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Abstract

The desmosomal cadherin desmoglein-1 (DSG1) is an essential intercellular adhesion molecule 

that is altered in various human cutaneous disorders; however, its regulation and function in 

allergic disease remains unexplored. Herein, we demonstrate a specific reduction in DSG1 in 

esophageal biopsies from patients with eosinophilic esophagitis (EoE), an emerging allergic 

disorder characterized by chronic inflammation within the esophageal mucosa. Further, we show 

that DSG1 gene silencing weakens esophageal epithelial integrity, and induces cell separation and 

impaired barrier function (IBF) despite high levels of desmoglein-3 (DSG3). Moreover, DSG1 

deficiency induces transcriptional changes that partially overlap with the transcriptome of 

inflamed esophageal mucosa; notably, periostin, a multipotent pro-inflammatory extracellular 

matrix molecule, is the top induced overlapping gene. We further demonstrate that IBF is a 

pathological feature in EoE, which can be partially induced through the downregulation of DSG1 
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by interleukin-13 (IL-13). Taken together, these data identify a functional role for DSG1 and its 

dysregulation by IL-13 in the pathophysiology of EoE and suggest that the loss of DSG1 may 

potentiate allergic inflammation through the induction of pro-inflammatory mediators such as 

periostin.

Introduction

Eosinophilic esophagitis (EoE) is a chronic inflammatory disease that has emerged over that 

last decade on a worldwide scale1. Although symptomatically resembling gastroesophageal 

reflux disease (GERD), EoE is characterized by immune sensitization to a variety of foods 

and marked Th2-associated allergic inflammation in the esophageal mucosa that is largely 

refractory to acid-suppressive therapy2. During active disease, the histopathological changes 

within the inflamed esophageal mucosa include the dense accumulation of activated immune 

cells, including eosinophils, mast cells, and T and B lymphocytes3. Moreover, evidence of 

dilated intercellular spaces (DIS) and abnormal epithelial cell proliferation suggest that 

impaired barrier function (IBF) of the esophageal epithelium may potentially contribute to 

the pathophysiology of EoE4–6. While dietary modification (i.e., complete or targeted food 

antigen avoidance) and swallowed glucocorticoids alleviate much of the disease pathology, 

EoE still has one of the lowest quality-of-life indexes among other chronic pediatric 

diseases, including inflammatory bowel disease7–9.

Early efforts aimed at the molecular dissection of EoE pathogenesis included gene 

expression profiling of esophageal mucosal biopsies from patients with active EoE, which 

identified a striking disease-associated transcript signature that was highly conserved across 

patients with EoE and largely normalized during glucocorticoid-induced disease 

remission10, 11. Several pro-inflammatory mediators, such as the chemokine (C-C-motif) 

ligand 26 (CCL26), periostin (POSTN), and tumor necrosis factor, alpha-induced protein 6 

(TNFAIP6), were dramatically elevated in the inflamed esophageal mucosa in EoE10 and in 

primary esophageal epithelial cells treated with the Th2 cytokine interleukin-13 (IL-13)11. A 

marked reduction in genes involved in epithelial homeostasis was also observed. In 

particular, the desmosomal cadherin desmoglein-1 (DSG1) exhibited an approximate 8-fold 

decrease in patients with active EoE, which only partially normalized upon disease 

remission11.

DSG1 is a intercellular adhesion molecule belonging to the desmosomal cadherin family, 

which includes desmogleins (DSG1-4) and desmocollins (DSC1-3)12. Desmogleins and 

desmocollins are involved in maintaining epithelial homeostasis where they display spatially 

distinct expression patterns at various levels among different stratified epithelia12, 13. In 

particular, DSG1 is highly expressed in the epidermis and localized primarily within the 

suprabasal epithelial layers, where it regulates cell adhesion and supports epithelial cell 

differentiation14. In contrast, DSG3 is localized to undifferentiated, basal epithelial cells and 

has been suggested to promote cell proliferation15–17.

While the function of DSG1 has been well characterized in the epidermis, its role in the 

esophageal epithelium under both homeostatic and inflammatory conditions remains largely 

unknown. DSG1 mediates intercellular adhesion by forming calcium-dependent heterotypic 
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and homotypic interactions between adjacent epithelial cells via its amino-terminal 

ectodomain18. However, it is becoming increasingly appreciated that DSG1 has additional 

roles beyond that of cell adhesion19. Indeed, DSG1 promotes epithelial differentiation 

through negatively regulating the activation of extracellular signal-regulated kinase (ERK) 

by epidermal growth factor receptor (EGFR) signaling14. DSG1 can also promote epithelial 

differentiation through its interactions with ERBIN, which sequesters SHOC2 to attenuate 

RAS-mediated ERK activation20.

In the present study, we sought to determine the functional consequences of DSG1 

dysregulation in EoE pathogenesis as DSG1 was one of the most down-regulated genes in 

the esophageal mucosa of EoE patients11. We hypothesized that the downregulation of 

DSG1 contributes to the pathological features of the esophageal epithelium in EoE. We 

demonstrate a marked reduction in the gene and protein levels of DSG1 but not DSG3 in the 

esophageal mucosa of patients with EoE. Suppression of DSG1 by shRNA or IL-13 

treatment induced IBF in differentiated esophageal epithelial cells grown at the air-liquid 

interface (ALI); notably, IBF was also observed ex vivo in biopsy samples from patients 

with EoE. Lastly, knockdown of DSG1 was sufficient to induce a gene expression profile, 

which included periostin as the top induced gene, that substantially overlaps with the 

transcriptome of the inflamed esophageal mucosa of patients with EoE. These data suggest 

that the negative regulation of DSG1 by IL-13 can exacerbate inflammation of the 

esophageal mucosa in EoE by enhancing IBF and initiating a pro-inflammatory gene 

expression cascade.

Results

Specific dysregulation of DSG1 in EoE

We sought to establish the relative levels of all desmoglein genes (DSG1-4) in the 

esophagus and to determine whether the downregulation of DSG1 was specific among other 

DSG family members. Whole-transcriptome RNA sequencing of esophageal biopsies from 

healthy controls (NL) (n = 6) and patients with active EoE (n = 10) showed a specific and 

dramatic downregulation of DSG1 in this cohort of patients (Fig. 1A). Indeed, DSG1 

exhibited a 12.7 fold reduction in patients with active EoE (FPKM [median + interquartile 

range] = 19.6 + (4.6 – 24.4) in NL and 0.70 + (0.5 – 1.2) in EoE; p = 1 × 10−3). Notably, the 

most abundant DSG expressed in the esophageal mucosa was DSG3, which did not display 

differential expression in EoE (FPKM [median + interquartile range] = 254.4 + (239.0 – 

279.5) in NL and 258.2 + (218.6 – 326.1) in EoE; p = 0.75) (Fig. 1C). We examined the 

downregulation of DSG1 in a larger cohort of NL and patients with active EoE disease (n = 

25 and 39, respectively) by quantitative PCR (qPCR) and detected a 22.1-fold reduction (p = 

1 × 10−4) in the esophageal expression of DSG1 in active EoE (Fig. 1D). Lastly, we assessed 

esophageal DSG1 levels in patients with inactive EoE (n = 10) following swallowed 

glucocorticoid therapy (Fig. 1E). During disease remission, expression of DSG1 normalized 

to similar levels that were observed in NL (n = 11) yet was significantly different than in 

patients with active disease (n = 13) (p = 3 × 10−4).

We next performed immunofluorescent and/or immunohistochemical staining for DSG1, 

DSG3 and E-cadherin in the esophageal mucosa of NL and patients with active EoE to 
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characterize protein expression and localization. Consistent with previous reports21, 

expression of DSG1 localized to the cell surface and was restricted to the suprabasal 

esophageal epithelium in NL, while DSG1 staining was remarkably absent in patients with 

active EoE (Fig. 2A, upper panel). Conversely, DSG3 was abundantly expressed throughout 

most of the esophageal epithelium in both NL and EoE, with more concentrated staining 

within the basal epithelial cell layers (Fig. 2A, lower panel). Immunohistochemical staining 

for DSG1 revealed a similar downregulation in EoE whereas expression of E-cadherin, a 

ubiquitously expressed cadherin molecule that regulates epithelial homeostasis and barrier 

formation22, was unchanged between NL and patients with active EoE (Fig. 2B); these 

findings were supported at the gene level by qPCR analysis of esophageal biopsies from NL 

and active EoE patients (data not shown). These cumulative data indicate a specific 

downregulation of the DSG1 gene and protein in EoE, and that this is unique from the 

expression patterns of other desmogleins and E-cadherin.

Loss of DSG1 regulates esophageal epithelial cell integrity in vitro

In order to investigate the functional consequences of DSG1 dysregulation on the 

esophageal epithelium, we developed a modified ALI culture system to induce a stratified 

esophageal epithelium in vitro. Similar ALI models have been used to study differentiated 

epithelium of both the epidermis and esophagus23, 24. Confluent monolayers of 

immortalized esophageal epithelial cells (EPC2), which have been previously shown to form 

stratified esophageal epithelium25–27, were exposed to the ALI in the presence of high Ca2+ 

(1.8 mM). Following 5–7 days of differentiation at the ALI, the EPC2 cells formed a 

stratified epithelium as indicated by the differential H&E staining when compared to 

submerged cells (Fig. 3A). Gene expression analyses after ALI exposure showed significant 

induction of DSG1 and keratin 10 (KRT10) (411 fold, p < 1 × 10−3 and 6,240 fold, p < 1 × 

10−2, respectively), both of which are expressed specifically in differentiated esophageal 

epithelial cells21, 28, 29 (Fig. 3B–C).

We next utilized lentiviral shRNA gene silencing to directly examine the impact of DSG1 

dysregulation on esophageal epithelial cell adhesion. EPC2 cells that were stably transduced 

with a DSG1 shRNA exhibited a 92% reduction in DSG1 expression compared to cells 

transduced with a non-silencing control (NSC) shRNA (p < 5 × 10−3) (Fig. 4A), whereas 

DSG3 levels remained unaffected (Fig. 4B). Histological analyses of the NSC shRNA-

transduced cells grown at the ALI showed normal stratification with a differentiated, intact 

esophageal epithelium (Fig. 4C, upper panel). However, while the differentiation appeared 

normal in the DSG1 shRNA-transduced cells, prominent cellular separation was evident in 

the suprabasal layers (arrows, Fig. 4C, lower panel). Importantly, this cellular separation 

was consistently observed only in the DSG1-deficient cells (and not the NSC controls cells) 

using multiple DSG1 shRNA clones, indicating that the observed phenotype was not due to 

sample sectioning (data not shown). A similar phenotype was observed when ALI-

differentiated EPC2 cells were treated directly with recombinant wild type (WT) exfoliative 

toxin A (ETA), a DSG1-specific protease produced by S. aureus and the causative agent of 

epidermal blistering in staphylococcal scalded-skin syndrome (SSSS)30 (Fig. 4D, lower 

panel). Notably, the inactive mutant form of ETA (S195A) did not induce cellular separation 

(Fig. 4D, upper panel). To directly measure whether loss of DSG1 reduced esophageal 
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epithelial cell adhesion, NSC or DSG1 shRNA-transduced cells were subjected to a dispase 

adhesion assay. Following mechanical disruption, a significantly greater amount of cell 

dissociation was observed in cells deficient in DSG1 than in control cells (p < 5 × 10−2) 

(Fig. 4E–F).

IBF in EoE and in DSG1-deficient esophageal epithelial cells in vitro

To assess the integrity of the esophageal epithelium in EoE at the ultra-structural level, we 

performed electron microscopy on NL and EoE patient biopsies. While the esophageal 

epithelium of NL patients was composed of cohesive, intact epithelia, prominent DIS were 

evident throughout the esophageal epithelium of patients with EoE (arrowheads, Fig. 5A). 

These findings, which have been noted in previous studies of both EoE and GERD31, 32, 

were consistent across multiple sections from the same patient and among different patients. 

We next assessed whether IBF is indeed a pathological defect in EoE by measuring 

transepithelial electrical resistance (TER) ex vivo in esophageal biopsies from NL and 

patients with EoE (Fig. 5B). We found that transcellular permeability was reduced by 

approximately 62% in patients with EoE compared to in NL (RT = 84 ± 28 vs. 224 ± 23 

ohms × cm2, respectively; p < 5 × 10−3). We also analyzed paracellular permeability in EoE 

by measuring macromolecular flux in esophageal biopsies and observed an approximate 46-

fold increase in those from patients with EoE compared to NL (p < 5 × 10−2). Notably, 

esophageal expression of occludin (OCLN) and genes in the claudin (CLDN) and tight 

junction protein (TJP) families was not reduced in EoE, suggesting the IBF in EoE occurs in 

the absence of marked alteration to tight junctions (Supplementary Fig. 1A–C).

We hypothesized that the cellular separation that occurs within the esophageal epithelium 

following the loss of DSG1 (Fig. 4C) may contribute to the IBF observed in EoE (Fig. 5A–

C). To test this possibility, we measured TER and paracellular permeability in the ALI-

differentiated NSC or DSG1 shRNA-transduced EPC2 cells. Reduced DSG1 expression 

resulted in impaired TER (p < 5 × 10−3, Fig. 5D) and increased FITC-dextran flux (p < 5 × 

10−2, Fig. 5E–F) by approximately 42% and 33%, respectively. These data identify a novel 

mechanism whereby loss of DSG1 negatively affects esophageal epithelial integrity and is 

sufficient to induce IBF.

IL-13 regulates DSG1 and promotes IBF in differentiated esophageal epithelial cells

IL-13 is a critical Th2 cytokine capable of eliciting some of the transcriptional changes 

within the inflamed esophageal epithelium that are associated with EoE, including the 

downregulation of multiple epithelial cell differentiation genes11, 33. Therefore, we assessed 

the effects of IL-13 on the integrity and barrier formation of ALI-differentiated esophageal 

epithelial cells. Esophageal epithelial cells were left untreated or treated with 10 or 100 

ng/mL IL-13 continuously throughout the ALI differentiation process. Both concentrations 

of IL-13 induced partial cellular separation within the suprabasal epithelial layers (arrows, 

Fig. 6A, middle and lower panels).

As the IL-13-induced suprabasal cell separation partially reflected the phenotype of DSG1-

deficient cells (Fig. 4C), we next investigated the ability of IL-13 to regulate DSG1 

expression. IL-13 treatment suppressed the induction of DSG1 in ALI-differentiated 
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esophageal epithelial cells (Fig. 6B), whereas induction of KRT10 (Fig. 6C) and DSG3 (data 

not shown) were unaffected. Importantly, IL-13 also promoted IBF, as a significant 

reduction in TER was observed at both 3 and 5 days post treatment with IL-13 (100 ng/mL) 

compared to untreated cells (Fig. 6D).

We also tested whether IL-13 could attenuate DSG1 expression in vivo using a transgenic 

murine model of EoE. Doxycycline (Dox)-inducible expression of IL-13 in the lung (using 

the Clara cell-specific promoter CC10) has been shown to induce an EoE phenotype in 

mice34. Elevated IL-13 levels in the BAL and induced esophageal eosinophilia were 

detected in the Dox-treated animals (Supplementary Fig. 1A–B). Overexpression of IL-13 in 

treated (+ Dox) mice reduced DSG1 mRNA and protein levels in the esophageal mucosa as 

compared to untreated (-Dox) mice (Supplementary Fig. 1C–E).

Loss of DSG1 primes for the innate inflammatory transcript signature

DSG1 has been shown to counter-regulate EGFR signaling, and more recently RAS-

mediated signaling, through mechanisms that are independent of its full-length, adhesive N-

terminal domain14, 20. Therefore, we hypothesized that DSG1 deficiency may also regulate 

downstream signaling responses associated with the Th2 inflammation in EoE. To test this 

possibility, we performed microarray analyses on NSC and DSG1 shRNA-transduced EPC2 

cells following ALI-differentiation. Interestingly, 63 transcripts coding for 53 unique genes 

were differentially expressed in the DSG1-deficient cells compared to in control cells (p < 5 

× 10−2, fold change > 2.0) (Fig. 7A). Notably, there was a substantial overlap between this 

transcript profile and the EoE transcriptome identified in patient esophageal biopsies by 

RNA sequencing (RNA-seq); 60% of the unique DSG1-regulated transcripts were also 

dysregulated in esophageal biopsies of patients with EoE (Fig. 7B and Supplementary Table 

1). In particular, periostin (POSTN) was the most highly induced gene upon DSG1 

knockdown in esophageal epithelial cells (2.5 fold) and was dramatically elevated in 

esophageal tissue of patients with EoE (384 fold) (Supplementary Table 1).

We next validated the significant increase in POSTN levels in DSG1-deficient esophageal 

epithelial cells by qPCR and observed a 17-fold increase in POSTN in the DSG1 versus NSC 

shRNA-transduced cells (p < 5 × 10−2) (Fig. 8A). Furthermore, qPCR analysis demonstrated 

a significant and dramatic increase in POSTN expression in the esophageal mucosa of 

patients with active EoE compared to NL (p < 1 × 10−4, fold change = 2,047) (Fig. 8B). 

Notably, POSTN levels in EoE showed a significant inverse correlation with DSG1 

expression (same cohort as in Fig. 1D) (Spearman r = −0.33, p = 0.02) (Fig. 8C). Together, 

these data indicate that IL-13-induced loss of DSG1 augments the allergic inflammatory 

response by promoting IBF and likely elevates pro-inflammatory gene expression in EoE 

(Fig. 9).

Discussion

The data presented herein characterize the pathological impact of DSG1 dysregulation in 

EoE and define a non-redundant role for DSG1 in the regulation of the esophageal epithelial 

barrier function and homeostasis. In particular, we demonstrated a specific and marked 

downregulation of DSG1 in the esophageal epithelium of patients with EoE that was largely 
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reversible with patient disease status. This loss in DSG1 expression was sufficient to induce 

cell separation and IBF in the esophageal epithelium. Moreover, DSG1 deficiency led to an 

esophageal epithelial transcript signature that included increased gene expression of the pro-

inflammatory extracellular matrix molecule periostin. These findings are particularly notable 

in view of the relatively high abundance of DSG3 expression in EoE and in our in vitro 

model, demonstrating the lack of redundancy for DSG1’s regulation of esophageal 

responses, particularly during allergic inflammation. Interestingly, in GERD, in which DIS 

and IBF have been attributed to acid exposure of the esophageal epithelium, esophageal 

expression of DSG1 (and DSG3 to a lesser extent) is increased35, further suggesting a 

unique, non-redundant and essential role for DSG1 in regulating disease processes 

specifically linked with EoE pathology.

Our data identify IL-13 as a potent regulator of DSG1 expression in human esophageal 

epithelial cells cultured at the ALI and in mouse esophageal epithelial cells in a murine 

model of EoE. This latter finding is quite striking given the physiological differences 

between the human and mouse esophagus (not keratinized versus keratinized, respectively) 

and the existence of multiple murine Dsg1 isoforms (α, β, and γ)36, which were universally 

detected in our qPCR analysis and immunofluorescent staining (see Supplementary 

Materials and Methods). Previous work has demonstrated a pronounced effect of IL-13 on 

global gene expression in primary esophageal epithelial cells, and in particular, genes 

involved in epithelial differentiation11, 33. DSG1 was not shown to be regulated by IL-13 in 

these data, which, on the basis of our data in the ALI system (Fig. 3), we hypothesize was 

due to the low levels of DSG1 expression in esophageal epithelial cells grown in the 

submerged culture conditions used in these studies. Interestingly, in skin keratinocytes, 

which express high baseline levels of DSG1 even in submerged cultures, IL-4 has been 

shown to downregulate DSG1 expression in vitro37. Notably, both IL-13 and IL-4 are 

significantly increased in the peripheral blood and esophageal mucosa of patients with active 

EoE38, 39 and preliminary data indicate that IL-4 is also capable of negatively regulating 

DSG1 expression and inducing IBF in ALI-differentiated esophageal epithelial cells in vitro 

(data not shown). These data, together with our findings that esophageal expression of DSG1 

normalizes in EoE patients during disease remission, indicate DSG1 is negatively regulated 

by Th2 cytokines during allergic inflammation.

Within the epithelial barrier of the epidermis and intestine, the selective ability to 

discriminate the uptake of molecules based on size and charge is attributed to the tight 

junction complex40. For example, several tight junction genes are expressed within the 

epidermis including CLDN1, CLDN4, TJP1, and OCLN41. While only CLDN1 has been 

demonstrated to have an essential role in epidermal barrier function in vivo42, a recent study 

has shown CLDN4, TJP1, and OCLN can also independently regulate epidermal 

permeability in vitro43. Although the esophageal epithelial barrier has been studied primarily 

in the context of GERD, tight junction proteins have been shown to have no correlation with 

GERD pathogenesis44. Moreover, our data (Supplementary Fig. 1) demonstrate no decrease 

in genes encoding claudins, tight junction proteins, or occludin in EoE; none of these genes 

were dramatically altered in DSG1-deficient cells following shRNA transduction or IL-13 
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treatment (Supplementary Table 3). Together, these data suggest physiologically distinct 

mechanisms regulate the epithelial barrier properties of the esophagus and the epidermis.

Despite our evidence substantiating IBF as a bona fide pathological feature in EoE, little is 

known regarding the role of the esophageal barrier in regulating allergic inflammation. 

Within the epidermis, Langerhans cells continually sample external antigens by inducing 

transient reorganization of tight junctions within the stratum corneum without affecting 

barrier integrity; this homeostatic surveillance is further amplified in activated Langerhans 

cells45. These data suggest a potential mechanism by which IBF could lead to increased 

antigen sensitization, which is dependent on tissue resident antigen presenting cells. It is 

important to note that Langerhans cells46, 47 and high baseline expression of the high affinity 

IgE receptor FcεRI48 have been observed in both healthy and inflamed esophageal 

epithelium. Moreover, data suggesting esophageal epithelial cells can present antigen and 

MHC class II expression is increased in EoE49 further suggest that the esophagus is not a 

unifunctional, static organ involved solely in food transport, but rather has an active role in 

immunosurveillance during allergic inflammation.

Our finding of elevated periostin expression in DSG1-deficient cells is particularly notable 

as periostin has been implicated in multiple allergic inflammatory disease including asthma, 

atopic dermatitis, and EoE50–52. Periostin can directly enhance eosinophil adhesion50, 53, as 

well as increase keratinocyte production of thymic stromal lymphopoetin (TSLP)52, a potent 

Th2-skewing cytokine that has been genetically linked to EoE susceptibility54, 55. Although 

periostin is expressed primarily in fibroblasts, treatment of both bronchial epithelial cells56 

and esophageal epithelial cells50 with IL-13 induces periostin expression in these cell types. 

Interestingly, periostin has been shown to enhance signaling through EGFR and integrin 

αvβ5 to induce epithelial-mesenchymal transition (EMT)57, a process associated with the 

loss of epithelial cell markers as epithelial cells adopt a fibroblast-like phenotype and 

increased migratory properties (e.g., loss of cell adhesion)58. While a previous report 

demonstrated that DSG1 supports epithelial differentiation and reduces proliferative 

capacity through negative regulation of EGFR signaling14, a similar suppressive effect of 

DSG1 on EMT induction has not been addressed. As it has been recently proposed that 

EMT is actively occurring in EoE59, 60, perhaps the loss of DSG1-dependent adhesion and 

the upregulation of periostin synergistically disrupt the homeostatic interactions between 

epithelial cells and fibroblasts during allergic inflammation.

The clinical importance of DSG1 and its role in maintaining epithelial integrity has been 

reported in several cutaneous diseases of autoimmune, infectious, and genetic origin30. In 

pemphigus foliaceous, autoantibodies against the ectodomain of DSG1 induce severe 

epidermal acantholysis30; interestingly, heightened Th2 inflammation, including elevated 

Th2 cytokine expression61 and the presence of activated eosinophilic infiltrates62, are 

observed in some instances. In Netherton syndrome, an epidermal inflammatory disease 

involving IBF with marked eosinophilia and elevated IgE levels63, the primary etiology has 

been attributed to the genetic loss of the epithelial-derived serine protease inhibitor, Kazal 

type, 5 (SPINK5)64. In this disease, the uncontrolled activity of endogenous trypsin-like 

proteases leads to aberrant cleavage of epithelial barrier proteins within the stratum corneum 

(including DSG1). Mice deficient in Spink5 display increased DSG1 degradation and 
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significant epidermal pathology, including epidermal acantholysis and IBF65. However, it 

has been unclear whether the loss of DSG1 alone is sufficient to induce IBF as several 

proteases (e.g., kallikriens 5, 7, and 14 and elastase 2) and stratum corneum proteins are 

involved in barrier formation (e.g., filaggrin, involucrin, and loricrin) and are also altered in 

Netherton syndrome65–67.

Recently, genetic variants in DSG1 were identified in a new clinical syndrome manifesting 

with severe atopic dermatitis, multiple allergies, and metabolic wasting (SAM syndrome) in 

two consanguineous families68. Homozygous loss-of-function variants led to reduced 

expression of DSG1 and loss of cell adhesion68. Notably, one of three patients with SAM 

syndrome was reported to have EoE as well as elevated keratinocyte expression of IL5 and 

TSLP68. Interestingly, in a genome-wide association study, we identified a non-coding 

variant in intron 1 of DSG1 with suggestive association with EoE risk (meta p = 6.57 × 

10−6)54, the function of which has yet to be determined. Nonetheless, these supportive 

findings in SAM coincide with our data as they provide additional evidence that links DSG1 

deficiency as an initiating factor to IBF in allergic inflammation.

In summary, the observations presented herein support a pathophysiological role for DSG1 

dysregulation in EoE. We propose a pathogenic cycle in which the localized increase in 

select Th2 cytokines (e.g. IL-13) within the inflamed esophagus decreases expression of 

DSG1, which is sufficient to weaken esophageal epithelial integrity and induce IBF. This 

loss of DSG1 initiates a pro-allergic transcriptional response (e.g., increased periostin 

expression) that potentiates the inflammatory response and may have far-reaching 

implications beyond the initial IBF insult, such as promoting EMT (Fig. 9).

Methods

Human subjects

NL (healthy control patients) were defined as having no history of EoE diagnosis with 0 

eosinophils per high-power field (HPF) and no evidence of esophagitis within distal 

esophageal biopsies obtained during the same endoscopy procedure as the analyzed samples. 

Patients with EoE had clinician-diagnosed EoE and as having active disease in concomitant 

distal esophageal biopsies with greater than 15 eosinophils per HPF. EoE patients in disease 

remission (inactive) had clinician-diagnosed EoE and distal esophageal biopsies with less 

than 15 eosinophils per HPF (range = 0–1) following swallowed glucocorticoid therapy.

RNA sequencing (RNA-seq) and bioinformatic analyses

RNA isolated from esophageal biopsies of 6 NL and 10 patients with active EoE (mean 

eosinophils/HPF = 164 ± 29 SEM) was subjected to RNA sequencing at the CCHMC Gene 

Discovery and Genetic Variation Core as previously described69. The paired-end sequencing 

reads were aligned against the GRCh37 genome model using TopHat 2.04 with Bowtie 

2.0370, 71. The separate alignments were then merged using Cuffmerge with RefSeq gene 

models as a reference. The aligned reads were then quantified for differential expression 

analysis using Cuffdiff72. Statistical significance was determined using a t-test with a 
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threshold of p < 5 × 10−2 and a 2.0-fold cut-off filter in GeneSpringR 11.5 (Agilent 

Technologies Incorporated, Clara, CA, USA).

qPCR analysis

RNA samples were prepared as previously described34. Briefly, total RNA (250–500 ng) 

was DNAase treated, and cDNA was generated using the iScriptTM cDNA synthesis kit 

(Bio-Rad Laboratories, Hercules, CA, USA). qPCR was performed, and SYBRR Green 

incorporation was analyzed using iQ5 software (Bio-Rad Laboratories, Hercules, CA, USA). 

Specific primer sequences are listed in Supplementary Table 2.

Immunohistochemical and immunofluorescent staining. For immunohistochemical staining, 

formalin-fixed, paraffin-embedded distal esophageal biopsies were serially sectioned and 

de-paraffinized using xylene followed by graded ethanol washes. Heat-induced epitope 

retrieval in sodium citrate buffer (10 mM sodium citrate, 0.05% Tween 20, p.H. 6.0) was 

used, and endogenous peroxidase activity was quenched in 2% H2O2. Slides were blocked 

in PBS with 3% goat serum for 1 hr followed by overnight incubation at 4°C in the 

following primary antibodies (2 μg/mL): anti-DSG1 (sc-2011) (Santa Cruz Biotechnology, 

Santa Cruz, CA, USA) or anti-E-cadherin (#3195, Cell Signaling Technology, Inc., Danvers, 

MA, USA). Slides were then washed, incubated for 1 hr at room temperature in biotin-

conjugated anti-rabbit IgG (1:250), and developed using the Vectastain ABC System 

according to manufacturer’s protocol (Vector Laboratories, Burlingame, CA, USA). Lastly, 

developed slides were counterstained with Harris hematoxylin. Immunofluorescent staining 

was performed as previously described50 using the following primary antibodies (2 μg/mL): 

anti-DSG1 (sc-2011) or anti-DSG3 (sc-23912) (Santa Cruz Biotechnology, Santa Cruz, CA, 

USA). Nuclei were stained with DAPI. Patients with active EoE that were analyzed by 

staining had eosinophil levels ranging from 98 to 265 eosinophils per HPF.

ALI culture system

The esophageal epithelial cell line (human telomerase reverse transcriptase [hTERT]-

immortalized EPC2 cell line) was a kind gift from Dr. Anil Rustgi (University of 

Pennsylvania, Philadelphia, PA, USA) and has been extensively characterized in previous 

studies25, 26, 73. For the ALI culture system, EPC2 cells were grown to confluence while 

fully submerged in low-calcium ([Ca2+] = 0.09 μM) keratinocyte serum-free media (K-

SFM) (Life Technologies, Grand Island, NY, USA) on 0.4-μm pore-size permeable supports 

(Corning Incorporated, Corning, NY, USA). Confluent monolayers were then switched to 

high-calcium ([Ca2+] = 1.8 μM) K-SFM for an additional 3–5 days. To induce epithelial 

stratification and differentiation, the culture medium was removed from the inner chamber 

of the permeable support in order to expose the cell monolayer to the air interface. 

Differentiated esophageal epithelial equivalents were analyzed 5–7 days post exposure.

DSG1 knockdown

EPC2 cells were transduced with shRNA targeting the last exon of DSG1 or a NSC shRNA 

using the GIPZ lentiviral system (Thermo Fisher Scientific, Rockford, IL, USA). Lentiviral 

particles were prepared at the CCHMC Viral Vector Core facility. Forty-eight hours post 

transduction, cells were selected for stable integration using puromycin (1 μg/mL), which 
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was maintained throughout all subsequent experiments. Transduction efficiency was 

assessed by GFP fluorescence, and knockdown efficiency as compared to NSC shRNA-

transduced cells was assessed by qPCR and immunofluorescence staining as described 

herein.

Expression and purification of recombinant ETA

The plasmids encoding WT ETA or the inactive ETA mutant S195A74 with a 5X histidine 

epitope tag75 were kindly provided by Dr. John Stanley (University of Pennsylvania, 

Philadelphia, PA, USA). The cDNAs were subcloned into the pT7-7 vector, validated by 

Sanger sequencing, and purified from isopropyl β-D-1-thiogalactopyranoside (IPTG)-

induced BL21 (DE3) pLysS E. coli cell lysates using Ni+-NTA agarose column 

chromatography (QIAGEN Incorporated, Germantown, MD, USA). Purified ETA WT and 

S195A proteins were analyzed by SDS-PAGE and Coomassie staining or western blot using 

anti-histidine antibodies; in transiently transfected HEK293T cells, cleavage of DSG1 by 

WT ETA protein and non-cleavage of DSG1 by S195A ETA protein were confirmed by 

western blot (data not shown). Final protein concentrations were determined by 

bicinchoninic acid (BCA) assay (Thermo Fisher Scientific, Rockford, IL, USA).

Dispase adhesion assays

Dispase adhesion assays were performed as previously described76. Briefly, confluent 

monolayers of NSC or DSG1 shRNA-transduced EPC2 cells were grown in 1.8 mM Ca2+ 

for 24 h, washed twice with PBS, and then detached from tissue culture wells by incubation 

in 2.4 U/mL dispase (Life Technologies Corporation, Grand Island, NY, USA) for 15–20 

min at 37°C. Detached monolayers were then subjected to mechanical stress by pipetting 

with a 1-mL pipet 5 times. Aliquots were then cyto-centrifuged and stained with Hema 3R 

(Thermo Fisher Scientific, Rockford, IL, USA). One-, two-, and three-cell clusters were 

counted from the entire field under 10X magnification.

Microarray analyses

RNA was isolated using the miRNeasy kit (QIAGEN Incorporated, Germantown, MD) 

according to the manufacturer’s protocol. RNA quality assessment, library preparation, 

hybridization to the GeneChipR Human Gene 2.0 ST exon array (Affymetrix, Santa Clara, 

CA, USA), and analysis were performed at the CCHMC Gene Expression Microarray Core. 

Expression profiles were analyzed using GeneSpringR 11.5 (Agilent Technologies 

Incorporated, Clara, CA, USA), and statistical significance was determined using a t-test 

with a threshold of p < 5 × 10−2 and a 2.0-fold cut-off filter.

Electron microscopy

Transmission electron microscopy was performed at the Pathology Research Core at 

Cincinnati Children’s Hospital Medical Center (CCHMC). Biopsy specimens used in this 

analysis were from NL (n = 3) and from patients with active EoE (n = 3) who had a previous 

EoE diagnosis and an esophageal biopsy with greater than 15 eosinophils per HPF (range = 

60–100 eosinophils/HPF). The representative images shown were taken at 10,000X 

magnification.
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TER and paracellular flux assays

For ex vivo studies, esophageal biopsies from NL or patients with active EoE were mounted 

into mini-Ussing chambers, and TER measurements and paracellular flux assays using 

FITC-dextran (average molecular weight = 4 kDa) were performed as previously 

described77. A total of 6 NL biopsies were analyzed for TER and paracellular permeability. 

A total of 9 and 4 biopsies from patients with EoE were assessed for TER and paracellular 

permeability, respectively. To account for potential differences in biopsy thickness across 

the different patient groups, an arbitrary cut-off of 2% FITC-dextran flux was used, resulting 

in 5 of the 9 biopsies from patients with EoE being excluded. The data shown represent the 

mean ± SEM. In vitro measurements for TER following IL-13 treatment were assessed 

using an EVOM (World Precision Instruments, Inc., Sarasota, FL, USA), whereas TER and 

paracellular flux assays in DSG1-deficient cells were performed as previously described78.

Statistical analyses

Statistical significance was determined using a t-test (two-tailed). Non-normally distributed 

data from patient biopsy samples were analyzed using a Mann-Whitney test, and the 

Spearman correlation was used to test for correlated gene expression. All statistical analyses 

were performed using GraphPad PrismR (GraphPad Software Incorporated, La Jolla, CA, 

USA).

Study approvals

For human subjects, written informed consent was obtained prior to a patient’s enrollment in 

the studies, and all human studies were approved by the CCHMC Institutional Review 

Board (IRB protocol 2008-0090). All experiments involving mice were approved by the 

CCHMC IACUC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Specific reduction in desmoglein-1 (DSG1) gene expression in EoE
Heatmap depicting expression levels of desmogleins 1–4 (DSG1–4) (A) and individual 

FPKM values for DSG1 and DSG3 (B-C) from RNA sequencing of esophageal biopsies 

from 10 patients with active EoE versus 6 healthy controls (NL). Quantitative PCR (qPCR) 

analysis of DSG1 expression in esophageal biopsies from NL (n = 25) and patients with 

active EoE (n = 39) (D). qPCR analysis of DSG1 expression in esophageal biopsies from NL 

(n = 11) and patients with inactive (n = 10) or active (n = 13) EoE (E). Data are represented 

as the median + interquartile range: NS (not significant), *** p < 5 × 10−4, and **** p < 1 × 

10−4.
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Figure 2. Loss of DSG1 protein expression in EoE
Immunofluorescence (A) or immunohistochemical staining (B) of esophageal biopsy 

sections from controls (NL) and patients with active EoE. In (A), DSG1 (upper panel, in 

red) and DSG3 (lower panel, in green) are shown. Nuclei are stained with DAPI (blue). In 

(B), DSG1 (upper panel, in brown) and E-cadherin (lower panel, in brown) are shown. 

Dashed lines in (A) and (B) indicate the basal epithelial layer. Images in are representative 

of 4 patients per group.
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Figure 3. Differentiation of esophageal epithelial cells at the air-liquid interface (ALI)
H&E-stained sections of EPC2 cells grown in submerged cultures or differentiated at the 

ALI (A). qPCR analysis of desmoglein-1 (DSG1) (B) and keratin 10 (KRT10) (C) 

expression in submerged or ALI-differentiated EPC2 cells. Data are representative of 4 

experiments performed in duplicate and are represented as the mean + SEM: ** p < 5 × 10−3 

and *** p < 5 × 10−4.
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Figure 4. Loss of DSG1 reduces esophageal epithelial cell adhesion
qPCR analysis of DSG1 (A) and DSG3 (B) in ALI-differentiated EPC2 cells stably 

transduced with non-silencing control (NSC) or DSG1 shRNA. H&E-stained sections from 

stably transduced cells differentiated at the ALI (C). H&E-stained sections from EPC2 cells 

exposed to the air interface and treated with 10 μg/mL ETA (WT) or the S195A inactive 

mutant for 24 h (D). Arrows (C–D) indicate cell separation within the suprabasal epithelium. 

Cytospins from NSC or DSG1 shRNA-transduced EPC2 cells following dispase adhesion 

assays (E) and quantification of dissociated cell clusters are shown (F). Images in (C–E) are 

representative of 4–5 experiments performed in duplicate. Data in (A–B) and (E) are from 3 

experiments performed in duplicate and are represented as the mean + SEM: NS (not 

significant), * p < 5 × 10−2 and ** p < 5 × 10−3.
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Figure 5. Impaired barrier function (IBF) in EoE can be replicated in DSG1 deficient esophageal 
epithelial cells
Representative electron micrographs of esophageal biopsies from healthy (NL) controls (n = 

3) and patients with active EoE (n = 3). Arrowheads indicate the presence of dilated 

intercellular spaces (DIS) in EoE (A). TER (RT) measurements from esophageal biopsies 

from healthy (NL) control and patients with active EoE (n = 6 and 9, respectively) (B). 

FITC-dextran flux assays from NL and active EoE esophageal biopsies (n = 6 and 4, 

respectively) (C). TER (RT) measurements from NSC and DSG1 shRNA-transduced EPC2 

cells following ALI differentiation (D). Kinetic analysis of FITC-dextran flux was also 

performed (E). Total FITC-dextran flux following 180 minutes are depicted in (F). Data in 

(D–F) are from two independent experiments performed in quadruplicate. All data are 

represented as the mean + SEM: *, p < 5 × 10−2 ; **, p < 5 × 10−3.
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Figure 6. IL-13 downregulates DSG1 and promotes IBF in esophageal epithelial cells
H&E-stained sections of EPC2 cells differentiated at the ALI in the presence of 0 

(untreated), 10, or 100 ng/mL IL-13 (A). Arrows indicate a cell separation within to the 

suprabasal epithelium. Images are representative of 3 experiments performed in duplicate. 

Expression levels of DSG1 (B) and KRT10 (C) were measured by qPCR in submerged or 

ALI-differentiated EPC2 cells in the absence (0 ng/mL) or presence of IL-13 (10 or 100 ng/

mL). TER (RT) measurements on EPC2 cells at 0, 3, and 5 days following differentiation at 

the ALI in the absence (untreated) or presence of IL-13 (100 ng/mL) (D). Data are from 3 

experiments performed in duplicate and are represented as the mean + SEM: NS (not 

significant), ** p < 5 × 10−3 and *** p < 1 ×10−4 as compared to the untreated cells at the 

same days post-ALI differentiation.
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Figure 7. Loss of DSG1 promotes epithelial pro-inflammatory transcriptional responses
Heatmap of 63 transcripts with differential expression (p < 5 × 10−2, fold change > 2.0) in 

DSG1-deficient EPC2 cells compared to non-silencing control (NSC) cells following ALI-

differentiation (A). Venn diagram depicting the number of genes (n = 32) (boxed transcripts 

in [A]) dysregulated following DSG1 knockdown that overlap with differentially expressed 

genes in esophageal mucosa of EoE patients (n = 10) compared to healthy control patients 

(NL) (n = 6) identified by RNA sequencing (B).
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Figure 8. DSG1 deficiency increases periostin (POSTN) expression
qPCR analysis of POSTN expression in non-silencing control (NSC) and DSG1 shRNA-

transduced EPC2 cells following ALI differentiation (A) and in patient biopsies (same 

cohort as in Fig. 1D) (B). Spearman correlation between esophageal expression of POSTN 

and DSG1 (from Fig. 1D) in patients with active EoE (C). Data in (A) are representative of 

three independent experiments performed in duplicate and represented as the mean + SEM: 

* p < 5 × 10−2 and **** p < 1 × 10−4.
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Figure 9. Model of DSG1 dysregulation in EoE pathogenesis
Downregulation of DSG1 by select Th2 cytokines (e.g. IL-13) results in impaired barrier 

function (IBF) and increased antigen exposure as well as the expression of pro-allergic 

mediators including periostin (POSTN), forming a pathogenic cycle to further exacerbate 

allergic inflammation. Inset shows H&E staining of inflamed esophageal mucosa with 

dilated intercellular spaces (DIS) (arrowheads) and eosinophilic infiltration (arrows).

Sherrill et al. Page 26

Mucosal Immunol. Author manuscript; available in PMC 2014 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


