrity of cortical networks. The targeted edge
removal used in this study provides evidence indicating that
distinct topological properties of links play different roles in the
vulnerability and thereby the functionally important structural
properties of the network of the cerebral cortex, which can have
important clinical implications. Kaiser and Hilgetag (2004) and
Kaiser (2007) have shown that the cortical network is particularly
vulnerable to edge betweenness (EB)-based edge elimination.
We found here that EB is more important in communication
efficiency of the network by showing that EB-based attack to
links affects mostly the average shortest path and diameter. On
the other hand, convergence degree (CD) was found to play
a significant role in synchronizability, i.e., the propensity for
oscillatory dynamics of the cortical network. We also found
that synchronizability was affected by the targeted elimination
of the divergent forward connections and showed mild
sensitivity when attacking the convergent backward connections,
which point to the importance of hierarchical dynamics in
brain diseases.

Up to now convergence degree has been computed only
in binary networks (Négyessy et al., 2008, 2012; Bányai et al.,
2011b). Our findings show that the CD can also be computed for
weighted networks (denoted CDw), increasing the power of this
index zin network analysis. To obtain a realistic representation
of CDw, we introduced a new joint optimization technique of
weights that results in finding an improved, relaxed weighted
shortest path structure of the large-scale cortical network. The
relaxed shortest path structure shows robustness by having
several alternative pathways between every node pair (in contrast
to the single one found via the standard Dijkstra’s algorithm), and
it also solves the problem of unrealistically high binary lengths
that the purely weight-minimizing approach results in Opsahl
et al. (2010) and Avena-Koenigsberger et al. (2018). Furthermore,
unlike other measures, specifically SLN and EB, CDw exposed a
densely connected component of higher-order areas resembling
the rich club of the cortical network, further supporting the
significance of CD in understanding the functionally and
pathologically important topological properties of the cerebral
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FIGURE 10 | Spread of hierarchical distance determined the SLN× invCDw correlation in 8× 8 subgraphs sampled randomly from the entire 29× 29 graph.

(A) CD-based hierarchy of areas in the entire graph. (B) SLN-based hierarchy of areas in the entire graph, with the corresponding CD-based hierarchical values also

shown. The two hierarchies did not correlate in the full graph. (C) Distribution of SLN-based hierarchical distances for the entire graph. (D) The sum of SLN-based

hierarchical distances (SHD) showed a highly significant positive correlation with the SLN× invCDw correlation in the random sample of subgraphs. (E) The overall

large hierarchical distances of V1 (see B) significantly influenced the distribution of sample sums of hierarchical distances (SHDs). The bimodal histogram turned to

unimodal after omitting V1 (SHD w/o V1). (F,G) The SHD and SLN× invCDw correlation changed in a consistent manner by leaving out nodes from subgraph

sampling according to their position in the SLN-based hierarchy. The omission of the top areas increased the correlation (F) while leaving out bottom areas decreased

the correlation (G). This result implies that in the ideal case of large anatomical hierarchical distances, the correlation between the invCDw and the SLN and thereby

between the invCDw and the mDAI would be maximal. The notations are the same as in the previous figures.

cortex (Collin et al., 2016; Griffa and Van den Heuvel, 2018).
Interestingly, a strong correlation was found between the CDw-
based topological hierarchy and the experimentally observed
SLN-based hierarchy in a subnetwork studied previously by
experimental and modeling investigations (Bastos et al., 2015;
Mejias et al., 2016). In contrast, EB neither correlated with
CD nor with SLN. However, random sampling of subnetworks
indicated that correlations between CD and SLN exist only
in a small subpopulation of subnetworks in the visual cortex.
The highly correlated population of subnetworks exhibited large

aggregate hierarchical distances between the constituting areas.
We showed that in accordance with the SLN-based anatomical
hierarchy, where only a few bottom level areas exhibit high
distances while at higher levels there is only a smooth gradual
change, removing the bottom areas from the sampling results
in a significant decrease of correlation between CDw and SLN.
These observations provide further insight into the flexibility
of hierarchical organization both in terms of topology and
dynamics (Hilgetag et al., 2000; Mejias et al., 2016; Vezoli et al.,
2021).
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4.1. Complementary Role of Associational
Connections in Network Organization and
Cortical Pathology
The results of this study support previous observations on the
vulnerability of the large-scale network of the cerebral cortex to
edge removal and extend them by showing that different edge
properties, based on network topology, play a complementary
role in network integrity. The present analysis highlights the
significance of CD in the vulnerability of the cortical network
by showing that removing edges based on CD values affects
characteristic network properties as much as found after EB-
based removal of the connections (Kaiser and Hilgetag, 2004;
Kaiser, 2007). Accordingly, the cortical network fragmented
quickly due to targeted attacks, as measured by the number of
strongly connected components. The cortex was resilient against
random attack in terms of strong connectedness. Regarding
aggregation, the network appeared to be robust against all kinds
of edge removal strategies as shown by the slow and initially mild
change in transitivity. In fact, transitivity was the most sensitive
to random edge deletion, due probably to the relatively high level
of reciprocity of the cortical network analyzed.

Global efficiency plays an important role in network
communication (Avena-Koenigsberger et al., 2018). Measured
by the average shortest path and diameter, the global efficiency
was sensitive to targeted attacking strategies but robust to
random edge removal similarly as reported previously (Kaiser
and Hilgetag, 2004; Kaiser, 2007). We found that efficiency
depends more on EB than CD. In contrast, synchronizability
exhibited higher vulnerability to CD- than EB-based targeting.
These findings about the complementary role of EB and CD
in vulnerability can be explained by the fact that both are
computed from shortest paths, therefore these are not mutually
exclusive but rather complementary indices. Also, the fact that
EB represents the number of shortest paths can explain why
global efficiency relies more on EB than CD. On the other hand,
by expressing the relative number of input and target areas
connected by shortest paths, CD apparently captures a deeper
meaning of network topology and makes it a closer counterpart
of spectral graph metrics (Newman, 2003; Boccaletti et al., 2006).

An interesting observation of the present study was the
different role of edges with divergent and convergent CD
properties (characterizing forward and backward connections,
respectively) in network resilience. While targeting divergent
forward connections significantly affected synchronizability,
elimination of convergent backward links exhibited small
effects on network integrity. Considering that synchronizability
is sensitive to bottleneck effects, our findings suggest that
weakening forward interactions results in disintegration of the
network by detaching source nodes. In contrast to algebraic
connectivity, the largest eigenvalue is robust to link failure, which
shows that the synchronizing capacity remains high even in a
fragmented form of the network. These apparently contradictory
findings can be resolved by considering the presence of a
robust, densely connected rich club of high degree nodes,
as shown previously and also in the present study (Harriger
et al., 2012; Griffa and Van den Heuvel, 2018). Accordingly, in

agreement with our findings that show the sensitivity of the
largest eigenvalue to the heterogeneity of degree distribution
(i.e., the higher sensitivity of the cortical and rewired networks
compared to the ER random graph), the largest eigenvalue
depends strongly on the degree of vertices and paths connecting
them (Barahona and Pecora, 2002; Nishikawa et al., 2003;
Arenas et al., 2008; Chen et al., 2012). Interestingly, edge
removal changes the absCD, which suggests that forward-like
and backward-like convergence properties of the links can
change resulting in the reorganization of network topology.
It follows that removing divergent edges not only detaches
peripheral nodes or groups of them but turns the outputs
of such nodes to highly divergent links connecting the few
peripheral nodes to the relatively large core of the network.
This view is consistent with the bow tie-like core-periphery
organization of the hierarchical cortical network (Markov et al.,
2013b). It is interesting to note, that the sensitivity of the largest
eigenvalue to removing the convergent backward connections
may indicate that the functionality of the rich club depends
mostly on feedback interactions and may also point to the
importance of top-down interactions in brain disease (Bassett
et al., 2008; Bányai et al., 2011a; Silverstein et al., 2016; Raj
and Powell, 2018; Perry et al., 2019). In addition, as edge
removal changes the convergence properties of connections,
it can result in the integration of inconsistent information
and, as a consequence, may change the functional coupling of
nodes in the core of the network. This hypothesis would be
consistent with observations of weakening interactions between
high degree nodes in brain disease (Bassett et al., 2018). Our
findings make important contributions to the understanding of
the network mechanisms of disconnection syndromes (Catani
and Ffytche, 2005) or in a broader term connectopathy
(Collin et al., 2016).

4.2. Partial Correlation of Topological and
Anatomical Hierarchies Support Flexible
Hierarchical Dynamics
The average correlation between SLN and CD is low, and
due to the dynamical model used (which includes SLN as a
coupling parameter), the CD has a low average correlation with
mDAI representing the Granger causal hierarchical interactions
between areas in the network analyzed. However, the CD can
exhibit high correlation in subpopulations of interacting areas,
but only in cases where SLN-based hierarchical distances between
the areas are large. In the visual cortex, only low-level areas
exhibit high SLN-based hierarchical distances. This observation
suggests that CD-based topological hierarchy primarily shapes
low-level visual cortical processing. However, the visual cortex
is a subnetwork of the cerebral cortex, and the hierarchical
ordering, especially the one based on CD, can change by
including more areas. As long as the complete anatomical
network of the macaque cerebral cortex is not available, the
question of correlation between SLN- and CD-based hierarchies
cannot be clarified.

Another potential difficulty regarding the correlation of
anatomical and topological hierarchies is that both SLN and
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CD exhibits smooth gradual change. In the case of SLN, except
for the few low-level areas at the bottom, the hierarchical
distance is very small, especially between middle-tier areas in
the visual cortex (Mejias et al., 2016; Vezoli et al., 2021).
Therefore, slight changes can result in very different ordering
in the hierarchical position. Accordingly, the hierarchy of the
cerebral cortex is not completely determined (Hilgetag et al.,
2000), even when computed by exact metrics like SLN (Vezoli
et al., 2021). In fact, the cerebral cortex exhibits hierarchical
organization in many different means including anatomical,
physiological and topological (Hilgetag and Goulas, 2020).
Therefore, the organizational complexity allows some functional
flexibility via the interplay of these multiple kinds of hierarchical
characteristics, which is supported both by experimental
observations and modeling, showing the hierarchical jump of
areas in response to changing patterns of activities (Bastos et al.,
2015; Mejias et al., 2016).

Further hierarchical uncertainties and larger computational
flexibility may arise from the dual counterstream organization
of the feedforward (FF) and feedback (FB) pathways, which,
in addition to the major stream of mid-upper layer FF and
deep layer FB organization, opens possibilities for top-down and
bottom-up interaction within the upper and deep layers of the
cerebral cortex, not only across them (Markov et al., 2013a; Vezoli
et al., 2021). However, this complexity of inter-areal hierarchical
circuitry was not included in the model applied here, and it is
hard to predict its exact role in spectral causal coupling in the
cortex with diverse oscillatory dynamics (Buzsáki and Draguhn,
2004; Wang, 2010).

Altogether, the results of this study indicate that network
topology based on CD fits well with hierarchical dynamics until
the anatomical and topological hierarchies correlate strongly.
However, the diverse ways of hierarchies may contribute
differently to cortical dynamics in a contextual manner (Bastos
et al., 2020; Vezoli et al., 2021). Accordingly, an architecture
with multiple and gradually changing hierarchies provides room
for a flexible, dynamical rearrangement of functional hierarchies
(Bastos et al., 2015; Mejias et al., 2016; Hilgetag and Goulas,
2020).Most notably, this flexibility of interaction dynamics seems
to be a characteristic feature of high-level areas forming the core
of the cerebral cortex.
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