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Dangerous Liaisons between a Microbe and the Prion Protein
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Aren’t bugs a source of continuous amazement? Con-
sider, for example, how cunningly bacteria conspire to
shanghai the molecular machines of their mammalian
hosts for their own goals. Besides serving the bugs, this
evil intelligence is exploitable for studying cellular physi-
ology, and the bewildering affinity of bacterial toxins for
crucial host cell proteins has taught us many a thing on
how cells work.

Perhaps Brucella may help teach us the function of the
normal prion protein (1). Brucella species are Gram-nega-
tive facultative intracellular pathogens. They invade, resist
intracellular killing, and replicate in phagocytic and non-
phagocytic cells (2). But how does Brucella initiate replica-
tion in macrophages? The contact with the bug instructs
the macrophage to internalize it; the mode of internalization
(Fcy and complement receptors vs. uptake of nonopsonized
bugs) determines the fate of the bug (2).

Brucella actively modulates its own engulfment. It in-
duces peculiar membrane ruffles at its site of contact with
the macrophage and slow “swimming internalization”
into a macropinosome. Then, Brucella takes full control of
the macropinosome. It inhibits its maturation into a deg-
radative lysosome (3) and reprograms it to acquire endo-
plasmic reticulum markers and mature into a “replicative
phagosome” where bacteria start multiplying (Fig. 1; ref-
erence 2).

For playing these tricks, Brucella relies on a set of viru-
lence factors, including a bacterial injection organelle
termed VirB or type IV secretion system (4—8). When ex-
posed to macrophages in vitro, virB-deficient bugs cannot
modulate phagocytosis and are degraded in the lysosome.
But what does the VirB system exactly do in this context?
According to Watarai et al. (1), it may be needed for trans-
porting the bacterial heat shock protein Hsp60 onto the
surface of the bug. Unexpectedly, the chaperonin Hsp60,
which normally hangs out in the cytoplasm and deals with
unfolded proteins (9), turns out to reside on the surface of
wild-type Brucella abortus but not virB mutants.
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On the macrophage surface, Brucella attaches to choles-
terol-rich microdomains called lipid “rafts” (10—12). There,
Hsp60 appears to snatch at an unlikely friend, the cellular
prion protein (PrP%), which is encoded by the Pmp gene
and resides preferentially in rafts. PrPC is apparently re-
cruited to the macrophage’s membrane protrusions, which
engulf the bacteria, and subsequently to the early macropi-
nosome. In Prnp®° macrophages, B. abortus does not mod-
ulate phagocytosis nor phagosome maturation. This 1is
strikingly similar to the behavior of Brucella virB mutants
and suggests that the Hsp60—PrP€ interaction is instrumen-
tal for these actions.

The latter presumption is backed up by animal studies.
Wild-type Brucella replicates in wild-type mice, whereas
virB mutants do not (13). In Watarai’s (1) experiments,
both wild-type and VirB-deficient bugs are avirulent in
PrP¢-deficient mice. Hence, the Hsp60—PrP® connection
is important in real infections (Fig. 1).

So, what can Brucella teach us about PrP¢? The prion is
the infectious agent causing transmissible spongiform en-
cephalopathies (14). Its only known constituent is PrP%, a
conformational isoform of PrP¢, which is expressed at vari-
ous levels in most mammalian cells. The only established
function of PrP€ in vivo is to enable transmissible spongi-
form encephalopathies. Ablation of Prup abrogates prion
replication (15) and pathogenesis (16). However, the phys-
iological function of PrP¢ has remained mysterious. Prup®/°
mice show no obvious developmental defect and live long,
happy lives (17). Subtle changes in circadian rhythms (18)
and alterations of hippocampal function (19-22) have been
described in Pmp®/° mice. However, some of these pheno-
types were not reproduced by others (23) and none were
clarified in molecular terms.

Biochemically, PrP® was reported to do almost every-
thing, including the opposite of everything. For example,
PrP€ binds copper (24) and was suggested to be a cuproen-
zyme, but others hold this finding for a red herring (25).
PrP¢ may have antiapoptotic properties (26—29), but others
find that it sensitizes neurons to apoptosis (30). PrPC pep-
tides might be neurotoxic (31), or maybe not (32). Prion
toxicity might be due to retrotranslocation of PrP¢ from
the endoplasmic reticulum to the cytoplasm (33), but
maybe retrotranslocation does not occur after all (34).
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Figure 1. Macrophage manipulation by B. abortus: A role for the
Hsp60-PrP¢ interaction. B. abortus transports Hsp60 via the VirB type IV
system onto its surface. Upon encounter with a macrophage, Hsp60 binds
to PrP¢, which is embedded in lipid rafts on the macrophage surface. This
is thought to modulate phagocytosis (swimming internalization), mediate
macropinosome formation, inhibit lysosome fusion, and steer the macro-
pinosome to the formation of the replicative phagosome. Other, hitherto
unknown effector proteins traveling via the VirB system are also involved
(see text; based on the findings by Watarai et al. [reference 1]).

Hence, no unified view of PrP€ function in health and dis-
ease has emerged from these observations, apart from the
fact that PrP¢ is dispensable for life and normal development.

And yet reverse genetics shows that PrP¢ must have
some biological function and bind to one or more partners
in a functionally meaningful way. Transgenic expression
of amino proximally truncated PrP® mutants causes cere-
bellar degeneration and early death (35). This phenotype
is only observed in Prnp®/® mice and is fully reverted by
substoichiometric coexpression of full-length PrPC¢. It fol-
lows that truncated PrP interferes with a physiological
function of PrPC and that its effector domain lies in its
amino proximal half. A similar phenotype is elicited by
overexpression of the Dpl protein (36), which resembles
truncated PrP¢ and may therefore represent an endoge-
nous PrPC antagonist (37).

Population genetics provides further evidence that PrP¢
is doing more than bestowing prion diseases on us. Protec-
tive variations in the human prion gene, which arose re-
cently in evolution, have disseminated much more effi-
ciently among human populations than nonprotective
polymorphisms (38). This provides a compelling case for a
role in evolutionary fitness, similarly to globin gene muta-
tions that are protective against malaria. Selective pressure
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to maintain heterozygosity might have come from Kuru, a
cannibalism-transmitted prion disease that was a prime
cause of death in New Guinea tribes. One disturbing con-
clusion is that cannibalism was commonplace among our
ancestors (38). Consequently prion diseases, now exceed-
ingly rare, have probably ravaged human populations in the
distant past. What is most mystifying, Prup null alleles were
not selected for, despite the presumptive evolutionary ad-
vantage of resistance to cannibalism-induced prion disease.

At face value, the resistance of PrP€ knockout animals to
B. abortus infection provides further hints to the usefulness
of PrP€. Animals have probably dealt with Brucella infec-
tions for a long time and Brucella-resistant individuals with
disrupted Hsp60 binding domains from PrP¢ should have
had an edge. However, this has not happened.

So, what are the elusive functions and partners of PrP¢?
Several PrP¢ binding factors have been described, including
the laminin receptor precursor protein (39), heparan sulfate
(40), N-CAM (41), and bcl-2 (42), yet none of these inter-
actions were linked to biological functions. Could PrP¢
serve as a general Hsp60 sensor? Hsp60 homologues are
found in bacteria and all eukaryotic cells, and can induce
inflammation and immune responses (43, 44). It will be ex-
citing to test whether PrP¢ is involved in an Hsp60-depen-
dent common “danger sensing” mechanism for detection
of destructed body cells and pathogenic microbes (43, 44).

‘Watarai’s provocative report hints at novel, surprising as-
pects of bacterial and prion biology. Many of the following
exciting ramifications deserve to be studied: (a) Hsp60 is
the first B. abortus protein whose presence on the outer sur-
face relies on the type IV secretion system, yet it does not
seem to participate to the type IV secretion apparatus itself.
How is Hsp60 recognized and transported by the VirB type
IV system? And how is it retained on the bacterial surface?
(b) What is the function of the Hsp60—PrPC complex? Is it
simply slowing down the initial steps of phagocytosis to al-
low sufficient time for injection via the VirB type IV sys-
tem and the manipulation of the early macropinosome by
other so far unidentified effector proteins? Or does it serve
as an anchor for assembling a whole set of host cellular pro-
teins on the macropinosome membrane? (c) The Hsp60—
PrP€ interaction is clearly insufficient for proper macropi-
nosome formation and maturation. Hence, the function of
the type IV secretion system must go beyond surface expo-
sure of Hsp60. Which effector proteins travel via this path-
way and what is their function? (d) Bacteria often accom-
plish their deeds by disrupting specialized cellular functions.
Does Brucella interfere with the function of PrP¢? If so,
what does it get out of it? Answers to these questions may
come from analyzing interactions between Hsp60 and
amino terminally truncated versions of PrPC.

Many microbial pathogens invade and replicate within
host cells. All these bugs face death in the lysosome and
have devised strategies to escape this fate. Shigella and Liste-
ria lyse the vacuole membrane and dwell in the host cell
cytoplasm. Others (including Salmonella typhimurium, Le-
gionella pneumophila, mycobacteria, Chlamydia trachomatis,
and certain Escherichia coli strains) manipulate the endo-
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some/lysosome pathway and reside in some type of re-
structured vesicle. Interestingly, some of these bugs (myco-
bacteria [45], C. trachomatis [46], and certain E. coli strains
[47]) need, like Brucella, intact lipid rafts on the host cell
surface to reach this niche (48). It will be exciting to test
whether the Hsp60—PrP¢ connection is involved. Future
work may test whether host cell manipulation via PrP¢ will
be an exception, or the rule.
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