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Abstract
Osteoporosis may complicate iron overload diseases such as genetic hemochromatosis.

However, molecular mechanisms involved in the iron-related osteoporosis remains poorly

understood. Recent in vitro studies support a role of osteoblast impairment in iron-related

osteoporosis. Our aim was to analyse the impact of excess iron in Hfe-/- mice on osteoblast

activity and on bone microarchitecture. We studied the bone formation rate, a dynamic

parameter reflecting osteoblast activity, and the bone phenotype of Hfe−/− male mice, a

mouse model of human hemochromatosis, by using histomorphometry. Hfe−/− animals

were sacrificed at 6 months and compared to controls. We found that bone contains excess

iron associated with increased hepatic iron concentration in Hfe−/−mice. We have shown

that animals with iron overload have decreased bone formation rate, suggesting a direct

impact of iron excess on active osteoblasts number. For bone mass parameters, we

showed that iron deposition was associated with bone loss by producing microarchitectural

impairment with a decreased tendency in bone trabecular volume and trabecular number. A

disorganization of trabecular network was found with marrow spaces increased, which was

confirmed by enhanced trabecular separation and star volume of marrow spaces. These

microarchitectural changes led to a loss of connectivity and complexity in the trabecular net-

work, which was confirmed by decreased interconnectivity index and increased Minkows-

ki’s fractal dimension. Our results suggest for the first time in a genetic hemochromatosis

mouse model, that iron overload decreases bone formation and leads to alterations in bone

mass and microarchitecture. These observations support a negative effect of iron on osteo-

blast recruitment and/or function, which may contribute to iron-related osteoporosis.
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Introduction
Genetic hemochromatosis (GH) related to the p.Cys282Tyr (C282Y) mutation in the HFE
gene is one of the most prevalent genetic diseases worldwide. Genetic predisposition to the
disease is homozygosity for the C282Y mutation, which is present in 3 out of every 1000 Cau-
casian persons with incomplete penetrance. GH leads to the development of progressive iron
overload involving several tissues, including the liver, pancreas, or heart [1], resulting in life-
threatening complications, such as cirrhosis, diabetes, and heart failure [2,3]. In addition,
other clinical complications that worsen patients quality of life, including osteoporosis [4],
have been reported. Osteoporosis is a bone disorder that increases fracture risk with low
energy trauma and is defined by the World Health Organization as a decrease in bone mass
and deterioration of bone microarchitecture [5]. As suggested by this definition, and demon-
strated in many studies [6,7], alteration of the bone microarchitecture is an independent risk
factor for fracture.

Thus, decreased bone mineral density has been reported in males presenting iron overload
related to GH [8–10], similar to patients exhibiting secondary iron overload, such as thalasse-
mia [11–14]. These data strongly support a deleterious impact of excess iron on bone structure,
which exposes patients to fractures. Moreover, reports of increased iron in women after meno-
pause support a potential additional impact of the iron parameters on the development of oste-
oporosis during the post-menopausal period [15]. The mechanisms involved in the
development of iron overload-related osteoporosis are not fully understood. Whether altered
bone remodelling is related to decreased osteoblast activity, reducing bone formation, and/or
to increased osteoclast activity remains unclear.

Human histological studies of iron-overload impact on bones are old, few in numbers, and
distorted by co-founding factor [16,17]. However, iron deposits have been found in genetic
hemochromatosis patient’s bones. Regarding parameters bone remodeling, results are conflict-
ing. Recent in vitro studies on rat foetal calvaria cultures and in osteoblast cell lines suggest a
negative impact of iron on osteoblast functions [18–21], supporting a role of osteoblast
impairment in iron-related osteoporosis. Moreover, iron has been shown to inhibit bone crys-
tal growth via carbonate substitution [22]. An in vivo study of iron-overloaded pigs reported
decreased osteoblast activity [23]. In rodents submitted to exogenous iron overload, the pres-
ence of iron deposits was associated with low bone mass and increased of bone remodelling
[24] or loss of connectivity in trabecular bone [25]. More recently, in Hfe-/- mice mimicking
human GH, a relationship was found between iron overload and increased osteoclast number.
In addition, both a low bone mass and disorganization of the bone microarchitecture was
found in these mice [26].

Taken together, these elements suggest significant bone loss during iron overload, especially
when related to GH or thalassemia. The diagnosis of hemochromatosis is currently made very
early, and patients generally do not present with severe iron overload, visceral complications,
or hypogonadism [27]. However, recent clinical studies have shown that the prevalence of oste-
oporosis has not decreased inHFE-hemochromatosis patients [8,9,10]. This finding suggests
that even mild iron overload could impact bone metabolism.

Understanding the impact of iron excess on bone will be helpful for improving the follow-
up of patients with excess iron, regardless of aetiology. Therefore, our aim was to analyse the
impact of iron overload on bone quality in vivo inHfe-/- mice, a mouse model of human genetic
hemochromatosis, with particular focus on osteoblast activity.
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Materials and Methods

Animals
Male C57BL/6 Hfe-/- mice (six months of age, n = 7) were used in this study. Male wild-type
C57BL/6 (six months of age, n = 7) mice were used as controls. Animals were maintained at
the Institut Fédératif de Recherche 140 animal facilities under standard conditions for temper-
ature, atmosphere, and light. The animals had free access to tap water and SDS RM3(E) (Die-
tex, France) food. Each mouse received an intra-peritoneal injection of calcein (10 mg/kg body
weight; Sigma 0875-10G) 7 and 2 days before euthanasia in order to perform a histodynamic
analysis of the bone formation rate. Mice were anesthetized with Rompun1 2% [Xylazine]—
Imalgène1 500 [Ketamine] solution and sacrificed by cervical dislocation at 6 months (Hfe−/−

males, H6M, n = 7; controls, C6M, n = 7). Tibia were dissected and fixed in 70% ethanol with
1% acetic acid for 24 h at 4°C, and then incubated in acetone. The liver was collected in order
to determine the hepatic iron concentration (HIC).

Experimental procedures were performed in agreement with French laws and regulations
(2010/63/UE). The protocol was approved by the Committee on the Ethics of Animal Experi-
ments of Rennes (R-2010-OL-02). All efforts were made to minimize suffering.

Iron concentration in the liver
The hepatic iron concentration (HIC) was determined according to Barry and Sherlock's biochem-
ical method [28]. Results were expressed as micromoles of iron per gram of dry liver weight.

Bone histomorphometry
Undecalcified tibias were embedded in methylmethacrylate at 4°C to maintain enzyme activity,
particularly osteoclastic tartrate-resistant acid phosphatase (TRAcP). All histological tech-
niques have been described elsewhere [29]. Sections (7 μm thick) were cut dry on a heavy-duty
microtome equipped with 50° tungsten carbide knives (Leica Polycut S, Rueil-Malmaison,
France). Parameters reflecting bone formation and resorption were measured on a semi-auto-
matic image analyser system consisting of a Summasketch III digitizing tablet coupled to a PC
and lab-made program. Measurements were taken in the secondary spongiosa, an area reflect-
ing remodelling events similar to those in humans and located 1 mm under the growth carti-
lage at a magnification of ×200. The histomorphometric parameters were recorded in
compliance with the recommendations of the American Society for Bone and Mineral Research
(ASBMR) Histomorphometry Nomenclature Committee: trabecular bone volume (BV/TV,
expressed as %), trabecular number (Tb.N, expressed in per mm), trabecular separation (Tb.
Sp, expressed in μm), trabecular thickness (Tb.Th, expressed in μm), interconnectivity index
(ICI), star volume of marrow spaces and trabeculae (V�

m.space and V�
trab, respectively,

expressed in mm3), and Minkowski’s fractal dimension (DM). For each mouse, four sections
were stained with modified Goldner’s trichrome and used to measure osteoid parameters: rela-
tive osteoid volume (OV/BV, expressed as %) and osteoid thickness (O.Th, expressed in μm).
The number of osteoclasts per bone area (N.Oc/B.Ar) were measured in TRAcP-stained sec-
tions. Perls' staining was performed on additional sections, and the fraction of the trabecular
surface covered by an iron deposit (Fe-labelled surface) was estimated (Fe.LS/BS, expressed as
%). Cancellous and cortical mineralization rates (Cn.MAR and Ct.MAR, respectively,
expressed in μm/day) and double labelled surfaces (dLS/BS, expressed as %) were counted.
Because of non-specific labelling of eroded surfaces, only the double labelled surfaces were
taken into account. The bone formation rate (BFR/BS, expressed in mm3/mm2/day) was
derived as Cn.MAR� dLS/BS�3.65.
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Statistical analysis
Statistical analyses were performed using SPSS 19.0 software. Data are expressed as
mean ± SEM. The t-test was used to compare group means. Differences were considered signif-
icant when p�0.05.

Results

General and iron parameters
No significant difference was found in final body weights between control andHfe-/-mice (Table 1).
As expected,Hfe-/-mice exhibited a significant increase in HIC compared to control mice.

By studying Perl’s staining in control mice, we found no significant iron deposit on trabecu-
lar surfaces (Fig 1A). In contrast, in Hfe-/- mice, the bone matrix at the trabecular surface was
heavily labelled in blue, indicating a considerable iron overload (Fig 1B). This observation was
confirmed by a significant difference in Fe.LS/BS between control and Hfe-/- (Table 1).

Bone histomorphometry
The results concerning microarchitecture are summarized in Table 2. InHfe-/- mice, we found
a lower BV/TV in Hfe-/- mice compared to controls. A significant increase in Tb.Sp was

Table 1. General and iron parameters in 6 months old control (C6M) andHfe-/- (H6M) male mice.

Mean ± SD C6M (n = 7) H6M (n = 7) p

Final Body Weight g 32.71 ± 1.35 33.31 ± 2.37 NS

HIC μmol iron/g liver 4.93 ± 1.59 18 ± 4.08 0.004

FeL.S/BS % 0 37.36 ± 23.64 0.006

HIC: Hepatic Iron Concentration, FeL.S/BS: Fe-Labelled Surface/Bone Surface

doi:10.1371/journal.pone.0148292.t001

Fig 1. Histological detection of iron in bone using Perls’ staining on undecalcified sections. (a)Control mouse, the trabecular bone is unstained. (b)
Hfe-/- mouse, the trabecular surface is heavily labelled in blue, indicating considerable iron deposition. The blue cells in the marrow spaces are siderophages.
Original magnification x200.

doi:10.1371/journal.pone.0148292.g001
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measured. Tb.N and Tb.Th were slightly decreased inHfe-/-mice compared to controls, but the
difference did not reached significance. Significant disorganization of the trabecular network
with a strongly lower ICI was found inHfe-/- mice compared to controls, and a reduced V�

m.space.
Using fractal parameters, DM was significantly lower inHfe-/-mice indicating a reduced complex-
ity of the trabecular network.

Table 2. Histomorphometric and histodynamic parameters in 6 months old control (C6M) andHfe-/- (H6M) male mice.

Mean ± SD C6M (n = 7) H6M (n = 7) p

BV/TV % 9.82 ± 1.56 7.86 ± 1.84 0.05
Tb.N 1/mm 3.24 ± 0.32 2.82 ± 0.45 NS

Tb.Th μm 30 ± 4 28 ± 3 NS

Tb.Sp μm 280 ± 31 332 ± 52 0.04

ICI 180.26 ± 48.75 397.90 ± 224.81 0.04
V*m.space mm3 0.91 ± 0.19 1.35 ± 0.41 0.02

V*trab mm3 0.0058 ± 0.0023 0.00474 ± 0.002322 NS

DM 1.27 ± 0.05 1.18 ± 0.08 0.02
OV/BV % 3.69 ± 2.88 2.32 ± 2.75 NS

O.Th μm 4 4 NS

Cn.MAR μm/day 0.59 ± 0.08 0.61 ± 0.13 NS

Ct.MAR μm/day 0.67 ± 0.06 0.65 ± 0.30 NS

dLS/BS % 22.00 ± 4.68 10.44 ± 6.14 0.002

BFR/BS mm3/mm2/day 48.26 ± 14.84 24.53 ± 15.36 0.01
N.Oc/B.Ar ȼ/mm2 540.92 ± 165.26 666.69 ± 155.36 NS

BV/TV: Trabecular Bone Volume/Total Volume, Tb.N: Tabecular Number, Tb.Th: Trabecular Thickness, Tb.Sp: Trabecular Separation, ICI:

InterConnectivity Index, V*m.space and V*trab,: Star Volume of Marrow Spaces and Trabeculae, DM: Minkowski’s fractal dimension, OV/BV: Osteoid

Volume/Bone Volume, O.Th: Osteoid Thickness, Cn.MAR and Ct.MAR: Cancellous and Cortical Mineralization Rates, dLs/BS: Double Labelled Surface/

Bone Surface, BFR/BS: Bone Formation Rate/Bone Surface, N.Oc/B.Ar: Number of Osteoclast/Bone Area

doi:10.1371/journal.pone.0148292.t002

Fig 2. Histological detection of the mineralization front (green line) by calcein double labelling. (a) Control mouse. (b)Hfe-/- mouse. Original
magnification ×400.

doi:10.1371/journal.pone.0148292.g002
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The main important findings were obtained on sections processed for double-labelled cal-
cein (Fig 2). The MARs were normal, indicating that no mineralization defect occurred in
Hfe-/- mice. We found no differences in osteoid parameters, OV/BV and O.Th, between con-
trols and Hfe-/- mice (Table 2) (Fig 3). However, a very sharp decline the amount of double
labelled surfaces indicated a net reduction in the number of active osteoblasts elaborating new
bone structure units. The BFR/BS parameter, which is derived fromMAR and dLS/BS, con-
firmed that the osteoblast defect inHfe-/- mice consists in a net reduction in the amount of
bone formed by groups of osteoblasts acting at the surface of bone trabeculae. These cells elabo-
rate less osteoid and mineralize it normally. The number of osteoclasts, identified histochemi-
cally, did not differ between the two groups but there was a non-significant tendency for
osteoclastogenesis stimulation in Hfe-/- mice.

Discussion
Despite the fact that osteoporosis is reported to be a functional consequence of genetic or sec-
ondary hemochromatosis, the mechanisms involved are not fully understood. We aimed to
analyse the impact of excess iron in Hfe-/- mice on bone microarchitecture and osteoblast activ-
ity. Therefore, we studied the bone formation rate in Hfe-/- mice. We found that bone contains
excess iron associated with increased HIC, confirming thatHfe-/- mice mimic human HG and
represent a valuable model for studying relationships between osteoporosis and iron excess.
This confirms our previous work on this model [26]. However the bone iron content is not uni-
form in this model and two of our mice had a poor iron overload.

Our results for bone mass parameters showed that iron deposition was associated with bone
loss by producing microarchitectural impairment with a decreased BV/TV and Tb.N. A disor-
ganization of trabecular network was found with an increase in the size of marrow cavities,
which was confirmed by enhanced Tb.Sp and V�

m.space. These microarchitectural changes led
to a loss of connectivity and complexity in the trabecular network, which was confirmed by
decreased ICI and increased Minkowski’s fractal dimension.

Fig 3. Histological detection of the osteoid section in bone using Goldner’s trichrome staining on undecalcified sections. (a) Control mouse. (b)
Hfe-/- mouse. Original magnification x100.

doi:10.1371/journal.pone.0148292.g003
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We have shown for the first time in a mouse model of GH that animals with iron overload
have a decreased bone formation as evidenced by the decrease in double labelled surfaces and
BFR/BS. This result was also observed in de Vernejoul et al.’s study [23] using an exogenous,
non-genetic, iron-overloaded pig model. The model had a markedly decreased osteoblast sur-
face and decreased mean wall thickness, a measurement of the quantity of bone deposited dur-
ing one remodelling cycle. However, BV/TV was unchanged in this study. Perls deposits in the
bone were not quantified. No mineralization impairment was evidenced inHfe-/- mice, in
which OV/BV and O.Th remained unchanged. In Matsushima et al.’s study, male rats with
exogenous iron overload had reduced BV/TV associated with increased bone remodelling, but
not accompanied by any mineralization effect [24]. Later, in adults Wistar male rats, a loss of
connectivity of trabecular bone at the femur associated with a decreased bone mineral density
was observed in colloidal iron overloaded rats [25]. The differences in animal model and the
nature of iron used to provoke experimental iron overload, and/or the judgment criteria could
explain some differences in the results. One of the most important could be the genetic cause
or not for iron overload.

We confirmed a negative direct impact ofHfe-related iron overload on bone mass and
microarchitecture. Above all, we showed for the first time the negative impact of iron overload
on bone formation in an animal genetic model known to mimic human GH. This finding
strongly supports the hypothesis of osteoblast number/function impairment in osteoporosis
related to iron overload during GH. Such in vivo finding are in accordance with and emphasize
recent in vitro studies suggesting that excess iron has a direct impact on osteoblast function
and, therefore, could decrease bone formation [18–21]. Studies on rat calvaria cultures and
murine osteoblast cell lines have shown that iron exposure damages osteoblast cell viability,
differentiation, and function by modulating gene expression [18–20]. Recently, we found simi-
lar results in a human osteoblast cell line exposed to excess iron and observed a decrease in the
expression of genes involved in bone matrix formation or reported to be associated with osteo-
blast differentiation, such as collagen type I, osteocalcin, and RUNX2. In addition, we found
that the expression of HHIPL-2 (HedgeHog Interacting Protein Like-2) was modulated by iron
overload; these results suggested that HHIPL-2 plays a role in decreased osteoblast function in
bone formation [21]. The HHIPL2 exact biological function is not known. However, another
member of the HHIPs family, HHIP, is known to limit the Hedgehog signalling pathway by
interacting with the Hedgehog proteins [30]. This association could possibly also offer an
explanation for HHIPL2’s role. This finding was also in agreement with studies on human mes-
enchymal stem cells that reported a down-regulation of Hedgehog signalling during osteoblast
differentiation [31] and decreased expression of collagen type I and osteocalcin genes, which
encode two bone matrix proteins, after the activation of Hh signalling [32].

These results fit in well with data reported in patients with thalassemia (the most common
disease of secondary iron overload). Osteoporosis is frequent in such situations (40–50%) and
causes high morbidity in children and adults [33,34]. Low bone mineral density [35,36], high
fracture prevalence [37,38], and changes in the microarchitecture have been observed in these
patients. A bone histomorphometry study in children and adolescents with β-thalassemia
reported evidence of impaired osteoblast activity. A decrease in the BFR was found, but also
defective mineralization associated with iron deposition on the mineralization front [13].
Despite the fact that other factors, such as hypogonadism, hyperparathyroidism, vitamin D
deficiency, delayed puberty, defective growth hormone axis, and insulin growth factor 1 defi-
ciency may favour osteoporosis in thalassemia [39], excess iron could be an independent
factor.

Notably, an increase in iron-related osteoclast activity could also participate in the develop-
ment of osteoporosis. Studies have reported that iron-related bone loss and trabecular
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microarchitectural changes are associated with increased resorption. In a mouse model of
exogenous iron overload, bone alterations involving osteoclasts were found to be related to oxi-
dative stress [40]. An increase in the RANKL/OPG ratio was found in thalassemia patients,
suggesting an induction of osteoclast resorption activity [41–43]. In male Hfe-/- mice, the osteo-
porotic phenotype with low bone mass and microarchitectural alterations was associated with
increased osteoclast number [26]. In the present study, we found a trend of increased osteoclast
number inHfe-/- mice compared to controls, but it was not significant. The low number of ani-
mals, due to a poor bone iron content for twoHfe-/- mice, could explain this lack of
significance.

In conclusion, for the first time in a genetic hemochromatosis mouse model, our results sug-
gest that iron overload predominantly decreases bone formation, with alterations in bone mass
and microarchitecture. These observations support a negative effect of iron on osteoblast
recruitment and/or function, which may contribute to iron-related osteoporosis.
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