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ABSTRACT Oat (Avena sativa L.) has a high concentration of oils, comprised primarily of healthful un-
saturated oleic and linoleic fatty acids. To accelerate oat plant breeding efforts, we sought to identify loci
associated with variation in fatty acid composition, defined as the types and quantities of fatty acids. We
genotyped a panel of 500 oat cultivars with genotyping-by-sequencing and measured the concentrations of
ten fatty acids in these oat cultivars grown in two environments. Measurements of individual fatty acids were
highly correlated across samples, consistent with fatty acids participating in shared biosynthetic pathways.
We leveraged these phenotypic correlations in two multivariate genome-wide association study (GWAS)
approaches. In the first analysis, we fitted a multivariate linear mixed model for all ten fatty acids simulta-
neously while accounting for population structure and relatedness among cultivars. In the second, we
performed a univariate association test for each principal component (PC) derived from a singular value
decomposition of the phenotypic data matrix. To aid interpretation of results from the multivariate analyses,
we also conducted univariate association tests for each trait. The multivariate mixed model approach
yielded 148 genome-wide significant single-nucleotide polymorphisms (SNPs) at a 10% false-discovery
rate, compared to 129 and 73 significant SNPs in the PC and univariate analyses, respectively. Thus, explicit
modeling of the correlation structure between fatty acids in a multivariate framework enabled identification
of loci associated with variation in seed fatty acid concentration that were not detected in the univariate
analyses. Ultimately, a detailed characterization of the loci underlying fatty acid variation can be used to
enhance the nutritional profile of oats through breeding.
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Oat (Avena sativa L.) is a nutrient-rich human and animal food source.
Recent studies have revealed the numerous beneficial effects of oat
consumption on human health, from reduction in cardiovascular dis-
eases risk (Grundy et al. 2018) to cancer prevention (Meydani 2009).
These positive health effects are likely due to oat’s unique nutritional
profile, which differs markedly from that of other cereals, notably in the
complement of essential amino acids, fatty acids, b-glucan, and phe-
nolic compounds (Butt et al. 2008). In particular, lipids account for as
much as 18% of the oat grain (Halima et al. 2015). Moreover, these
lipids are predominantly composed of unsaturated fatty acids, ren-
dering oats a healthful energy source in human and animal diets.

In response to the growing awareness of oat’s health-promoting prop-
erties, nutritional quality has become a key target for oat breeders.
Maintaining and/or optimizing lipid composition is an important com-
ponent of these efforts (Valentine et al. 2011).

To date, researchers have primarily investigated the genetic basis of
variation in fatty acid composition by mapping quantitative trait loci
(QTL) in biparental populations (Hizbai et al. 2012). However, the use
of such QTL in marker-assisted selection (MAS) is likely only effective
if the parents in the mapping population exhibit trait variation and are
closely related to lines in the relevant breeding populations (Snowdon
and Friedt 2004). A genome-wide association study (GWAS) can
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mediate this limitation if the population in which the GWAS is con-
ducted captures the genetic variation present in the target breeding
population(s) (Lipka et al. 2015). Indeed, a GWAS can identify allelic
diversity associated with trait variation in complex plant pedigrees
when both genotypic and phenotypic data are available. In several
agricultural crops, GWAS have provided insight into the genetic ar-
chitecture of oil composition in crops such as maize (Zea mays L.;
Cook et al. 2012; Li et al. 2013), rapeseed (Brassica napus L.; Gacek
et al. 2017), and soybean (Glycine max (L.) Merr.; Zhang et al.
2018). To our knowledge, researchers have not yet conducted a
GWAS of seed oil traits in oat though, small-scale surveys suggest
substantial phenotypic diversity is present in existing oat germ-
plasm (Saastamoinen et al. 1989; Leonova et al. 2008). Thus, we
aim to uncover the genetic basis of fatty acid composition in cul-
tivated oat as a foundation for improvement of oat nutritional
quality through genomics-assisted breeding.

Historically, a GWAS considered a single-trait or multiple traits
independently. To capitalize on the increasing quantity and complexity
of phenotypic data, GWASmethodswere developed to analyzemultiple
traits simultaneously. The primary benefit of multi-trait GWAS is that
phenotypic correlations can increase statistical power to detect associ-
ation signals relative to univariate methods (O’Reilly et al. 2012; Korte
et al. 2012; Stephens 2013, Zhou and Stephens 2014). Several ap-
proaches leverage trait correlations in the univariate linear mixed
model framework. When there is a direct relationship between two
phenotypes, their ratios can be used as the phenotype in a univariate
GWAS. This approach lowers variance and conceptually targets a me-
diator of the phenotypes, such as an enzyme that converts one metab-
olite to another (Gieger et al. 2008). Another approach combines test
statistics from univariate GWAS of each trait in order to detect genetic
variants with pleiotropic effects (Yang et al. 2010). In addition, di-
mension reduction techniques, such as principal component anal-
ysis (PCA), can be used to derive transformed phenotypes as inputs
for univariate GWAS (PC-GWAS). By combining signals across
many traits, PC-GWAS captures genetic signal associated with both
single trait and pleiotropic effects, resulting in increased statistical
power in many instances (Aschard et al. 2014). In addition, PCA
provides a principled method to identify which linear combinations
of traits to use in a GWAS. Finally, the association between a genetic
variant and multiple traits can be directly modeled in a multivariate
linear mixed model (O’Reilly et al. 2012; Korte et al. 2012; Zhou and
Stephens 2014). We refer to the multivariate mixed model approach
as multi-GWAS in order to differentiate this method from PC-GWAS
which ultimately relies on a univariate linear mixed model for testing
genetic associations.

Multivariate GWAS approaches are well-suited for genetically dis-
secting metabolic networks, because the abundances of precursors,

intermediates, and products are likely correlated due to metabolic flux.
Here,wepresent aGWASof seed fattyacid content andcomposition ina
diverse germplasm collection of cultivated oats. We compared single-
trait, univariateGWASon theabundanceof ten fatty acids and their total
with twomultivariateGWASmethods:GWASof principal components
(PC-GWAS) andGWASwithamultivariatemodel that accounts for the
abundance of all fatty acids simultaneously (multi-GWAS). These
multivariate GWASmethods detected several novel loci associatedwith
distinct effects on fatty acid composition and previously identified loci.
Conservation of fatty acid metabolism across plant species (Figure 1;
Li-Beisson et al. 2013) allowed us to preliminarily interpret our GWAS
results despite the lack of a reference genome sequence for hexaploid
oat. Aside from providing new insights into the genetic control of fatty
acid composition in oat germplasm, our results suggest that multivar-
iate approaches will be useful for improving the power of GWAS of
compositional or other highly correlated traits that share a common
genetic basis.

MATERIALS AND METHODS

Germplasm
Weassembleda1,012 linediversitypanel foroat,consistingof391 inbred
lines from the AFRI Core collection (Esvelt Klos et al. 2016), 219 inbred
lines from Iowa StateUniversity (Newell et al. 2012), and 402 lines from
a selection experiment conducted at Iowa State University composed of
20 inbred parents and 382 Cycle 1 or Cycle 2 individuals (Asoro et al.
2013). In 2014, the diversity panel was grown in an augmented field
design with one replicate in each of two locations, with distinct soil
types, near Ithaca, NY in 2014. Seeds were harvested, dried, and
mechanically dehulled (Codema LLC, Maple Grove, MN, USA), as
previously described (Montilla-Bascón et al. 2017). After visual inspec-
tion, any residual hull material was manually removed with a razor
blade. Using the CDmean method of Rincent et al. (2012), which
maximizes the genetic diversity relative to the larger source population,
we selected a 500 line subset of the diversity panel for further analysis.

Genotyping
A single seed from each line was planted in a greenhouse in Ithaca, NY.
After four weeks, leaf tissue was collected for genotyping. DNA extrac-
tion and library preparation for genotyping-by-sequencing (GBS) were
performed at Kansas State University (Poland and Rife 2012). Briefly,
we extracted genomic DNA with the CTAB method as previously de-
scribed (Esvelt Klos et al. 2016) and constructed 96-plex GBS libraries
using the restriction enzymes PstI andMspI (Poland et al. 2012). Each
library was then sequenced on a single Illumina HiSeq 2000 lane by the
Cornell University Biotechnology Resource Center Genomics Facility.

Genotypes were called using the genotyping pipeline Haplotag, as
this pipeline does not require a reference genome sequence (Tinker et al.
2016). Subsequently, single-nucleotide polymorphisms (SNPs) were
mapped to a published consensus genetic linkage map generated from
15 bi-parental mapping populations (Chaffin et al. 2016, Bekele et al.
2018). We filtered SNPs using the following criteria: 1) biallelic; 2) mi-
nor allele frequency (MAF) . 2%; 3) site missingness , 60%; and 4)
site heterozygosity , 10%. After initial SNP filtering, eight lines with
more than 80% missing data and/or 10% heterozygous genotype calls
were excluded from further analysis. To remove SNPs providing re-
dundant information, we calculated Pearson’s correlation coefficient (r)
for all pairwise combinations of SNPs, where missing data were
coded as a fourth state. Only one SNP was retained in a group of SNPs
with r2 = 1, leaving 29,320 SNPs. For the GWAS, we imputed missing
data with the mean genotype.
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Kinship and population structure
To minimize the influence of missing data on pairwise relationship
estimates, we estimated the relatedness matrix utilizing a 15,228 SNP
subset (of the 29K filtered SNP set) with lowmissing data (,20%) with
theA.mat function in the R package rrBLUP (Endelman 2011). Prior to
conducting principal component analysis (PCA) with EIGENSTRAT
(Price et al. 2006), we also removed SNPs that were not anchored to the
genetic linkage map, resulting in a set of 12,585 SNPs.

Fatty acid chemical analysis
Dehulled oat seeds were stored at -20� prior to gas chromatography-
mass spectrometry (GC-MS), performed at the Proteomics andMetab-
olomics Facility at Colorado State University. Oat seeds (300 mg) were
ground to a fine powder in a 5 mL polypropylene vial containing a
tungsten bead. A 6:3:1 (by volume) solution of cold methyl tert-butyl
ether, methanol, and water (3 mL) was added to the vial prior to one
hour of shaking at 4�. Subsequently, 750mL of water was added, the vial
was vortexed again and centrifuged for 15 min at 4� to induce phase
separation. The upper organic layer, containing non-polar lipids, was
transferred to a new glass vial and stored at -80� until analysis.

Thawed samples were centrifuged at 3,750 rpm at 4� for 10min. The
solvent was removed from 100 mL aliquots of each sample by nitrogen
evaporation at room temperature. Once dried, 200 mL of toluene con-
taining 1.25 mg/mL of internal standard (glyceryl triheptadecanoate),
200 mL of methanol, and 200 mL of 3Nmethanolic HCl, were added to
the sample, and the mixture was incubated at 60� for 1 h. Then, 1 ml of
hexane and 300 mL of water were added to the cooled sample. After
brief vortexing, the sample was centrifuged at 2,000 rpm for 5min at 4�.

One microliter of the upper hexane layer containing the fatty acid
methyl esters (FAMEs)was injected onto aTG-WaxMScolumn (30m·
0.25 mm · 0.25 mm, Thermo) in a TRACE 1310 Gas Chromatograph
(Thermo) coupled to a Thermo ISQ LT GC-MS. The injector temper-
ature and split ratio were 260� and 30:1, respectively. The column
was eluted with a constant flow of He carrier gas (1.2 mLmin-1). The
oven initial temperature was 200� and held for 1 min, then increased
to 260� at 10� min-1 and held for 3 min. Detection was completed

under electron impact mode, with a scan range of 50-650 atomic
mass units and scan rate of 5 scans s-1. Transfer line and source
temperatures were 260� and 230�, respectively.

Quality control samples, consisting of pooled experimental samples,
were injected after every 20 samples. Batches of 100 samples were
prepared and analyzed simultaneously. Ion source, inlet liner, and septa
were either cleaned or replaced after analysis of 300 samples. Standard
curves were established for 16:0, 18:0, 18:1(9), 18:2, and 18:3. Two
standard FAME mix samples (Nucheck GLC-85 and Sigma 47080-U)
were used to confirm the retention times. In the case of 18:1, two peaks
were consistently observed. Themajor peak in all samples corresponded
to 18:1(9) based on retention time and authentic standards. The minor
peak we designate 18:1� since assignment of double bond position was
not possible based on spectra or authentic standards (Figure S1), al-
though 18:1� is most likely the methyl ester of cis-vaccenic acid,
18:1(11) (Cahoon et al. 1998). Data processing was completed with
Chromeleon 7 software (Thermo).

Phenotypic data analysis
Ten fatty acids were measured as their respective FAMEs from the
500-line diversity panel (see Figure 1 for fatty acid structures and
abbreviations). We observed 19:0 and 15:0 in several samples, but as
values of these compounds were largely below the limit of detection
(LOD), we excluded 19:0 and 15:0 from analysis. Samples that had
levels below the LOD (zero values) for 14:0 (n = 1), 16:1 (n = 2), 20:0
(n = 50), and 20:1 (n = 1)were replaced with a uniform randomvariable
between zero and the LOD, where the minimum non-zero value was
used a proxy for LOD (Lipka et al. 2013). The ten individual FAME
traits and total FAME were inspected for outliers in ASReml-R 3.0
(Butler et al. 2009) by examination of the Studentized deleted residuals
(Kutner et al. 2004) from linear mixed models fitted with environ-
ment, block, line, and GC-MS batch as random effects and heading
date as a fixed effect. To assess the effect of the two environments on
FAME concentrations, we calculated pairwise Spearman’s rank cor-
relations (r) and performed hierarchical clustering on all trait-
environment combinations.

Figure 1 Inferred pathways of fatty acid
synthesis and modification in oat seeds. Fatty
acid abbreviations adhere to standard con-
ventions, with chain length and degree of
unsaturation (position[s] of double bond[s])
separated by a colon (for example, palmitic
acid is denoted by 16:0). We detected two
isomers of 18:1, 18:1(9) and another isomer,
18:1�, with unknown double-bond position
(likely 18:1(11)). The 18:1(9) isomer was more
abundant. Fatty acids up to 18 carbons in
length are synthesized by a fatty acid syn-
thase (FAS) complex. The nascent acyl chain
is attached to acyl carrier protein (ACP) sub-
unit of FAS and grows by two carbons per
cycle through the action of distinct ketoacyl-
ACP synthase (KAS) subunits of this complex
(KASI and KASII are shown). Elongation is ter-
minated either by a thioesterase that releases
the fatty acid from ACP, or a double bond is
introduced by an acyl-ACP desaturase (AAD)

that typically acts with specificity for the Δ9 position and preference for C18 substrate. Thus, the initial fatty acid produced by FAS results from
competition between one or more thioesterase and AAD isoforms. Subsequent elongation to $ 20C is catalyzed by the fatty acid elongase
complex, in which the ketoacyl-CoA synthase (KCS) subunit determines chain length. Further desaturation is catalyzed by additional fatty acid
desaturases (FAD2 and FAD3).
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Given that fatty acids comprise a chemical family,wealso considered
the relative contribution of each member to total concentration. Such a
compositional analysis imposes a unit-sum constraint, i.e., all propor-
tions must sum to one, which, in turn, induces spurious negative cor-
relations between variables (Aitchison 1983). Therefore, to relieve the
constraints of this sample space (the unit simplex), we employed Aitch-
ison’s log-contrast transformation. Specifically, we divided each FAME
by an arbitrarily selected compound (here, 18:1�) prior to calculating
pairwise correlations (Wei and Simko 2017).

As the FAME concentrations were approximately normally distrib-
uted,weused the rawphenotype values to estimate abest linearunbiased
predictor (BLUP) for each line in ASReml-R. Our BLUPmodel (Equa-
tion 1) incorporated environmental and technical covariates, as well as
variation in heading date (Gilmour et al. 2008):

Yijkl ¼mþ genotypei þ envj þ ðgenotype  x  envÞij þ headingðenvÞij

þ blockðenvÞjk þ batchl þ eijkl (1)

in which Yijkl is a plot-level average; m is the grand mean; genotypei is
the effect of the ith genotype; envj is the effect of the jth environment;
(genotype x env)ij is the effect of the ith genotype in the jth environ-
ment; heading(env)ij is the effect of days to heading of the ith geno-
type within the jth environment; block(env)jk is the effect of the kth
block within the jth environment; batchl is the effect of the lth GC-MS
batch; and, eijkl is the random error term, assumed to follow a normal
distribution with mean zero and variance s2. Only heading(env)ij
was fitted as a (continuous) fixed effect; all other terms were fitted
as random effects.

Variance component estimates from the fitted model were used to
calculate line-mean heritability for each trait (hl2 as per Holland et al.
(2002) and Hung et al. (2012)). Standard errors of the line-mean her-
itabilities were estimated using the delta method (Holland et al. 2002).

To identify axes of variation in the FAME data set, we performed
PCA on the centered and scaled (to unit-variance) BLUPs using the
R package pcaMethods (Stacklies et al. 2007). We extracted the princi-
pal component (PC) loadings to determine the contribution of each
compound to each PC.

Network analysis with a Gaussian graphical
model (GGM)
To assess the relationships between BLUPs for the 11 FAME measures
(ten individual, plus the total FAMEs), hereafter referred to as FAME
BLUPs, we first estimated pairwise Pearson’s correlation coefficients (r)
between each trait with the R package Hmisc (Harrell 2018). We next
constructed a Gaussian graphical model (GGM). As GGMs reflect the
conditional dependencies between variables, they are more likely to
capture causality and precursor/product relationships inmetabolic net-
works relative to standard correlation analyses (Krumsiek et al. 2011).
We employed the R package ppcor for calculation of partial correlations
and significance testing (Kim 2015). An edge was drawn between two
metabolites if the partial correlation was significant after applying a
Bonferroni correction ((a = 0.05 / ((m(m-1)) / 2)), where m is equal
to the number of metabolites (m = 10). We visualized both the r and
pr networks with the R packages network and ggplot2 (Butts 2008;
Wickham 2016).

Genome-wide association studies (GWAS)
We leveraged the correlations between FAME traits in a multivar-
iate GWAS with 492 lines and 29,320 SNPs. Specifically, we fitted a
multivariate linear mixed model, accounting for population structure

and relatedness, with all ten FAME concentrations in GEMMA
(Zhou and Stephens 2012). To determine the optimal number of
genetic principal components (PCs) based on the genotype matrix
to include in the GWAS model, we used the Bayesian information
criterion (BIC), comparing models with zero to five PCs (Schwarz
1978; Lipka et al. 2012). To minimize deviation from multivariate
normality, we quantile transformed each phenotype to a standard
normal distribution (Stephens 2013). Specifically, the raw BLUPs
were rank normalized using the qnorm function of R and scaled to
unit variance. To inform our multivariate analysis, we also conducted
univariate association analyses on each of the non-transformed
FAME BLUPs and the PCs derived from singular value decomposi-
tion of the FAME BLUPs data matrix (PC-GWAS, see Phenotypic
data analysis). In each association test, we employed the univariate
analog of our multivariate GWAS model in GEMMA. To account for
multiple testing, we computed a Bonferroni correction (a = 0.05 /
29,320 = 1.7 · 1026). Alternatively, we controlled the false-discovery
rate (FDR) at 5% and 10% (Benjamini and Hochberg 1995) using the
R package qvalue (Storey et al. 2019).

Pairwise LD between SNPs was estimated using squared allele
frequency correlations (r2), excludingmissing and double heterozygous
genotypes (Pritchard and Przeworski 2001). We defined the significant
SNP set as the union of SNPs identified as significantly associated with
a phenotype at a 10% FDR in any of the univariate or multivariate
analyses. To remove likely false positives and focus on GWAS signals
with the most statistical support, we further analyzed only those sig-
nificant SNPs in LD (r2. 0.5) with at least two other significant SNPs.

The amount of phenotypic variation explained by each SNP in the
univariate analyses was approximated using a likelihood-ratio-based
R2 statistic (R2

LR), as defined by Sun et al. (2010) (Table S2). The R2
LR

value of models with or without a significant SNP was calculated
using the maximum log-likelihood of the model of interest fitted in
GEMMA and the maximum log-likelihood of an intercept-only
model fitted with the lm function in R. For the SNPs detected to
be significant in the multi-GWAS, we approximated the relative
contribution of each trait to the multivariate signal by calculating
R2
LR for each SNP in each of the ten respective univariate models

developed for the quantile-transformed FAME BLUPs (Table S3).
To qualitatively summarize the effects of SNPs identified as

statistically significant in the multi-GWAS on individual FAME
levels, we compared the BLUP phenotypic means of the distinct
homozygous classes (major and minor) and conducted a pairwise
t-test (pairwise.t.test function in R) for each SNP. Phenotypes were
mean centered to zero and standardized to unit variance prior to
testing. We excluded heterozygous and imputed genotypes.

Data availability
All genotype and phenotype data are freely available from the Triticeae
Toolbox/Oat database (https://triticeaetoolbox.org/oat/). Raw GBS
sequence reads are available as NCBI BioProject PRJNA555603. Sup-
plemental material available at FigShare: https://doi.org/10.25387/
g3.7889747.

RESULTS

Genotyping and population structure
We assembled a panel of 1,012 oat lines from three existing germplasm
collections. This panel consists of inbred lines from around the world,
someofwhichwere selectedbasedonvariabilityofbeta-glucan, including
selections from a beta-glucan improvement program (seeMaterials and
Methods). We genotyped this panel with genotyping-by-sequencing
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(GBS), a reduced-representation sequencing technique (Poland and
Rife 2012). After genotype calling with the non-reference pipeline
Haplotag (Tinker et al. 2016), we identified an optimal and diverse
subset of 500 lines using the CDmean method of Rincent et al. (2012).
Within this subset, we applied standard quality control filters, result-
ing in a data set of 29,320 SNPs and 492 individuals in the diversity
panel. Of these 29,320 SNPs, 19,558 (67%) were anchored to the
consensus genetic map (Chaffin et al. 2016; Bekele et al. 2018). Prin-
cipal component analysis (PCA) on a reduced set of 12,585 SNPs (see
Materials and Methods) revealed minimal structure with respect to
line origin (Figure S2).

Variation in seed fatty acid content
Oats are especially high in healthful mono- and di-unsaturated fatty
acids, relative to other cereals. To investigate variation in nutritional
quality in oat, we measured the levels of ten FAMEs derived from non-
polar seed lipids in the 492-line diversity panel grown in two environ-
ments (referred to as ENV1 and ENV2). In both environments, 18:2,
18:1(9), and16:0were themost abundantFAMEspecies (FigureS3C), in
accordance with previous reports (Bana�s et al. 2007; Leonova et al.
2008). In particular, 18:2 and 18:1(9) accounted for .70% of the total
FAME content in all lines (Figure S3F).

FAME concentrations were consistently higher in ENV1 compared
to ENV2 (pairwise t-tests detected significant differences for all traits
except 18:3). To assess the impact of this consistent environmen-
tal difference on the statistical relationships between traits with re-
spect to environment, we calculated Spearman’s rank correlations
between each trait-environment combination. Hierarchical clustering
revealed grouping with respect to environment and to a lesser extent
compound (Figure S3B). For example, the three FAMEs in highest
abundance, 18:2, 18:1(9), and 16:0, clustered together in each environ-
ment, along with 20:1. In addition, we observed clustering between 20:0
and 18:0, and 16:1 and 18:1�, respectively.

Having observed that trait-environment clusters were predom-
inately defined by environment (and secondarily by compound), we
were interested in assessing the differential effect of environment on
FAME composition, defined as the percent contribution of each
FAME to total concentration. We observed significantly higher
proportions of 14:0, 18:0, 18:2, and 20:0, and lower proportions of
18:1(9), 18:3, and 20:1 in ENV1 as compared to ENV2 (Figure S3F;
p-value of pairwise t-test , 0.05). The proportions of other com-
pounds, and the sum of the saturated FAMEs, were comparable
across environments.

Assessing the correlation structure in this compositional sample
space necessitated relieving the unit-sumconstraint imposed by the
fact that proportionsmust sum to one. After applying the log-contrast
transformation (Aitchison 1983) to FAME concentrations, i.e., taking the
logarithm of each FAME divided by arbitrarily selected FAME (18:1�),
trait rather than environment defined clustering (Figure S3D-E). Yet, we
still observed positive correlations between all trait pairs, excluding the
pairwise comparisons that featured 16:1.

Consistent effects of environment on concentrations across lines
corresponded to high line-mean heritabilities for all FAMEs, ranging
from 0.67 to 0.91 (Table S1). Thus, we conclude that genetic determi-
nants have a greater impact than environmental factors on variation in
FAME concentrations between lines.

Correlation networks
Using data from the two environments, we calculated BLUPs of each
FAME for the 492 lines in the diversity panel (Figure 2). Consistent
with our analysis of the raw phenotypes, we observed only positive

correlations between FAME BLUPs (Figure S3), translating to a
dense, highly connected network (Figure 3A).

As FAMEs participate in shared biochemical pathways, we hypoth-
esized that many of the observed correlations reflected indirect rather
than direct interactions. Our rationale was that metabolic networks are
generally sparse due to the limited reactivity of organic compounds and
stepwise nature of metabolic pathways. Specifically, fatty acid biosyn-
thetic pathways exhibit this property (Li-Beisson et al. 2013). Therefore,
akin to Krumsiek et al. (2011), we constructed a Gaussian graphical
model (GGM) to account for the conditional dependencies between
FAME BLUPs. We estimated partial correlations (prs), defined as the
correlation between the residuals of two compounds after accounting
for the other n-2 compounds. As hypothesized, the pr distribution was
shifted toward zero relative to its r counterpart (Figure S4). This trans-
lated to a far sparser network, such that every node was no longer
connected to nearly every other node by an edge, and to the introduc-
tion of negative correlations (Figure 3B). Notably, the large positive
correlations between compounds with a difference of two carbons,
but the same number of double bonds (e.g., 18:0 and 20:0), persisted
in the pr network. While the significant pairwise prs were not restricted
to only precursor/product relationships in fatty acid biosynthesis, some
of the strongest correlations in this network are between such pairs
(Figure 3B).

Decomposition of FAME variance
To identify the contribution of each fatty acid to the major axes of
variation in the phenotypic data set, we performedPCA on the centered
and scaled BLUPs for the ten FAMEs (Figure S5). All FAMEs exhibited
negative loadings along the first PC (explaining 56.8% of the total
variance), which tracked with variation in total fatty acids (adjusted
R2 of total with PC 1 = 0.952; Figure S5). Thus, most of the variation
in individual FAME concentrations can be explained by variation in
fatty acid totals. The second PC (explaining 15.2% of variance) pri-
marily distinguished saturated from unsaturated FAMEs, whereas the
third and fourth PCs differentiated 14:0 and 18:3 from all other
FAMEs, respectively. While 20:1 contributed disproportionately
to both the fifth and sixth PCs, these two PCs were less obviously
interpretable.

Genetic mapping for fatty acids
We employed several mapping approaches to capitalize on the corre-
lations between traits. First, we performed a multivariate GWAS of all
ten FAME concentrations simultaneously (multi-GWAS). Second, we
conducted GWAS with each PC derived from decomposition of the
phenotypic data matrix (of dimension n xm = 492 lines · 10 traits) as
phenotypes (PC-GWAS). Third, we implemented univariate tests of
association for each FAME separately, as estimated by their BLUPs. To
account for population structure, we included the first three PCs of the
non-imputed genotypematrix as covariates in all of our GWASmodels.
These PCs were selected based on application of the BIC model selec-
tion procedure in the multi-GWAS, and explained 6.7, 4.3, and 3.2% of
the total variance, respectively.

In the multi-GWAS, a total of 25 SNPs were significant after
accounting for multiple testing with a 5% Bonferroni significance
threshold (p-value# 1.7 · 1026). We also considered SNPs passing
the two less conservative significance thresholds of genome-wide
(FDR of 5% and 10%). At these thresholds, 93 and 148 SNPs were
detected, respectively.

After applying a 10% FDR threshold independently in each
association test, and combining results across all ten PCs, 129 SNPs
were significantly associated with FAME variation in the PC-GWAS
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(Figure 4C and Figure S6). Approximately half of these 129 SNPs
(66 SNPs) were represented in the multivariate 10% FDR significant
set (Figure 4). The majority of SNPs uniquely identified in PC-GWAS
were associated with PC10 and not anchored to a linkage group. This
PC explained only 0.4% of total variance across the ten FAMEs, with
18:1(9) weighted most heavily along this PC (Figure S5).

In the univariate GWAS of the ten FAMEs and total FAME
concentration, we identified 73 significantly associated SNPs at a 10%
FDR – the smallest number of significant associations among the three
approaches (Figure 4C and Figure S7). Furthermore, the majority of
these SNPs were identified by either multi- or PC-GWAS (47 SNPs).
The uniquely identified SNPs in the univariate GWAS were primarily

Figure 2 Variation in seed fatty acid concentration in a diverse oat panel. A. Box plots of the ten FAME best-linear unbiased predictor (BLUP)
distributions measured in an oat diversity panel (n = 492). Compounds are divided into three groups based on mean concentration, each plotted
with distinct y-axes. The color of the box denotes the number of double bonds in the corresponding FAME. B. Overlaid histograms of un-
saturated, saturated, and total FAME BLUPs derived from the independent FAME measurements. C. The cumulative contribution of each FAME to
total concentration plotted on a log-transformed scale.

Figure 3 Fatty acid methyl ester (FAME) correlation networks. A. A network constructed from Pearson’s correlations (r) between FAMEs. B. An
analogous network constructed from pairwise partial correlations (pr) with edges corresponding to biosynthetic steps annotated (See Figure 1 for
abbreviations). In both A and B, an edge was drawn between compounds if the pairwise r or pr value was significant given a threshold of a = 0.05,
after applying a Bonferroni correction for multiple-testing. Edge width is proportional to the magnitude of the correlation, and edge color
indicates a positive or negative correlation. Node size corresponds to the mean concentration (mg g-1), with compounds grouped into three
categories: less than 1, 10, and 25 mg g-1. Node color differentiates saturated from unsaturated FAMEs.
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associated with less abundant fatty acids, e.g., 18:0, 20:0, and 20:1. To
provide a more apt comparison between the univariate and multivar-
iate analysis, which employed quantile-transformed traits, we also per-
formed the univariate GWAS with quantile-transformed traits. This
analysis identified 62 SNPs at a 10% FDR (Figure S8). All but two
of these SNPs were also found in GWAS of the non-quantile trans-
formed BLUPs, suggesting that deviations from normality in the un-
transformed BLUPs had minimal influence on the results (Figure S8;
Table S2).

Integration of GWAS results
To focus on GWAS signals with the most statistical support, we only
considered significantly associated SNPs with r2. 0.5 with at least two
other significant SNPs (at a 10% FDR threshold) across all analyses.
This high confidence SNP set consisted of a 152 SNP subset of the
237 significant SNPs. The majority of SNPs in the high confidence
SNP set (101 SNPs) spanned eight of the 21 consensus linkage groups,
while 51 SNPs were unmapped (Figure 5). In the absence of a reference
genome sequence, we used pairwise LD between significantly associated

SNPs to putatively define the boundaries of independent signals
(Figure 5). We further refined these boundaries such that SNPs
within a signal interval had concordant estimated effects on the
FAME abundances. Here, we assumed that if SNPs were in LD with
the same causal locus they should exhibit correlated effects on the
ten FAME traits. To interpret SNP effects, we inspected the mean
difference between homozygous genotypic classes excluding lines
with missing data or heterozygous genotypes (Figure 6). While this
simple summary does not account for population structure and un-
equal relatedness, it provides qualitative insight into the effects of
SNPs on individual FAMEs, which are obscured by multivariate
GWAS.

Using these criteria, we identified six main clusters, consisting of
124 SNPs in the high confidence SNP set (a-f in Figure 6). Five of the
clusters localized to three linkage groups: Mrg02, Mrg05, and Mrg01,
while one cluster was not anchored to the linkage map (Figure 6). The
remaining 28 markers formed smaller clusters that were either unan-
chored or primarily supported by SNPs with MAF, 5% (Figures 5, 6,
and S9). One notable small cluster is anchored at 36.0 cM onMrg12 by

Figure 4 Multivariate genome-wide association study (multi-GWAS). A. Negative log10 p-values from a multi-GWAS of ten FAME BLUPs plotted
against genetic position in the consensus linkage map (Chaffin et al. 2016; Bekele et al. 2018). Dotted lines denote the three significance
thresholds considered, with a Bonferroni-corrected threshold of 5% in red, and 5 and 10% false-discovery rate (FDR) thresholds in light and dark
gray, respectively. Markers with a p-value passing the Bonferroni threshold are shown in red. B. A quantile-quantile plot of the multi-GWAS
p-values. C. Venn diagram comparing significantly associated SNPs (at a 10% FDR) from combined univariate analyses of ten individual and total
FAME untransformed BLUPs (Univariate), combined univariate analyses of ten principal components (PCs) of the ten FAME BLUP data matrix, and
multi-GWAS of the ten FAME quantile-transformed BLUPs (Multivariate).
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a SNP with a very small p-value (1.9 · 10211). Although the two other
SNPs in this cluster were unanchored, the overall peak SNP in the
multi-GWAS (P = 1.1 · 10233) was mapped to a nearby position
(40.9 cM) on this linkage group but excluded from the high confidence

SNP set by our r2 clustering criteria. This SNP and the LD cluster SNPs
were associated with 14:0 and PC3 (which exhibits a large 14:0 loading,
Figure S5B), suggesting at least one gene in this Mrg12 region underlies
variation in seed 14:0 content.

Figure 5 Linkage disequilibrium between markers associated with fatty acid methyl ester (FAME) variation identified in multivariate, principal
component (PC), and univariate analyses. A. Linkage disequilibrium (LD), defined as the squared allele frequency correlation coefficient (r2),
between markers identified as significantly associated with phenotypic variation at a 10% false-discovery rate (FDR) threshold in any of the
multivariate, PC, or marginal analyses. (Here, we show only those significant markers that were in LD with at least two other significantly associated
markers (seeMaterials and Methods). Single-nucleotide polymorphisms (SNPs) are ordered by hierarchical clustering, with abbreviated SNP name
on the y-axis colored by linkage group assignment (see B) in the consensus genetic map (Chaffin et al. 2016; Bekele et al. 2018). Gray boxes
denote missing values (see Materials and Methods). B. An incidence matrix of results from the multivariate, PC, and univariate association
analyses. The x-axis mirrors that of A, with each vertical tract corresponding to the same SNP pictured in A. A colored rectangle indicates that
the SNP was identified as significant at an FDR threshold of 10%, with the PC and Univariate tracks representing the union of significant SNPs
across all ten and 11 traits, respectively. The color of the rectangle corresponds to the linkage group. A black dot along the gray track indicate that
the SNP has a minor allele frequency , 5%.
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Figure 6 Comparison of multivariate, principal component (PC), and univariate genome-wide association study (GWAS) results. A. An incidence
matrix of results from the multivariate, PC, and univariate GWAS. SNPs are ordered by hierarchical clustering of pairwise linkage disequilibrium
(LD) estimates, as in Figure 5. A colored rectangle indicates that a SNP was significant in the given test at a 10% false-discovery rate (FDR)
threshold, with color corresponding to a linkage group in the consensus genetic map (Chaffin et al. 2016; Bekele et al. 2018). Presence of a black
dot indicates that the SNP has a minor allele frequency, 5%. Labeled (a-f) line segments span the SNPs in six LD clusters, defined by visualization
of the pairwise LD matrix (see Figure 5). B. Mean phenotypic differences between distinct homozygote classes at a significantly associated SNP
within each of the six LD clusters (a-f) defined in A. Genotype is plotted on the x-axis, with the mean number of phenotypic standard deviations
away from the mean on the y-axis. Each centered and unit-variance scaled FAME BLUP (including total) is plotted, with warm colors for saturated
and cool colors for unsaturated FAMEs. Total is indicated by a black line. The bold lines indicate that the pairwise t-test between genotype class
means was significant at a = 0.05 after correcting for multiple testing with a Bonferroni correction. To simplify the plots, only traits with
significantly different means between genotypes are labeled. As lines with missing genotypes are excluded from these calculations, we present
the genotype counts in the bottom right or left-hand corner of each plot.
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We observed two primary clusters in Mrg02, spanning 37.5 to
107.5 cM (cluster a) and 67.4 to 85.3 cM (cluster b), respectively. These
large intervals are consistent with previous reported of long-range LD
in this linkage group (Chaffin et al. 2016; Esvelt Klos et al. 2016;
Sunstrum et al. 2019). We suspect that long-range LD, coupled with
a causal locus in Mrg02, inflated test statistics for SNPs in Mrg02
resulting in the over representation of this linkage group in the high
confidence SNP set. The peak SNPs from the two clusters (a and b)
had markedly different minor allele frequencies (0.33 vs. 0.09;
Figure 6B, a and b). As such, the r2 for these two SNPs is constrained
to a maximum value of r2 = 0.19, reflecting the sensitivity of r2 to
differences in allele frequency (VanLiere and Rosenberg 2008).
Therefore, while weak LD between these SNPs (r2 = 0.14) resulted
in assignment to different clusters by our criteria (Figure 5), the two
clusters are likely tagging the same locus, or different alleles at the same
locus. Note that without a physical map we cannot identify signal
intervals with certainty. Furthermore, SNPs within both clusters exhibit
similar patterns of phenotypic associations. In both clusters, SNPs were
associated with increases in low concentration 20:1 and the biosynthet-
ically-related, and abundant 18:1(9) (Figure 6B, a and b). SNPs in
cluster a were also associated with higher levels of 20:0, 18:2, 18:3,
and 16:0, while SNPs in cluster b also exhibited association with higher
levels of 18:1�. Notably, in the univariate GWAS, the SNPs within these
two clusters were only associated with 20:1.

Two clusters were also observed in Mrg05, mapping to non-
overlapping intervals between 124.1 and 135.5 cM (cluster c) and
114.7 to 122.7 cM (cluster e). The minor alleles in cluster c were
associated with significant decreases in most FAMEs as well as total
concentration. All three approaches (univariate, PCs, and multivari-
ate) detected significant SNPs in the interval associated with cluster
c. In contrast, cluster e was only detected by the multi-GWAS. In this
cluster, the minor allele was associated with higher total FAMEs and
concentrations of the most abundant FAMEs, as well as, decreases in
18:3 and 16:1. The correlated estimated effects of SNPs in cluster e on
16:1 and 18:3 were not expected a priori based on known biochemical
pathways (Figure 1) or the observed correlation networks (Figure 3). To
further probe the major drivers of the multi-GWAS signals, for each
significant SNP in the multi-GWAS we calculated R2LR in the univariate
models for each trait. The difference between R2LR with or without a
given SNP included in the model, ΔR2LR, provides an approximation of
phenotypic variance explained by that SNP. Thus, we used univariate
ΔR2LR of each component trait as a means of qualitatively dissecting the
multi-GWAS signal (Table S3). By this analysis, detection of cluster e
SNPs associate with 18:3 variation, despite the fact that we failed to
detect significant associations in the univariate GWAS. Thus, it appears
that unanticipated correlations between 18:3 and other fatty acids, such
as 16:1, underlie the enhanced sensitivity of the multi-GWAS model.

Thecluster identifiedonMrg11spanned3.7 to8.8cM.This cluster (f)
contained two SNPs identified in the univariate analyses of total and
18:1(9) FAMEs, and four SNPs uniquely identified in themulti-GWAS.
The main effects associated with the peak SNP in this cluster were
increased 16:1 and 18:1� and decreased 18:0 and 18:3 (Figure 6B).
However, other SNPs in this cluster were associated with decreases
in the majority of FAMEs, including total concentration (Figure S9).
Thus, as with cluster a and b, the SNPs of cluster f may be tagging
multiple alleles or loci and our interpretation is limited by the present
lack of a genome sequence in hexaploid oat.

The final cluster (d) consisted of 29 SNPs of low minor allele fre-
quency (, 0.05). The only mapped SNP in cluster d was located at
80.3 cMonMrg03 of the consensusmap and a significant association of
this SNPwas only detected in GWAS of the last PC. SNPs in this cluster

were predominantly associated with higher levels of saturated fatty
acids (16:0, 18:0, and 20:0).

DISCUSSION
We report the first GWAS of seed fatty acid composition in oat. Our
results reveal several large effect loci underlying this important seed
quality trait. At least four loci on four linkage groups contribute to
variation in the content and composition of seed fatty acids in oat.
Ongoing efforts to sequence the�12.5 Gb hexaploid oat genome will
likely enable higher resolution mapping of these GWAS hits. On the
other hand, inability to define distinct GWAS support intervals may,
in part, reflect the complex genetics of oat germplasm. Specifically,
translocations and other chromosomal rearrangements are com-
mon in oat germplasm (Jellen et al. 1994), and these are thought
to underlie distortions of LD within the consensus linkage groups as
observed here and in other studies (Chaffin et al. 2016; Esvelt Klos
et al. 2016; Sunstrum et al. 2019).

Previous studies used linkage analysis in biparental populations
to map QTL for fatty acid composition or oil amount in oat seeds.
Kianian et al. (1999) mapped QTL for oil content in two RIL popula-
tions, “Kanota” x “Ogle” (KO) and “Kanota” x “Marion” (KM). In both
the KO and KM populations, alleles of a gene encoding Acetyl-CoA
Carboxylase, ACCaseA, were found to associate with a QTL accounting
for up to 48% of phenotypic variance in these populations (Kianian
et al. 1999). This gene is likely to underlie seed oil content because its
respective enzyme catalyzes the synthesis of Malonyl-CoA, the major
substrate of fatty acid synthase. Colocalizing oil content QTL were later
discovered in additional populations: “Ogle” x “MAM17-5” (Zhu et al.
2004), “Aslak” x “Matilda” (Tanhuanpää et al. 2012), and “Dal” x
“Exeter” (Hizbai et al. 2012). ACCaseA is tightly linked with the RFLP
marker cdo665B, which is placed at a position of 135.5 cM onMrg05 of
the consensus map of Chaffin et al. (2016). Thus, these QTL, and their
putative causal locus,ACCaseA, likely correspond to cluster c (Figure 6)
in our current work.

Clusters a and b, mapping to overlapping intervals on Mrg02
(Figure 6), may correspond to two oil content QTL discovered in the
“Dal” x “Exeter” population, oPt-11790 and oPt-16384 (Hizbai et al.
2012). Another QTL identified in Hizbai et al. 2012, oPT-17489,
colocalizes with cluster f on Mrg11 in our work (Figure 6). Mech-
anistically, the effects associated with cluster b and f may be attrib-
uted to changes in acyl-ACP desaturase (AAD) activity. In the case
of cluster b, an increase in AAD activity could lead to increases in both
18:1(9) and 18:1� as well the elongation of 18:1(9) to 20:1. The cor-
related change in 16:1 and 18:1� (assumed to be 18:1(11)), on the
other hand, would be consistent with an altered substrate specificity
for AAD. In plants, AAD typically has a strong preference for 18:0-
ACP as its substrate, and the conversion of 16:0-ACP to 16:1-ACP is
typically a minor side reaction (Cahoon et al. 1997). In some cases,
such as the seeds of cat’s claw (Doxantha unguis-cati L.), AAD iso-
forms with preference for 16:0-ACP as a substrate can lead to sub-
stantial production of 16:1(9) and its elongation product, 18:1(11)
(Cahoon et al. 1998). While these interpretations are speculative, they
illustrate how the increased sensitivity of multivariate GWAS models
can link relatively subtle perturbations of metabolic networks to their
genetic and biochemical bases.

One objective of this study was to identify loci associated with
variation in 18:3 content, as these omega-3 fatty acids are a large
determinant of oil quality. Increased consumption of omega-3 fatty
acids is associated with improved cardiovascular health, although there
is uncertainty regarding the benefits of consuming omega-3 fatty acids
relative to omega-6 fatty acids, such as 18:2 (Ludwig et al. 2018). In oat
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seeds, the very low abundance of 18:3 relative to 18:2 in germplasm
(Figure 2A) renders enhanced 18:3 content an unlikely breeding target
for improving the healthfulness of oats. On the other hand, 18:3 is
exceptionally prone to oxidation, resulting in rancidity. Therefore, de-
creased 18:3 content may improve postharvest stability (Zhou et al.
1999). In univariate GWAS, we were unable to detect loci associated
with 18:3 variation (Figure 6A, Table S2). However, multi-GWAS that
leveraged unexpected correlations between 18:3 and other fatty acids
revealed a locus in Mrg05 (cluster e, Figure 6) associated with sub-
stantial differences in 18:3 content relative to the more abundant fatty
acids (Figure 6B). Markers in cluster e may predict variation in 18:3
content associated with postharvest stability in oat breeding programs.

For SNPs identified by GWAS to be useful for MAS, it is important
that they exhibit relatively large effects on the trait(s) of interest. Un-
fortunately, the increased sensitivity of multivariate GWAS is accom-
panied by difficulty in accurately assigning effect sizes of a given SNPon
each trait. While we have attempted to deconvolute the drivers of our
multivariate GWAS signal using ΔR2LR statistics of univariate GWAS
models (Supplemental Table 3), this still relies on quantile-normalized
traits that obscure a SNP’s true effect size. Our best approximation of a
given SNP’s contribution to each trait comes from ΔR2LR statistics for
SNPs that were detected in univariate GWAS of non-transformed in-
dividual traits (Supplemental Table 2). By this measure, significantly
associated SNPs explained approximately 2–16% of phenotypic vari-
ance within each of the 11 traits in our population. For total fatty acid
content, significant SNPs explained approximately 3–7% of the pheno-
typic variance. The peak cluster c SNP, for example, has a ΔR2LR of 6.6%
for GWAS of total fatty acid content in our population, and is likely a
useful GBSmarker for taggingACCaseA alleles.We have also identified
a new marker for total fatty acid content, avgbs2_90110.1.11, that has a
similarly large effect size but appears to not be linked to ACCaseA
(ΔR2LR = 7.4%; Supplemental Table 2). This marker is presently un-
mapped and the allele that confers high fatty acid content has a fre-
quency of just 0.025 in our population, suggesting that it marks a locus
for oil content that is currently underutilized in oat breeding programs.

In conclusion, we have demonstrated the utility of multivariate
GWAS methods for identifying genetic associations with metabolites
that share a biosynthetic pathway. By analyzing all ten fatty acids
simultaneously with multi-trait GWASmethods, we were able to detect
SNPs that were not detected by traditional, univariate GWAS. The
increased sensitivity of multivariate GWASmay be particularly advan-
tageous for polyploid species like oat, where the effect of a single locus
may be buffered by the activity of its homeologs (Santantonio et al.
2019). On the other hand, the poorly characterized structural variation
within oat haplotypes, in combination with long-range LD, currently
presents a significant challenge for resolving GWAS signals to in-
dividual genes. The present study provides a foundation for future
investigations of the genetic basis of fatty acid variation in oat. With
anticipated improvements in genomic resources and the implemen-
tation of LD-independent approaches, such as transcriptome-wide
association studies (Gusev et al. 2016), we expect further resolution
of the genetic basis of fatty acid composition.
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