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Abstract

The shift from a hunter-gatherer (HG) to an agricultural (AG) mode of subsistence is believed to 

have been associated with profound changes in the burden and diversity of pathogens across 

human populations. Yet, the extent to which the advent of agriculture may have impacted the 
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evolution of the human immune system remains unknown. Here we present a comparative study of 

variation in the transcriptional responses of peripheral blood mononuclear cells to bacterial and 

viral stimuli between Batwa rainforest hunter-gatherers and Bakiga agriculturalists from Uganda. 

We observed increased divergence between hunter-gatherers and agriculturalists in the early 

transcriptional response to viruses compared to that for bacterial stimuli. We demonstrate that a 

significant fraction of these transcriptional differences are under genetic control, and we show that 

positive natural selection has helped to shape population differences in immune regulation. Across 

the set of genetic variants underlying inter-population immune response differences, however, the 

signatures of positive selection were disproportionately observed in the rainforest hunter-gatherers. 

This result is counter to expectations based on the popularized notion that shifts in pathogen 

exposure due to the advent of agriculture imposed radically heightened selective pressures in 

agriculturalist populations.

The agricultural transition, beginning 10,000–12,000 BP, was associated with profound 

changes in human ecology1, which in turn are hypothesized to have precipitated major new 

infectious disease burdens2–4. Specifically, the construction of permanent settlements and a 

subsequent increase in population density associated with the agricultural transition5,6 may 

have facilitated the establishment and transmission of infectious agents such as smallpox, 

measles, rubella, and other pathogens that require hundreds to thousands of host individuals 

to spread and persist7,8. Agriculturalists and pastoralists also lived in proximity with their 

domesticated animals, providing opportunity for novel or expanded zoonotic transmission4 

of pathogens potentially including rotavirus, measles virus, and influenza9–11. Finally, 

agriculturists performed extensive modifications to the landscape, including clearing fields 

and constructing irrigation systems, which may have led to an increase in the incidence of 

vector-borne diseases, such as Plasmodium falciparum malaria12,13. In several instances, 

higher intestinal parasite burdens in AG relative to HG populations have also been 

reported14.

Consequentially, the transition to an agriculturalist lifestyle is hypothesized to have 

contributed to the strong genetic signatures of recent positive selection that are repeatedly 

observed within or nearby immune-related genes in worldwide agriculturalist 

populations15,16. However, the absence of comparative functional studies from pairs of 

populations that differ in their modes of subsistence, i.e., hunter-gatherers (HG) versus 

agriculturalists (AG), have thus far precluded the development of hypotheses concerning 

specifically how the agricultural transition may have impacted evolution of human immune 

system diversity. To begin studying this topic, we used a combination of evolutionary 

genomic and functional immunological tools to study differences in immune responses 

between the Batwa, a rainforest hunter-gatherer population from southwest Uganda, and 

their Bantu-speaking agriculturalist neighbors, the Bakiga.

Results

Significant Batwa-Bakiga immune response differences

Whole blood samples from 103 individuals (59 HG-Batwa and 44 AG-Bakiga, 

Supplementary Figure 1) were collected, and peripheral blood mononuclear cells (PBMCs) 
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from these samples were isolated and cryopreserved. PBMCs were collected and processed 

for both populations simultaneously during the same field expedition to minimize technical 

variability. Each individual was genotyped for ~1 million genome wide SNPs17, with 

additional imputation to 10,530,212 SNP genotypes (see Materials and Methods). These 

data were used to estimate genome-wide levels of HG-Batwa and AG-Bakiga ancestry, using 

the program ADMIXTURE18. We observed variable but considerable levels of AG-Bakiga 

ancestry among self-identified HG-Batwa individuals (mean = 21.0 %; range = 0 – 93.3%). 

However, estimated levels of HG-Batwa ancestry among self-identified AG-Bakiga 

individuals were typically lower (mean = 4.3%; range = 0 – 9.7%, Figure 1A). In what 

follows, we used these continuous estimates of genetic ancestry (as opposed to a binary 

classification of individuals into HG-Batwa vs AG-Bakiga ancestry) to identify ancestry-

associated variation in gene expression and other immune-related traits.

To characterize variation in the immune response between HG-Batwa and AG-Bakiga 

populations we exposed PBMCs to Gardiquimod (GARD, TLR7 agonist), which mimics an 

infection with a single-stranded RNA virus, and lipopolysaccharide (LPS, TLR4 agonist), 

which simulates an infection with gram-negative bacteria. We also maintained an unexposed 

control in the same experimental conditions (CTL). Following 4 hours of stimulation, we 

collected RNA-sequencing data from matched non-stimulated and stimulated PBMCs 

(Figure 1A). Following quality control filtering we analyzed high-quality RNA-sequencing 

profiles (n=229 RNA-sequencing profiles across treatment combinations) from 99 

individuals (57 HG-Batwa and 42 AG-Bakiga; see Methods, Supplementary Figure 1, and 

Supplementary Table 1). To confirm successful ligand stimulation, we performed a principal 

component analysis (PCA) on the correlation matrix of normalized gene expression levels 

for all conditions. The first PC explained 51.1% of the variance in the expression values, and 

effectively separated the LPS condition from an unstimulated control (CTL). The 

combination of the second and third PCs further separated the GARD-stimulated PBMCs 

from the CTL cells (Figure 1C). As expected, the set of genes up-regulated in response to 

both stimuli were significantly enriched (False Discovery Rate (FDR)<1×10−15) for genes 

known to be involved in immune defense and inflammatory responses, with a particularly 

strong enrichment for anti-viral response genes in the GARD condition (Supplementary 

Table S3).

Because PBMCs are a composite of various innate and adaptive immunity cell types, we 

first determined whether there were differences in the cellular compositions of PBMCs 

between the HG-Batwa and AG-Bakiga. Using fluorescence-activated cell sorting (FACS) 

we estimate the proportion of each of the major cell types comprising PBMCs for every 

individual (Supplementary Figure 2). We found that the proportion of CD14+ monocytes 

was higher in individuals with greater HG-Batwa ancestry (P = 4.9×10−08), while the 

proportion of CD3+/CD4+ helper T-cells was higher in individuals with greater AG-Bakiga 

ancestry (P = 8.2×10−06; Figure 1B). Using linear models that account for variation in cell 

composition, sex, and additional technical covariates, we next identified genes whose 

expression levels were linearly correlated with ancestry within each of the experimental 

conditions (i.e., population differentially expressed, or PopDE genes). Of the 10,885 

expressed genes tested, 1,836 genes (16.9% of the total) were found to be PopDE (FDR < 

0.05) in at least one condition (Figure 1D with 1E for an example). Among PopDE genes, 
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genetic ancestry explains, on average, 14.4% (Quantile 5%−95% interval: 6.8–25.1) of the 

overall variance in gene expression observed among individuals, an amount comparable to 

the proportion of variation that can be attributed to differences in cell composition (mean = 

16.8%; Quantile 5%−95% interval: 2.9–39.0) and much higher than the proportion explained 

by sex (mean = 3.4%; Quantile 5%−95% interval: 0.2–9.8; Supplementary Figure 3).

Gene set enrichment analyses (GSEA) revealed that genes with higher expression levels in 

HG-Batwa individuals in LPS- and GARD-stimulated PBMCs were markedly enriched in 

pathways related to interferon-γ and interferon-α responses (FDR <1×10−4, Figure 1F), the 

key pathways involved in immune responses to viruses. In contrast, genes with higher 

expression levels in AG-Bakiga individuals are enriched for inflammatory response genes, 

particularly in LPS-stimulated PBMCs (FDR <1×10−4, Figure 1F, Supplementary Table 3 

for a complete list of all enriched pathways). These results suggest that increased AG-

Bakiga ancestry is associated with a stronger inflammatory response while individuals with 

greater HG-Batwa ancestry have gene expression signatures compatible with increased 

activation of antiviral pathways.

Viruses were likely the main driver of Batwa-Bakiga immune response differences.

Several lines of evidence indicate that the regulation of the immune response to viral stimuli 

between HG-Batwa and the AG-Bakiga individuals is more divergent compared to that for 

bacterial stimuli. Among “stimuli-responsive genes” (i.e., the set of genes that exhibit 

expression changes upon LPS- or GARD-stimulation), we identified almost twice as many 

PopDE genes in the GARD condition as compared to the LPS condition (10.1% of all genes 

that respond to GARD vs 5.9% of all genes that respond to LPS; Chi-squared test, P < 

2.2×10−16). When considering the set of genes for which the intensity of the response to 

LPS and GARD – defined as the fold-change in the stimulated condition relative to the 

unstimulated condition – varied as a function of genetic ancestry (i.e., population 

differentially responsive, or PopDR genes, Figure 2A for an example), we again observed 

approximately twice as many PopDR genes (FDR < 0.1) in GARD-stimulated cells 

compared to LPS-stimulated cells (258 PopDR for GARD vs. 140 PopDR for LPS, Figure 

2B). A GSEA for PopDR genes also revealed striking enrichments for interferon-related 

pathways (FDR <1×10−4) among genes that respond stronger to both LPS and GARD in 

HG-Batwa individuals relative to AG-Bakiga individuals (Supplementary Table 3).

The relatively divergent viral stimuli regulatory response is in part explained by a stronger 

response to GARD for the HG-Batwa individuals compared to their AG-Bakiga 

agriculturalist neighbors. Among the PopDR genes, the absolute fold-response to the viral 

ligand GARD was significantly stronger in the HG than the AG individuals (Figure 2C, 

Mann-Whitney-Wilcoxon Test P = 7.74×10−32), while a similar difference was not observed 

for LPS (Mann-Whitney-Wilcoxon Test; P = 0.34). Our data thus suggest that differences in 

viral exposure may have been a main factor contributing to the immune response divergence 

between the HG-Batwa and the AG-Bakiga.

While we do not have historical records of the viruses encountered by these populations, we 

can measure antiviral antibodies in present-day populations to gather information about their 

viral exposure. We used VirScan19 – a high-throughput method that allows comprehensive 
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analysis of antiviral antibodies – to measure in all our samples serum antibodies against 130 

viruses known to be present in Africa (see Materials and Methods). In measuring the relative 

variation of epitope burden found among the 130 viruses tested, we identified antibodies 

against 35 viruses (27%) whose levels were significantly different (FDR < 0.05) between 

HG and AG ancestry individuals (see Materials and Methods). Among these 35 viruses, 32 

(91.4%) showed a higher burden (i.e., increased seropositivity) in individuals of HG-Batwa 

ancestry (Figure 2D, Supplementary Table 4). We observed increased seropositivity for only 

three viruses, all of which were human-specific single strand RNA viruses, in the AG 

individuals. Interestingly, viruses with higher burdens in the HG-Batwa population were 

significantly enriched for double stranded DNA viruses (20 of 32 observed; 14 of 31 

expected; OR=3.7 (CI 1.5–9.9); Figure 2D; Fisher’s Exact test P =2.9×10−3), compatible 

with the hypothesis that DNA viruses are able to persist more readily in smaller populations 

than RNA viruses due to longer periods of latency20–22. Though the differences reported 

herein may not be indicative of historical exposure, they do support the possibility that 

rainforest hunter-gather and agriculturalist populations (at least in southwest Uganda) have 

faced significant differences in viral exposure, with rainforest hunter-gatherer populations 

exhibiting a higher viral burden, particularly when considering DNA viruses.

Genetic variation significantly contributes to ancestry-associated differences in immune 
regulation.

Next, we aimed to identify components of the HG and AG transcriptional immune response 

driven by either genetic or environmental factors between HG and AG populations. To limit 

the effects of unknown confounding factors, we used a linear regression model that accounts 

for population structure and principal components of the expression data (see Materials and 

Methods). We first identified genetic variants that are associated with differences in gene 

expression levels (i.e., eQTL) in our complete sample. We focused specifically on cis-eQTL, 

which we defined as SNPs located either within or flanking (±100 kb) the gene of interest. 

We identified a total of 3,941 genes (37.6% of all genes tested) that are associated with at 

least one cis-eQTL (FDR<0.05) in at least one condition. Consistent with previous 

findings23–26, a large fraction of cis-eQTLs (14.7%) were observed only in stimulated 

samples (Figure 3A, Figure 3B for an example), highlighting the key importance of gene-

environment interactions to the transcriptional regulation of innate immune responses.

We then tested whether PopDE and PopDR genes were more likely to be influenced by 

genetic variants than expected by chance. We found that PopDE and PopDR genes were 

significantly enriched among the set of genes associated with cis-eQTLs (> 1.6x fold-

enrichment; P < 1.0×10−10; Figure 3C). These results suggest that the differences in 

transcriptional responses to viral and bacterial stimuli identified in HG- and AG-ancestry 

individuals are driven, at least partly, by genetic regulatory variants. To explicitly quantify 

the minimum contribution of identified cis-eQTL to the transcriptional differences detected 

between populations, we used the following approach. First, we estimated in each condition 

the proportion of variance explained (PVE) by HG-ancestry among PopDE genes. Then, we 

re-calculated HG-ancestry PVE after regressing out the effect of the single cis-SNP for each 

gene that was most strongly associated with the target gene’s expression level (i.e. the SNP 

with the lowest FDR, regardless of significance level). The difference between HG-ancestry 
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PVE values before and after regressing out the cis-eQTL effect (normalized by the original 

PVE value) quantifies the proportion of ancestry-associated effects on gene expression that 

stems from the strongest cis-associated variant. Hereafter we refer to this score as ΔPVE. 

Using this approach, we estimated that cis-regulatory variants explain, on average, ~34% of 

the PopDE signal in each condition (average ΔPVE = 36.7%, 37.5% and 34.2% among 

PopDE genes (FDR < 0.2) in control, GARD and LPS condition, respectively; 

Supplementary Figure 4). From this analysis, we identified a set of 475 PopDE genes across 

conditions for which a single cis-eQTL is enough to explain almost all ancestry effects on 

gene expression levels (ΔPVE > 75%; FDR<0.1; hereafter referred to as high-ΔPVE 

variants) on gene expression levels (Figure 3D).

Positive selection has helped shape immune response differences.

We next examined whether positive selection has contributed to the identified differences in 

immune response between the HG and AG populations. To do this we focused specifically 

on the set of 475 high-ΔPVE variants, which represent a genetic substrate on which natural 

selection could potentially act to drive differences in immune response between the two 

population groups. Given that AG populations have recently shifted their mode of 

subsistence (i.e. from hunting and gathering to agriculture), they are hypothesized to have 

experienced commensurate changes in pathogen burden and novel selection pressures1–4. 

Under this scenario, we would expect to observe stronger evidence of positive selection on 

high-ΔPVE SNPs in the AG-Bakiga population relative to that observed for the HG-Batwa 

population. Surprisingly, our data suggest the opposite.

We found that high-ΔPVE SNPs were significantly more likely to have extreme levels of 

population differentiation (i.e., FST value above the 95th percentile of the genome-wide 

distribution) as compared to equally-sized sets of SNPs matched for allele frequencies with 

high-ΔPVE SNPs (Figure 4A, > 3.4-fold enrichment in all conditions; P. value < 10−4). This 

result suggests a driving role for evolutionary processes in shaping HG-Batwa and AG-

Bakiga population divergence in immune regulation but does not alone distinguish the 

population lineage(s) on which the selection occurred. We therefore also calculated the 

population branch statistic (PBS)27, which provides an estimate of the magnitude of allele 

frequency change for each SNP that occurred along each population lineage following 

divergence from a common ancestor. Using this statistic, we found that the majority of the 

allele frequency divergence among high-ΔPVE SNPs occurred along the HG-Batwa lineage 

(mean PBS HG-Batwa = 0.16; mean PBS AG-Bakiga = 0.04; Mann-Whitney T-test P = 

1.2×10−14), and not in the lineage leading to the AG-Bakiga population (Figure 4B). 

Importantly, the relative difference in the branch length leading to the HG-Batwa lineage vs 
the AG-Bakiga lineage among high-ΔPVE SNPs is significantly greater than that based on 

genome-wide expectations (4.0 vs 2.3 in average out of 100,000 sets of randomly sample 

sets of 475 SNPs matched for allele frequencies to high-ΔPVE SNPs, P=2.5×10−4).

Additionally, we observed a significant enrichment of extreme integrated haplotype score 

(iHS) values (a neutrality test devised to detect recent positive selection events within a 

population)28 among high-ΔPVE SNPs only in the HG-Batwa population. Specifically, we 

found that extreme iHS variants in the HG-Batwa population (>95th percentile) were 
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significantly enriched (2.1-fold) among high-ΔPVE SNPs associated to GARD PopDE 

genes as compared to the set of all cis-SNPs (Chi-squared test, P = 1.75×10−3, Figure 4C). 

No such enrichments were observed in the AG-Bakiga population. Finally, more high-ΔPVE 

SNPs and associated genes show strong signatures of natural selection (95th percentile for 

both PBS and iHS) in the HG-Batwa (n=15) than in the AG-Bakiga (n=3) (Figure 4D), 

further supporting the conclusion that positive selection in the HG-Batwa lineage has at least 

partly led to the extreme levels of population differentiation observed in the set of high-PVE 

variants.

Finally, we expanded this evolutionary analysis to include available genome-wide SNP 

genotype data29 from rainforest hunter-gatherer (HG-Baka) and agricultural populations 

(AG-Nzebi and AG-Nzime) from west Central Africa. Specifically, we tested whether the set 

of Batwa-Bakiga high-ΔPVE variants are similarly enriched for signatures of positive 

selection in the HG-Baka as they are in the HG-Batwa. They are not (Supplementary Figure 

5), suggesting that Batwa-specific selection on these loci likely occurred subsequent to the 

estimated ~12–18 kya divergence of eastern and western African hunter-gatherers30.

Discussion

Our study provides the first genome-wide functional genomic comparison of variation in 

early immune responses to infection between human hunter-gatherer and agricultural 

populations in Africa. Altogether, our results demonstrate that positive natural selection has 

contributed to present-day differences in innate immune responses between the HG-Batwa 

and the AG-Bakiga. Yet since functional evolutionary change occurred disproportionately on 

the HG-Batwa lineage, our results do not provide support for the long-standing hypothesis 

that selective pressures imposed by pathogens were particularly acute (at least in this region 

of the world) for agriculturalist populations due to the emergence of new crowd epidemic 

diseases.

While it is difficult to contest the premise that the advent of agriculture led to the emergence 

of new pathogens and to the increased pathogenicity of others, it is likely that other, perhaps 

yet unknown, diseases have simultaneously been consistently more prevalent in hunter-

gatherer populations. In particular, our serological data suggest that differences in viral 

exposure may have been a primary contributing factor to the divergence of HG-Batwa and 

AG-Bakiga immune responses. This notion is consistent with recent claims that viruses have 

been the primary drivers of adaptive evolution in mammals31 and one of the main selective 

pressures during recent human evolution32. Interestingly, viral burden differences have also 

been reported in other HG-AGR population comparisons33,34. For example, estimated 

ebolavirus seroprevalence was as high as 37.5% in Aka rainforest HG groups from west-

central Africa compared to 13.2% among neighboring Monzombo and Mbati 

agriculturalists.34

We chose to work with the HG-Batwa and AG-Bakiga for two reasons. First, while these 

two populations live in a relatively remote area of southwest Uganda, samples collected 

from this region could be transferred to a cell culture laboratory within 24 hours – a critical 

factor needed to ensure the viability of PBMCs – and processed identically, limiting possible 
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batch effects that otherwise can affect inter-population functional comparisons. Second, 

while the long-term ecological histories of these two populations are distinct, they have 

shared similar environments and subsistence modes since 1992, when the HG-Batwa were 

evicted from Bwindi Impenetrable Forest. Thus, potential proximate environmental effects 

have been minimized to the greatest possible degree, facilitating our study of the genetic 

basis of functional genomic variation.

Yet, our study is still not free of challenges. First, our relatively small sample size – an 

inherent constraint when studying hunter-gatherer populations especially – limits our power 

to detect eQTL. Thus, it is likely that we are underestimating the true genetic contribution to 

ancestry-related differences in gene expression. Moreover, our ability to detect recent events 

of positive selection (such as those hypothesized to have occurred on immune system loci 

following the advent of agriculture) is bounded by the limited power of the currently 

available neutrality tests28, especially if selection occurred on standing genetic variation35.

We also note that the HG-Batwa are estimated to have experienced a 7.1- to 11-fold 

reduction in effective population size (Ne) over the past 20kya, versus to a mild expansion 

(1.2- to 2.2-fold) for the AGR-Bakiga over the same time period30. However, this difference 

is unlikely to account for our observation of disproportionate functional evolutionary change 

on the HG-Batwa lineage. First, HG and AGR populations in central Africa (including the 

Batwa and the Bakiga) have similar mutational loads, suggesting that their demographic 

differences were not sufficiently long and/or to greatly influence the efficacy of selection30. 

Moreover, even if the estimated differences in recent Ne history had markedly affected 

selection efficacy, the expected direction would be for reduced levels of natural selection on 

the HG-Batwa lineage – the opposite of our major result.

Finally, we also emphasize that these population lineages diverged more than 60,000 years 

ago, long prior to the origins of agriculture in Africa29,36,37. Thus, a substantial proportion 

of the functional genetic divergence we observed likely reflects earlier (pre-agriculture) 

evolutionary responses to longstanding ecological differences facing each lineage. Still, our 

results are in direct opposition to a priori expectations of radical shifts in selection pressures 

on human immune systems following the agricultural transition, suggesting that the reality 

may instead be much less straightforward. Future studies of denser time-course immune 

responses to a larger array of pathogenic stimuli, in additional cell types, and on additional 

pairs of hunter-gatherer and agriculturalist populations will help to more precisely 

characterize the impacts of agriculture on the evolution of human immune systems.

Methods

Sample collection

Blood samples were taken from a total of 103 individuals, 59 HG-Batwa (Hunter-gatherer) 

and 44 AG-Bakiga (Bantu speaking agriculturalist) individuals (see Supplementary Figure 

1). We restricted our sample collection to adult individuals. For the HG-Batwa, we only 

collected samples from individuals who had lived in the forest and that were born prior to 

the 1991 formation of Bwindi Impenetrable Forest National Park, a time point known well to 

the HG-Batwa.
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Genome-wide genotyping and imputation

From the 99 individuals that were included in the sample-set used for PopDE analyses, a 

subset of 96 individuals (54-Batwa and 42-Bakiga, samples labelled as EQTL_set=1 in 

Supplementary Table S1) were successfully genotyped on the Illumina HumanOmni1-Quad 

genotyping array (Illumina, San Diego, USA), as previously described17. Briefly, genotypes 

of 928,705 SNPs were called in all samples using the Illumina Genome Studio v2010. SNPs 

were excluded if they had a call rate <98% across all samples or if they exhibited significant 

deviation from Hardy–Weinberg equilibrium (P < 1×106) in any of the individual 

populations. Data were phased using shapeIT (ver. 2.r790), and imputation was performed 

using Impute2 (ver. 2.3.0)38 against an multi-ethnic reference panel data that includes all 

populations from phase 3 of the 1000 Genomes project. In the absence of whole-genome 

sequencing data from the Batwa and the Bakiga themselves, we decided to use an 

ancestrally include reference panel as this approach has been shown to improve imputation 

accuracy39. Post-imputation, we removed genotype calls with likelihood lower than 0.9. In 

addition, we excluded sex chromosomes and we removed SNP positions with an information 

metric lower than 0.5, with minor allele frequencies below 0.1, with greater than 5% of 

individuals missing genotype calls, or with deviating from Hardy–Weinberg equilibrium in 

at least one of the studied populations (P < 1×106). After all of these filters were applied, 

5,036,671 SNPs were maintained. Further, for the cis-eQTL analysis, only SNPs within 

100KB of a gene body were considered (2,284,380 SNPs).

Admixture and relatedness estimations

Admixture was estimated using a nonhierarchical clustering analysis of the SNP data using 

the software ADMIXTURE18, based upon independent SNPs (LD >0.3) from the 

genotyping chip dataset for the set of 96 individuals that were successfully genotyped. For 

the three individuals for which genotype data was not available (T15, T30 and T62, included 

in Pop_DE set but absent from EQTL_set), admixture values were estimated from the RNA-

seq data. Importantly, the correlation between admixture estimates calculated using the 

microarray genotype data and genotypes obtained from the RNA-seq data is extremely high 

(r=0.978, P < 1×10−16). Accordingly, when excluding these three samples from the PopDE 

analyses the effect sizes obtained for ancestry-associated differences in gene expression are 

virtually unchanged (R2>0.97 across all conditions; Supplementary Figure 6).

A pair-wise relatedness matrix among genotyped individuals was computed using Plink39. 

As expected, we found that the mean relatedness within each population was modest in both 

cases, but significantly larger among HG-Batwa (Mean relatedness among HG-Batwa 

samples: 6.9%; 0.6% among AG-Bakiga). To ensure that our results were not impacted by 

the increased number of related individuals in the HG-Batwa population, we re-ran our 

PopDE analyses excluding strongly related individuals (i.e., pi-hat > 0.375). This yielded 57, 

58 and 62 samples in CTL, GARD and LPS condition, respectively (18, 12 and 21 samples 

removed in each condition, either because high relatedness or absent genotypes, of which 

17, 10 and 20 were Batwa). The results of the PopDE analyses remained largely unaffected 

by the removal of these related samples (r > 0.94 for the correlation of the estimated effect 

sizes when using all the samples vs those obtained when we excluded closely related 

individuals; Supplementary Figure 7).
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Characterization of cell type composition

PBMCs were isolated from whole blood by Ficoll-Paque centrifugation and cryopreserved. 

Cell type composition of each PBMC sample was quantified using the following conjugated 

antibodies: CD3-FITC (clone UCHT1, BD Biosciences), CD20-PE (clone L27, BD 

Biosciences), CD8-APC (clone RPA-T8, BD Biosciences), and CD4-V450 (clone L200, BD 

Biosciences), CD16-PE (clone 3G8, Biolegend), CD56- APC (clone HCD-56), and CD14-

Pacific Blue (clone M5E2, Biolegend). We selected these cell types because they are by far 

the most common cell types found in PBMCs: collectively, almost 100% of PBMCs can be 

assigned to one of these types. A few rarer cell types can also be found in PBMCs, but they 

account for so few of the total pool that they have negligible effects on overall estimates of 

PBMC gene expression. Antibodies were incubated for 20 min. Fluorescence was analyzed 

on a total of 30,000 cells for each population per sample with a FACSFortesa (BD 

Biosciences) and the FlowJo software (Treestar, Inc., San Carlos, CA). Supplementary 

Figure 2 illustrates what combinations of markers were used to define each of the cellular 

populations we considered in this study. We note that we only quantified cellular 

composition of PBMCs at steady-state as in our in vitro experimental system changes in 

cellular composition following immune stimulation are negligible because (i) new cells 

cannot be recruited to the site of infection, as it would happen in vivo; and (ii) none of cell 

types found in PBMCs proliferates in response to LPS or GARD.

Ligand stimulation

PBMCs were cultured in RPMI-1640 (Fisher) supplemented with 10% heat-inactivated FBS 

(FBS premium, US origin, Wisent) and 1% L-glutamine (Fisher). For each of the tested 

individuals, PBMCs (2 million per condition) were stimulated for 4 hours at 37° C with 5% 

CO2 with the immune challenges gardiquimod (GARD, 0.5μg/ml, TLR7 and TLR8 agonist) 

or lipopolysaccharide-EB (LPS, 0.25 μg/ml, TLR4 agonist). A control group of non-

stimulated PBMCs were treated the same way but with only medium. We chose the 4 hour 

time point to focus on the early transcriptional response to stimulation. This choice was 

based on our own experience that indicates that the 4 hour time point strikes a balance 

between the ability to detect biologically relevant gene regulatory responses to Gard/LPS, 

while being early enough to avoid significant cell death (which can lead to substantial 

alterations in gene expression profiles that may be orthogonal to immune response 

itself)40,41.

Steps for RNA-Sequencing

Total RNA was extracted from the non-stimulated and stimulated cells using the miRNeasy 

kit (Qiagen). RNA quantity was evaluated spectrophotometrically, and the quality was 

assessed with the Agilent 2100 Bioanalyzer (Agilent Technologies). Only samples with no 

evidence of RNA degradation (RNA integrity number > 8) were kept for further 

experiments. RNA-sequencing libraries were prepared using the Illumina TruSeq protocol. 

Once prepared, indexed cDNA libraries were pooled (6 libraries per pool) in equimolar 

amounts and sequenced with single-end 100bp reads on an Illumina HiSeq2500. In total we 

generated RNA-sequencing profiles for 265 samples coming from 101 different individuals.
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Adaptor sequences and low-quality score bases (Phred score < 20) were first trimmed using 

Trim Galore (version 0.2.7). The resulting reads were then mapped to the human genome 

reference sequence (Ensembl GRCh37 release 75) using STAR (2.4.1d)42 with an hg19 

transcript annotation GTF downloaded from ENSEMBL (date: 2014-02-07). Reads matrices 

were computed using htseq-count42. To ensure stringent quality control of the RNA-seq data 

we removed from downstream analyses samples: (i) with less than 10 million of sequencing 

reads, (ii) with less than 50% of reads mapping to annotated exons; and (iii) samples that in 

a principal component analysis appeared to be contaminated or had failed to respond to the 

immune challenges. To check for potential sample mixups, we confirmed that genotype calls 

from the genotyping array matched those obtained from the RNA-seq data. After these 

filtering steps we were left with 229 samples (76 CTL, 83 LPS and 70 GARD, samples 

labeled as PopDE_set=1 in Supplementary Figure 1), coming from 99 individuals (42 HG-

Bakiga, 57 AG-Batwa).

Identification of PopDE genes

To estimate the effects of HG ancestry on gene expression (within each experimental 

condition), gene expression levels across samples were normalized using the TMM 

algorithm (i.e., weighted trimmed mean of M-values), implemented in the edgeR R 

package43. Afterwards, we log-transformed the data and obtained precision-weights using 

the voom function in the limma package44. Only genes showing a median log2(cpm) > 2 

within at least one of the experimental conditions were included in the analyses, which 

resulted in a total of 10,895 protein-coding genes. We decided to focus solely on protein 

coding genes in order to reduce the burden of multiple testing, and because it is easier to 

derive biological interpretations from coding genes. Sequencing Flowcell batch effects were 

removed using the function ComBat, in the sva Bioconductor package45. Then, expression 

was modelled as a function of hunter-gatherer ancestry (HG) levels, while correcting for sex 

(x1), proportions of CD4+ T-cells (x2), CD14+ monocytes (x3), CD20+ B-cells (x4) and the 

fraction of reads assigned to the transcriptome (x5). Monocytes, T-cells and B-cells were 

included in the model after we identified that they were the only significant drivers of tissue 

composition effects on gene expression (cell types whose proportion in blood had a 

significant impact (FDR<5%) in at least 2.5% of the genes tested, in at least one condition). 

The fraction of reads assigned to the genome (x5) was included because this explained a 

significant (albeit small) fraction of the total variance in gene expression levels (median = 

1.6%, 2.5%, and 6.4%, in CTL, LPS, and GARD, respectively). We note, however, that 

when excluding the covariate x5 from the model below, both effect sizes and p-values for 

admixture effects remain almost exactly the same as when correcting for variation in the 

fraction of reads assigned to the genome (R2>0.979 in all three conditions; Supplementary 

Figure 8).

Using the weighted fit function from limma (lmFit) and the weights obtained from voom, we 

fitted the following model:

Ec = ∑ i = 1
5 βi·xi + βHG·HG + ε (1)
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Where Ec represents the vector of flowcell-corrected expression levels of a given gene in 

condition c, βi the effects of the covariates, and βHG the effect of hunter-gatherer genetic 

ancestry. The β of these coefficients represent the fold-change (FC) effects associated to unit 

variation in each of the variables tested. This means, for sex, the average differences in 

expression between male and female, for HG, (FC) between HG and AG, while, the rest of 

the variables, since they are standardized, represent the differences in expression associated 

to a shift in the covariate equal to one standard deviation.

We note that we did not include age as a covariable in our model because not all HG-Batwa 

individuals know their calendar ages. However, if differences in mean age between HG-

Batwa and the AG-Bakiga individuals was confounding our popDE results, then we would 

expect popDE genes to be enriched among age-associated genes. To test that hypothesis, we 

retrieved the list age-associated genes reported by Piasecka et al., (at an FDR<5%)46. That 

study analyzed leucocyte gene expression from a panel of 1000 healthy individuals at both 

steady-state and upon infection with E. coli (i.e. broadly similar to our LPS condition) and 

influenza (broadly similar to our Gard condition). We found no evidence that our popDE 

genes were enriched among the age-associated genes reported by Piasecka et al. (odds ratio: 

0.75 (range: 0.31–1.9); p=0.51), suggesting that age variation is unlikely to significantly 

confound our results.

Estimation of PopDR statistics

In order to model the effects of HG admixture on the intensity of the response to either 

GARD or LPS stimulation (i.e. PopDR effects), individual-wise fold-changes matrixes were 

built for each ligand. To do so, the effects of the technical covariates (i.e. sex, tissue 

composition and fraction of mapped reads) were first removed from the Flowcell-corrected 

expression matrixes within each condition. The resulting matrixes were subtracted (i.e. LPS-

CTL and GARD-CTL, in log2 scale) to build corrected fold change matrixes using for that 

end only individuals for which pairs of samples CTL vs ligand were available (70 

individuals for LPS, 59 for GARD, see Supplementary Figure 1). Finally, fold-changes were 

modeled according to a simple design FC = βHG·HG + ε, using lmFit, with weights 

propagated from the ones calculated by voom for each condition. More specifically, voom 

weights are the inverse of the variance expectation for each RNAseq entry, obtained from the 

method defined by Robinson et al.44. That means that, if, for a given fold-change entry FC = 

Eligand − ECTL we propagate the expected variance of the FC as follows: σ2(FC)=σ2(Eligand)

+σ2 + (ECTL).

Since the within condition weights were: wligand = 1/σ2(Eligand) and wCTL = 1/σ2(ECTL), 

σ2(FC) = 1/σ2(Eligand) + 1/σ2(ECTL), and, finally:

wFC = 1/σ2 FC = 1
1/σ2 Eligand + 1/σ2 ECTL (2)
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Power considerations

Power calculations specifically devised for RNA-seq data47 suggest that we are reasonably-

powered to detect even modest changes in gene expression between the two population 

groups. Assuming: (i) that the minimum average read counts among the differently 

expressed genes is 5 read counts, (ii) the maximum dispersion is 0.5, (iii) the total number of 

genes for testing is 10,895 and, (iv) that 10% of these genes are expected to be differently 

expressed between the two populations; our sample size provides 74% power to detect 

changes in mean gene expression between the two populations above 50% (or 0.58 on a log2 

scale). While these power calculations inherently rely on a large number of assumptions 

(e.g., effect sizes, variance estimates, etc.), our own data provide empirical evidence that we 

can detect statistically robust differences in gene expression between HG-Batwa and the 

AGR-Bakiga. Specifically, for PopDE effects, we were able to detect average log2 fold-

change admixture effects as small as 0.28 (i.e., a 20% change in mean gene expression 

between individuals with 100% HG-Batwa ancestry vs 100% AG-Bakiga ancestry). For 

PopDR effects, with an FDR < 10% we were able to detect mean ancestry-effects on ligand 

response of 0.38 and 0.23 logFC for LPS and GARD, respectively (Supplementary Figure 

9).

Ligand stimulation effects and DE statistics

In order to estimate the overall LPS and GARD effects on gene expression, we separated the 

samples as CTL+GARD and CTL+LPS samples and analyzed them following the same 

analytical procedure used for PopDE, this time according to the following model design:

E = ∑ i = 1
5 βi·xi + βHG·HG + βstim·stim + ε (3)

where stim is a dummy variable capturing the association of each sample to either the CTL 

condition (stim=0), or the stimulated condition (stim=1), and, thus, βstim captures the overall 

ligand effects on gene expression. Whilst the CTL and LPS samples were sequenced 

together as part of the same sequencing batch, the GARD samples were sequenced in a later 

batch. Thus, to avoid the confounding sequencing batch and the effects of GARD-

stimulation, we re-sequenced a reduced number of CTL samples along with the GARD 

batch, of which, 5 CTL-samples passed our QC filters.

We performed the resequencing specifically to estimate the magnitude of the batch effect for 

each gene (i.e., by modeling gene expression as a function of batch, for the 5 controls 

sequenced in the first batch and the 5 otherwise identical controls sequenced in the second 

batch). We then regressed out these batch effect estimates from the control and GARD 

samples prior to identifying GARD responding genes. Although this approach is less 

optimal than sequencing all three conditions together on the same flow cells, we believe that 

our approach does successfully foreground true biological effects of GARD stimulation. For 

example, gene set enrichment analysis shows that GARD-responsive genes are strongly 

enriched for pathways involved in antiviral responses such as defense response to virus (the 

top-ranked enriched GO term: OR=13.24, FDR=1.6×10−35), type I interferon signaling 

(OR=8.5 FDR=2.0×10−22), and regulation of viral life cycle (OR=7.96, FDR=3.6×10−17). 
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This observation suggests that differences in expression between Gard and NC samples 

reflect a true biological response to the viral ligand. Most importantly, any potential batch 

effect does not impact our estimation of ancestry effects within CTL, LPS, or Gard datasets, 

which are the effects of primary interest for this study.

False discovery rates in PopDE, PopDR, and stimDE analyses

To avoid biases related to distributional assumptions on statistical significance that might 

arise as a result of batch removal procedures or data pre-treatment, for all of our PopDE and 

popDR analyses, we controlled for multiple testing using a generalization of the false 

discovery rate method of Storey and Tibshirani, re-calibrated to empirical null p-value 

distributions generated via permutation tests, as we previously described25. To perform these 

tests, in the case of PopDE and PopDR effects, HG-Batwa admixture was randomly 

permuted, while for establishing the null distribution for ligand stimulation effects, condition 

labels (CTL vs stimulus) were randomly re-assigned within each individual. In this case, 

whenever one single sample was available for a given individual, it was labeled either as 

CTL or stimuli (either LPS or GARD), with probability=0.5. Permutation tests were 

repeated 1000 times per test.

Gene set enrichment analyses

Gene set enrichment analyses (GSEA) was ran using the javaGSEA Desktop application by 

the Broad Institute (http://software.broadinstitute.org/gsea/index.jsp) version 3.0 against the 

“Hallmark gene sets” from the Molecular Signatures Database collection. The GSEA pre 

rank mode was used ranking genes according to t statistics for both popDE and popDR 

effects. The t statistics captures both the significance level and the direction of the effects: 

large positive and negative values will refer to genes showing a significantly higher or low 

expression in HG-Batwa as compared to AG-Bakiga, respectively. The complete results of 

these analyses are shown in Supplementary Table 3.

Antibody profiling

Antibody profiling was performed using VirScan, as previously described19. Briefly, we 

added 2μl of sera to 1 ml of the VirScan bacteriophage library, diluted to ~2 × 10^5 fold 

representation (2 × 1010 plaque-forming units for a library of 105 clones) in phage extraction 

buffer (20 mM Tris-HCl, pH 8.0, 100 mM NaCl, 6 mM MgSO4), in a single well of a 96-

deep-well plate, pre-blocked with 3% bovine serum albumin in TBST. We allowed the serum 

antibodies to bind the phage overnight on a rotator at 4°C. To each well, we then added 40 μl 

of a 1:1 mixture of magnetic protein A:protein G Dynabeads (Invitrogen) and rotated for 4 

hours at 4°C to allow sufficient binding of phage-bound antibodies to magnetic beads. Using 

a 96-well magnetic stand to immobilize the magnetic bead-antibody-phage complexes, we 

then washed the beads three times with 400 ml of PhIP-Seq wash buffer (50 mM Tris-HCl, 

pH 7.5, 150 mM NaCl, 0.1% NP-40). After the final wash, beads were re-suspended in 40 

ml of water and phage were lysed at 95°C for 10 minutes. For downstream statistical 

analyses, we also lysed phage from the library before immunoprecipitation (the input 

library) and after immunoprecipitation using only phage extract buffer without serum 

(“beads only control”). Each sample was run in duplicate.
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Briefly, we performed two rounds of PCR amplification on the lysed phage material using 

hot start Q5 polymerase. The first round of PCR used the primers IS7_HsORF5_2 and 

IS8_HsORF3_2. The second round of PCR used 1 ml of the first-round product and the 

primers IS4_HsORF5_2 and a unique indexing primer for each sample to be multiplexed for 

sequencing, where “xxxxxxx” denotes a unique 7-nt indexing sequence (See below). After 

the second round of PCR, DNA concentration was quantified using qPCR, and pooled 

equimolar amounts of all samples were used for gel extraction. The extracted pooled DNA 

was sequenced by the Harvard Medical School Biopolymers Facility using a 50-base pair 

read cycle on an Illumina HiSeq 2000 or 2500, with the full pool split and run over both 

lanes of a HiSeq flow cell to obtain 700,000 – 1,300,000 reads per sample.

IS7_HsORF5_2:

ACACTCTTTCCCTACACGACTCCAGTCAGGTGTGATGCTC

IS8_HsORF3_2:

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCCGAGCTTATCGTCGTCATCC

IS4_HsORF5_2:

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACTCCAGT

Indexing Primer:

CAAGCAGAAGACGGCATACGAGATxxxxxxxGTGACTGGAGTTCAGACGTGT

After sequencing, samples were deconvoluted and reads aligned to the known epitope 

reference library for quantification and statistical analysis, as previously described. When an 

antibody against a particular epitope was in the sample serum, the epitope was expected to 

be enriched above a specific threshold, with the threshold dependent on the relative input 

count of the particular phage in the input library. P-values for enrichment were calculated 

using generalized Poisson regression to obtain a distribution of NGS read counts per sample 

for a given input count.

Analysis of viral epitope burden

The goal of this analysis was to identify viruses differentially associated to either one of the 

two populations tested. To that end, we first restricted our analysis to a set of 130 viruses 

known to be present in Africa. The full list of viruses tested can be found in Supplementary 

Table 4. For these viruses, we obtained an estimation of seropositivity for each individual by 

counting the number of epitopes for which they tested positive (defined as epitopes detected 

above background at a p<0.05 in both technical replicates). After filtering out lowly 

represented viruses (i.e. those whose median number of epitopes across all individuals was 

lower than 2), the number of viruses was reduced to 112, for which we quantified the 

relative deviation of epitope counts per individual, with respect to the overall mean of each 

virus. Explicitly, let ri
j represent the number of positive epitopes for virus i and individual j, 
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and r j
i the virus average across all individuals. Thus, the relative deviation in seropositivity 

for each individual gets defined, for individual i and virus j as δi
j = ri

j − r j
i / r j

i. By 

testing for a linear association between δi
j and HG ancestry, we estimate the inter-population 

differences in seropositivity relative to the mean epitope prevalence of each virus. We 

conducted this analysis using the lmFit function, in the R package limma44. Finally, false 

discovery rates associated to these linear models were estimated using Storey and 

Tibshirani’s method implemented in the R package qvalue48.

Mapping of cis-eQTL

Cis-eQTL mapping was conducted using the R package Matrix eQTL49. We estimated 

associations between SNP genotypes and changes in gene expression levels using a linear 

regression model where alleles affecting expression, denoted G, were assumed to be 

additive. This was conducted for each of the conditions separately with individuals from 

both populations included in the analyses. Associations of SNPs within the gene body or 

100Kb upstream and downstream of the transcript start site and transcript end site were used 

to map cis-eQTL. SNPs with a minor allele frequency (MAF) less that 10% were removed 

from the analyses resulting in 2,284,380 autosomal SNPs that were tested against a total of 

10,479 protein coding genes. To account for false positives resulting from population 

structure, the first two principal components obtained from a PCA on the genotype data 

were included in the model (GPC). For each library, we also took into account the potential 

biases and significant technical confounders. These included, as in the DE analyses, sex (x1), 

proportions of CD4+ cells (x2), CD14+ cells (x3), CD20+ cells (x4), the fraction assigned e.g 

the percentage of reads mapping to the transcriptome (x5), as well as sequencing flowcell, 

which was accounted for by including in the model as many covariates as sequencing 

flowcell levels sfi present in each case (nsf(c)):

Ec = ∑ i = 1
5 βi·xi + ∑ i = 1

ns f (c)
βs f ·xs f + βGPC1·GPC1 + βGPC2·GPC2 + βG·G + ε (4)

In this model, Ec represents a vector of transformed expression values in condition c, which 

we obtained from the original expression values Ec after accounting for unmeasured-

surrogate confounders. Specifically, we extracted the principal components EPCi from a 

correlation matrix of the expression table within each condition Ec, and then regressed out 

the first nEPC(c) of them as follows: Ec = ∑ i = 1
nEPC(c)

βEPCi
·EPCi + εEPC; in order to obtain 

from the residuals of this expression the transformed expression values used in eq. (4): 

Ec = εEPC. The specific number of PCs to regress out for each condition was chosen 

empirically (23,25), upon optimization of the signal strength obtained for EQTLs in eq. 4. 

This yielded nEPC(CTL) = nEPC(GARd) = 8 and nEPC(LPS) = 11.

We decided to do eQTL mapping on the combined dataset because our within-population 

sample sizes would be too small to provide sufficient mapping power. Indeed, when we re-

ran the eQTL mapping on the HG-Batwa and the AG-Bakiga separately, the number of cis-
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eQTL identified within each condition dropped greatly (from >2,000 eQTL-associated genes 

per condition, to only 281–540 at the same FDR cutoff on the population-specific analyses; 

Supplementary Figure 10). Importantly, the larger number of eQTL observed in the 

combined dataset is not a reflection of unaccounted population structure. Indeed, the first 

two PCs of the genetic data included in our model clearly separate the HG-Batwa from the 

AG-Bakiga, and PC1 alone correlates almost perfectly with genetic ancestry (Supplementary 

Figure 11; P<1×10−16). Most importantly, the effect sizes of the eQTL obtained using the 

combined dataset are very strongly correlated with those obtained when performing the 

mapping on the individual populations (R>0.93 in all conditions tested, Supplementary 

Figure 11), which empirically demonstrates that our eQTL are not an artifact due to 

population structure.

Proportion of Variance (PVE) estimations

In order to compute the proportion of variance explained (PVE) by the different covariates in 

the PopDE models (Supplementary Figure 3), we used the method proposed by Shabalin et 

al50, and implemented in the R package relaimpo51. According to this approach, the 

contribution of each covariate to the overall determination coefficient R2 is calculated upon 

adding sequentially all covariates to the model and calculating their contribution to the 

increase of R2 in each case, averaging across all possible covariate orderings. We summed 

the contributions of the three fractions of cell types included in the models (CD14+, CD4+ 

and CD20+) to obtain the estimates of tissue composition reported in the Supplementary 

Figure 3. The PVE associated either to sex (PVEsex), tissue composition (PVEtissue = 

PVECD4 + PVECD14 + PVECD20) and Hunter-gatherer ancestry (PVEHG), add up to the total 

fraction of explained variance for each gene, that is:

R2 = PVESex + PVEtissue + PVEHG (5)

To quantify what fraction of the inter-population differences in gene expression was 

accounted for by cis eQTL, we first estimated, for each gene, the contribution of HG 

ancestry on gene expression variation within each condition (i.e. the PopDE effect-sizes 

βHG
CTL, βHG

LPS, βHG
GARD, for genes showing statistical evidence of ancestry effects at a relaxed 

threshold of FDR<0.2). The proportion of variance explained by Hunter-gatherer ancestry 

PVEHG
o  is defined as the increase in variance explained (that is the increase in R2) by the 

PopDE model in eq. 1, upon adding the HG variable as the last co-variable. Then, we fitted 

an alternative PopDE model for each gene, starting from equation (1), but adding the 

genotype of the top cis-SNP for the gene being tested, GTop, as follows:

Ec = ∑ i = 1
5 βi·xi + βHG·HG + βGTop

c ·GTop + ε (6)
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From this model, an analogous estimate PVEHG
GTop was obtained, which captured the 

relevance, in terms of explained variance, of adding hunter-gatherer ancestry, once the best 

SNP was already included in the model.

Once the contribution to final variance explained was obtained from both models we 

retrieved the difference between the two models ΔPVE = (PVEHG
o − PVEHG

GTop)/PVEHG
o . 

ΔPVE represents the proportion of the population difference in gene expression that can be 

attributed to the strongest cis eQTL for the gene of interest.

To assess the statistical significance of ΔPVE, we used the same approach described above 

but we removed the effect of the strongest cis-eQTL identified after randomly shuffling 

individual labels from the genotype data. Then, to construct a null model that was unbiased 

by the selection of the best SNP per gene, we built a third linear model, analogous to that of 

eq. (6) using, instead of the true, most significant SNP variant for that gene GTop, the most 

significant variant that arises by chance, among all the permuted SNPs: GTop
Random:

Ec = ∑ i = 1
5 βi·xi + βHG·HG + βGTop . Rand

c ·GTop
Random + ε (7)

Then, we calculate PVE values based on the HG-admixture effects inferred from eq. 7, 

which we call PVEHG
GTop . Rand. Finally, we estimate the null-expectation for ΔPVE, which we 

call ΔPVEnull, as follows:

ΔPVEnull = (PVEHG
o − PVEHG

GTop . Rand)/PVEHG
o (8)

Comparing the distribution of observed ΔPVE to the distribution of its empiric null 

expectation ΔPVEnull we obtain empiric one-tailed p-values for each test, defined as the 

fraction of null-tests with ΔPVEnull > ΔPVE. Finally, proper correction for multiple testing 

(Storey-Tibshirani FDRs) of these empiric p-values allows us to stablish an empiric model 

for statistical significance of these effects (see Supplementary Figure 4).

Selection Statistics

We calculated the selection statistics by using the individuals used to map cis-eQTL that had 

an admixture less than 0.2 or greater than 0.8 to clearly define the two populations. This 

included 43 Bakiga individuals and 39 HG-Batwa individuals. We calculated the fixation 

indexes (FST) using a modified version of Wright’s FST for all SNPs using VCFtools 

v0.1.12b52. The integrated haplotype scores (iHS) were calculated using Selscan, which is a 

program that calculates haplotype-based scans for recent or ongoing signatures of positive 

selection. This method is based on the knowledge that when adaptive de novo mutations 

quickly increase in frequency it reduces genetic diversity around this variant faster than 

recombination can occur. Therefore, this score is a measure of haplotype homozygosity 
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extending from an adaptive locus53. To do this, phased genotypes were created using 

SHAPEITv254 for each chromosome independently. We calculated iHS separately for the 

HG and AG population for all imputed genotypes. When estimating mean FST and iHS 

among cis-eQTL we combined cis-eQTL mapped in all conditions and selected the variant 

with the lowest P. value for a given gene resulting in one cis-SNP per gene. The FST and/or 

iHS for that SNP was then considered in this analysis. Finally, the population branch statistic 

(PBS) was calculated from FST values using a cohort from Great Britain available from the 

1000 Genomes Project as an outgroup. FST was first used to calculate population divergence 

as [T= -log(1- FST)], and then PBS was calculated for each SNP for HG-Batwa and AG-

Bakiga as:

PBS.Batwa =  T.Batwa.Bakiga + T.Batwa.GBR − T.Bakiga.GBR  / 2

PBS. Bakiga =  T.Batwa.Bakiga + T. Bakiga.GBR – T. Batwa.GBR  / 2

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Transcriptional differences between Batwa hunter-gatherer and Bakiga agriculturalist 
populations.
(A) Schematics of the study design. The structure plot to the left shows the proportion of 

HG-ancestry (dark pink) and AG-ancestry (light pink) for each individual included in the 

study. Their placement along the Y-axis corresponds to how they self-identified. (B) 

Boxplots of the proportions of the main cell types found in PBMCs in the Batwa (dark pink) 

and the Bakiga (light pink). The upper and lower ends of the whiskers correspond to plus or 

minus 1.5 times the interquartile range, respectively. (C) Principal components analysis of 

gene-expression data. The first three PCs separate non-infected PBMCs from PBMCs 

stimulated with either LPS or GARD. (D) Venn diagram of PopDE genes detected in each 

condition. (E) Example of a PopDE gene (TCL1A) in which gene expression is higher in the 
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AG population (light pink) than the HG population (dark pink) in all conditions. Expression 

is shown as the mean coverage per genomic position (corrected by total mapped reads) per 

individual in each population. F) GSEA for PopDE genes in all three conditions. The 

heatmaps show the enrichment scores for all pathways enriched at an FDR <5% in at least of 

the conditions. Positive and negative scores represent enrichments among genes that are 

more highly or lowly expressed in HG-Batwa than AG-Bakiga individuals, respectively. 

Example of an enrichment plot for genes involved in the interferon-α response pathway. 

Genes are ranked (left to right) from those with the strongest statistical evidence for up-

regulation in the HG-Batwa vs. AG-Bakiga to those with the strongest statistical support for 

down-regulation in the HG-Batwa vs. AG-Bakiga.
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Fig. 2. Differences in immune response between HG and AG populations.
(A) Examples of two PopDR genes involved in immune response. The y axis shows the log2 

fold changes in gene expression levels in response to LPS and GARD, for individuals from 

each of the two populations (x axis). The upper and lower ends of the whiskers correspond 

to plus or minus 1.5 times the interquartile range, respectively. (B) Venn diagram showing 

the number of PopDR genes identified in the LPS and GARD conditions. (C) Density plots 

showing the distributions of the absolute response to LPS and GARD of PopDR genes in 

each population. (D) A volcano plot showing an increase in seropositivity in the HG-Batwa 

population for 32 of the 130 viruses tested. Double stranded DNA-viruses showing a 

significant dependence to ancestry are marked in bold.
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Fig. 3. Analysis of the contribution of genetics to differences in immune response between the 
HG-Batwa and the AG-Bakiga.
(A) Schematic representation of the number of cis-eQTL shared across all conditions, or 

only found in non-infected PBMCs, or found in LPS and/or GARD stimulated PBMCs 

(stimulation-specific eQTL). Stimulation-specific eQTL were defined as those showing very 

strong evidence of eQTL in the stimulated cells (FDR < 0.05), and very limited evidence in 

the non-infected cells (FDR always higher than 0.25). (B) Example of two cis-eQTL. The 

top example, HLA-C, was found across all experimental condition (CTL-FDR = 0.0, LPS-

FDR = 0.0, GARD-FDR = 0.0). The bottom example, Fibronectin Type III and SPRY 

Domain Containing 1 Like (FSD1L) was detected exclusively in the LPS condition. In this 

example expression is in log2(counts per million) (CTL-FDR = 0.426, LPS-FDR = 9.09−5, 

GARD-FDR = 0.429). The upper and lower ends of the boxplot whiskers correspond to plus 

or minus 1.5 times the interquartile range, respectively. (C) Bar graphs showing an 

enrichment of genes containing cis-eQTLs among PopDE/PopDR genes (totality of bars) per 
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compared to genome wide expectations (stripes). (D) Manhattan plot showing ΔPVE of cis-

eQTL (normalized as -log10(1-ΔPVE for easier viewing) on the Y-axis across all 

chromosomes for CTL (gray), GARD (blue), and LPS (green). Colored points have an FDR 

< 0.1 and a delta-PVE > 0.75. Points are labeled with the corresponding gene name when 

the PVE is > 0.99.

Harrison et al. Page 26

Nat Ecol Evol. Author manuscript; available in PMC 2020 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Evidence of selection driving population differences in immune response.
(A) This density plot shows the distribution of the percent of SNPs with extreme values of 

FST (e.g. in the 95th percentile) for a set of randomly sampled cis-SNPs equally-sized sets of 

SNPs matched for allele frequencies with high-ΔPVE SNPs. 10,000 iterations were run to 

obtain the distribution for each condition. The red point on each graph shows the percentage 

of high-ΔPVE SNPs in the 95th percentile. High-ΔPVE variants in all conditions had 

significantly more SNPs in the 95th Percentile (FST comparison Chi-Squared Statistic; CTL 

P. value = 2.2−16, LPSP. value = 2.2−16, GARD P. value = 2.2−16). (B) A tree diagram 

illustrating the mean values of the population branch statistic for the HG-Batwa, AG-Bakiga, 

and a cohort from Great Britain as an outgroup. This figure illustrates a greater mean PBS 

score in the HG-Batwa population among high-ΔPVE variants. (C) The distribution of the 

ratio of mean PBS in the HG-Batwa to the AG-Bakiga for a set of randomly sampled cis-

SNPs equally-sized sets of SNPs matched for allele frequencies with high-ΔPVE SNPs. 

100,000 iterations were run to obtain the distribution and to calculate the P. value. The red 

point shows the ratio of mean PBS values represented as the branch lengths in the tree graph. 

(D) A bar graph illustrating the percentage of high-ΔPVE SNPs that have an iHS value in 

the 95th percentile compared to a background of all top cis-SNPs. For iHS, only values in the 

GARD-stimulated cells in the HG-Batwa population had significantly more SNPs in the 95th 
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percentile (HG-Batwa iHS comparison Chi-Squared Statistic; CTL P. value = 0.446, LPS P. 

value = 0.080, GARD P. value = 0.002; AG-Bakiga iHS comparison Chi-Squared Statistic; 

CTL P. value = 0.586, LPS P. value = 0.929, GARD P. value = 0.210). (E) PBS values for 

selection between populations graphed against absolute iHS values showing selection within 

each. population for high-ΔPVE variants. Pink (AG-Bakiga) and Red (AG-Batwa) dots 

represent high-ΔPVE SNPs in the 95th percentile of both PBS and iHS. Among this group 

points are labeled with the corresponding gene name.
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