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Highlights of the Study

• Female breast cancer patients experiencing BRCA1/2 mutation may benefit from PARP inhibition.
• PARP inhibitors combined with platinum-based chemotherapy may offer better clinical results than 

monotherapy.
• Mechanisms of clinical resistance to PARP inhibitors require future research.
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Abstract
In mammalian cells, DNA damage response initiates repair by 
error-free homologous recombination (HRR) or by error-prone 
non-homologous end joining (NHEJ). DNA damage is detected 
by PARP proteins that facilitate this repair, both in normal cells 
and in cancer cells. Cells containing BRCA1/2 mutations have 
an HRR-deficient repair mechanism which may result in unre-
paired one-ended double-strand breaks and stalled replication 
forks, considered as the most lethal cell damage. Here, we re-
view the state of the art of the role of Poly (ADP-ribose) poly-
merase (PARP) inhibitors as a precision-targeted anticancer 
drug in BRCA1/2-mutated female breast cancer. Although 
knowledge is incomplete, it is assumed that the main role of 
the archetype PARP1 in the cell nucleus is to detect and adhere 
to single-strand breaks. This mediates possible damage repair, 
after which cells may continue replication; this process is called 

synthetic lethality. As for PARP clinical monotherapy, progres-
sion-free survival has been observed using the FDA- and EMA-
approved drugs olaparib and talazoparib. In the case of com-
bined drug therapy, a synergy has been demonstrated be-
tween veliparib and platinum drugs. Information regarding 
adverse effects is limited, but hematological effects have been 
described. However, there is need for multicenter trials, prefer-
ably conducted without commercial guidance and funding. 
Some of the available trials reported resistance to PARP inhibi-
tors. In this review, we also describe the various causes of resis-
tance to PARP inhibitors and research indicating how resis-
tance can be overcome. © 2022 The Author(s).

Published by S. Karger AG, Basel

Introduction

Breast cancer is the most prevalent cancer in women, 
with a global incidence of 2.3 million cases in 2020. Overall 
mortality in the same year recorded 685,000 deaths [1], al-
though prevention, based on mammographic X-ray 
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screening, has been a long-standing effort [2–6]. Patients 
harboring a germline BRCA1 or BRCA2 mutation suffer 
from an autosomal dominant genetic disorder in these tu-
mor suppressor genes [7–11]. This special category of pa-
tients is predisposed to develop breast cancer. The preva-
lence among patients with HER2-negative breast cancer 
and without traditional risk factors for harboring germline 
BRCA mutation was reported to be 5.8% [12]. Mutations 
in BRCA genes may become clinically evident for BRCA 1 
(location 17q21) before the age of 40 years and for BRCA2 
(location 13q12.3) before the age of 50 years [13]. A Euro-
pean prospective cohort study of women with a BRCA mu-
tation has estimated the cumulative breast cancer risk for 
BRCA1/2 mutation carriers as 67–72% by the age of 80 
years and 55–60% by the age of 70 years [14]. These num-
bers are in fair concordance with the absolute risk of breast 
cancer through 80 years of life, associated with protein-
truncating variants in 8 genes, being of the order of 55% 
for BRCA1 and 45% for BRCA2. This is based on a recent 
population-based international study involving a total of 
113,000 women consisting of more than 60,000 women 
with an invasive breast tumor and 53,000 controls [15]. 
The age at which first cancer in BRCA1/2-mutated patients 
is discovered is an indicative risk factor for bilateral breast 
cancer. Diagnosis before age 41 years carries a 23.9% risk 
and is reduced to 12.6% in those aged 41–49 years [16, 17]. 
Notably, in a subgroup analysis in Icelandic patients with 
a BRCA2 mutation, an adverse effect regarding prognosis 
was seen in women with estrogen-positive breast cancer 
[17, 18]. Apart from the aggravating bilateral prophylactic 
mastectomy [19, 20], regular mammography, ultrasound 
examination, or MRI represent important risk-reducing 
imaging modalities for BRCA1/2 carriers [21]. Lifestyle 
changes, such as eating healthy food, overall outcomes in 
BRCA1/2-mutant carriers have not been promising or are 
not decisive [22–24].

As for treatment, precision-targeting molecules such 
as PAR (Poly ADP-ribose) polymerases or PARPs are a 
welcome novel addition to the therapeutic arsenal [25, 
26]. The goal of this review is to provide a comprehensive 
overview of the biomechanism of PARPs and the clinical 
results obtained so far with these agents, focusing on 
PARP inhibitors.

Data Collection

For this review, we searched biomedical and life sci-
ence journals in the PubMed archive. We identified 129 
relevant articles (regular peer-reviewed articles, early 

publications, reviews, and clinical trials) using the terms 
BRCA, BRCA-related breast cancer, PARP, and PARP in-
hibitor during the period January 1, 2007, to July 1, 2022. 
We reviewed 103 of these articles for this paper, having 
determined that the remaining 26 were beyond the scope 
of this review.

BRCA 1/2 Pathogenic Mutations

BRCA1 and BRCA2 proteins are essential to homolo-
gous recombination repair (HRR) of DNA breaks. BRCA1 
is pivotal in the recognition and response to DNA dam-
age. BRCA2 controls proteins such as RAD51 which is a 
DNA-dependent ATPase that interacts with replication 
protein A (RPA) to repair double-stranded breaks. This 
mechanism is mediated by the HRR system and the no-
homologous endjoining (NHEJ) system [27]. Whereas 
the first is a slow but precise mechanism using the sister 
chromatid as a template, the latter is a fast, low-fidelity 
process that can introduce alterations in the sequence by 
using direct ligation of DNA ends. Nevertheless, both re-
pair mechanisms are complimentary and essential for 
chromosome stability. A recent article by Palleschi et al. 
[25] describes these repair processes in detail. In short, 
following the protein biosynthesis of ADP-ribose, post-
translational modifications take place to form the “bio-
polymer” poly(ADP-ribose) which consists of up to 400 
linked ADP-ribose residues that form the polymerase 
known as PARP. The PARP family has 17 members; the 
archetype PARP1 is exclusively present in the cell nucle-
us, where it has a critical role in multiple DNA repair 
pathways [27]. According to the most accepted model, 
PARP1 is activated by DNA damage via its N-terminal 
DNA-binding domain. Experimental evidence indicates 
that PARP1 selects its target site via zinc fingers within 
this domain. Subsequently, the PARP1 molecule under-
goes structural remodeling necessary for DNA damage 
repair [28]. Preclinical experiments demonstrated that 
inhibition of PARP activity renders cells susceptible to 
carcinogenic agents [29], suggesting that inhibition of the 
PARP protein has a role in carcinogenesis. Indeed, inhibi-
tion of PARP impedes the maturation of nascent DNA 
strands during DNA replication [30]. This brings about 
the production of double-strand breaks and stalled repli-
cation forks. Throughout the cell cycle, the NHEJ error-
prone pathway is the predominant double-strand break 
repair mechanism. It has a higher efficiency than the 
HRR, which is primarily used in the S-phase. The repair 
mechanisms differ in the DNA end resection. In order to 
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propagate, the cancer cell relies on the NHEJ system. This 
introduces DNA rearrangements, and, as a result, PARP 
inhibitor causes replication stress that results in killing of 
cancer cells, saving the normal cells due to their slower 
replication speed, and a more functional HRR system (see 
below, Fig. 1).

PARP Inhibitors for Treatment of Breast Cancer

Recent advances highlight the use of PARP inhibitors 
in the treatment of patients with BRCA-associated breast 
cancer [31–35]. Both the clinical results with PARPi’s as 
mono agents and PARPi’s as part of a combination ther-
apy will be discussed below.

PARP Inhibitor Monotherapy
Two PARP inhibitors, olaparib and talazoparib, were 

approved by the FDA and EMA in 2018/2019. Olaparib 
was approved for the adjuvant treatment of adult patients 
with deleterious or suspected deleterious germline BR-
CA-mutated, HER2-negative, high-risk early breast can-
cer. This is specifically for patients who have been treated 
with neoadjuvant or adjuvant chemotherapy. Talazopa-
rib was approved for the treatment of adults with deleteri-
ous or suspected deleterious germline BRCA mutation-
positive, HER2-negative, locally advanced or metastatic 
breast cancer. This was based on the favorable results in 
the OlympiAD and EMBRACA Phase 3 studies [36]. A 
recent in-depth study focused on the efficacy, safety pro-
file, and potential harms of PARP inhibitors in the treat-
ment of patients with locally advanced or metastatic 

HER2-negative BRCA germline-mutated breast cancer 
patients [37]. This review of clinical data from 1,474 pa-
tients in 5 studies reported an improvement (HR 0.63; 
95% CI: 0.56–0.71) and supports the use of PARP inhibi-
tors as part of the therapeutic strategy in this population, 
the toxicity profile being no worse than chemotherapy. 
Two other meta-analyses on the efficacy and safety of 
PARP inhibitors came to similar conclusions. Chang et al. 
[38] reported a progression-free survival with outstand-
ing overall efficacy (HR 0.56; 95% CI: 0.45–0.68) for 
PARP inhibitors versus chemotherapy. A subanalysis of 
their data confirmed these positive results for both BR-
CA1-mutant carriers (HR 0.65; 95% CI: 0.53–0.78) and 
BRCA2-mutant carriers (HR 0.63; 95% CI: 0.51–0.76) as 
well as for triple-negative cases (HR 0.62; 95% CI: 0.50–
0.77). Further to this, Sun et al. [39] showed that progres-
sion-free survival significantly improved using the single-
agent PARP inhibitor in BRCA1 patients (HR 0.64; 95% 
CI: 0.53–0.79) with similar results in triple-negative 
breast cancer patients (HR 0.65; 95% CI: 0.54–0.79). 
These researchers also reported adverse hematological 
events: neutropenia in 35% of the patients studied, ane-
mia in 29%, and thrombocytopenia in 24%. A network 
meta-analysis compared talazoparib (n = 241) and olapa-
rib (n = 492) for efficacy, safety, and acceptability and re-
ported similar characteristics in patients with BRCA-mu-
tated HER2-negative metastatic or advanced breast can-
cer [40]. They concluded that monotherapy with either 
agent can be regarded as an option for treating both cat-
egories of patients. FDA databases list monotherapy stud-
ies using veliparib and niraparib in heavily pretreated pa-
tients, but definite results are not available yet.

PARylation inhibited
and PARP trapped on
single-strand breaks

PARP 
inhibitor

PARP 
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PARP

PARP

Double-strand break

Stalled
replication

forkIncrease in double-
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Fig. 1. Simplified representation of the 
DNA damage response (DDR) signaling 
pathways: synthetic lethality by PARP in-
hibitors in HRR-deficient cancer cells, 
whereas  repair of double strand breaks oc-
curs in normal, non cancerous cells  ac-
cording to the HRR pathway (reproduced 
from Cortesi et al. [36]). HRR, homologous 
recombination repair; PARP, poly(ADP-
ribose) polymerase. Reproduced according 
to the licensing conditions of http://cre-
ativecommons.org/licenses/by/4.0/.
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In this context, it needs to be mentioned that triple-
negative breast cancer has an unfavorable prognosis as 
hormone or receptor treatments are not efficacious or 
are only minimally efficacious. This particularly aggres-
sive subtype of breast cancer, often in women below 40 
years, has been associated with reduced expression of re-
pair genes. The average prevalence of this mutation has 
been estimated as 35% for BRCA1 and 8% for BRCA2 
[41, 42].

PARP Inhibitors in Combination Therapies
As noted above, PARP inhibitor monotherapy works 

out favorably in patients, but some preliminary studies sug-
gest that PARP inhibitors in combination therapy using (ei-
ther prior or subsequent) cytostatic drugs may be more suc-
cessful [43]. Indeed, treatment, with PARP inhibitors, of 
triple-negative cancer patients who received prior or subse-
quent platinum-based chemotherapy demonstrated bene-
ficial results in the OlympiAD (NCT02000622) and EMB-
RACA (NCT01945775) open-label randomized, multi-
center phase 3 trials with olaparib and talazoparib, 
respectively. This is an important finding as about two-
thirds of the triple-negative patients are BRCA1 proficient 
and without homologous recombination deficiency.

These patients would not benefit from monotherapy 
with PARP inhibitors as they often experience resistance 
to platinum-based agents [44]. In this way, the synergy 
between both drugs is evident and has opened the way to 
evaluate PARP inhibitors in combination therapies. In 
the Brocade 3 trial (NCT02163694; randomized, double-
blind, placebo-controlled, 36 countries, full results avail-
able after November 2021), the PARP inhibitor drug ve-
liparib was combined with carboplatin and paclitaxel. 
These researchers concluded that “the addition of velipa-
rib to a highly active platinum doublet, with continuation 
as monotherapy if the doublet were discontinued, result-
ed in significant and durable improvement in progres-
sion-free survival in patients with germline BRCA muta-
tion-associated advanced breast cancer” [45].

The California Cancer Consortium Trial (NCT0114 
9083, limited sample size, no randomization) investigated 
the efficacy of the PARP inhibitor veliparib with carbo-
platin or as a single agent in patients with germline 
BRCA1- or BRCA2-associated metastatic breast cancer. 
Out of 28 enrolled patients in phase 1, 27 patients experi-
enced positive results from treatment with veliparib in 
combination with carboplatinum. In phase 2, the trial de-
sign was amended to assess the efficacy of single-agent 
velarib. In this phase, a total of 49 patients were enrolled, 
of which 22 BRCA1 carriers and 22 BRCA2 carriers could 

be evaluated. Leucopenia occurred in 43% of the patients 
in phase 1. In phase 2, dose adjustments were needed in 
25% of the patients, and 6% of the patients could not be 
evaluated due to toxicities. The median best response du-
ration for phase 1 patients was 28 weeks for BRCA1 pa-
tients and 26 weeks for the BRCA2 patients. In phase 2, 
these periods were 18 and 28 weeks, respectively. In spite 
of the limited number of eligible cases and the nonran-
domized nature of the study, the authors concluded that 
the combination therapy was superior to single-agent ve-
liparib treatment. Additionally, the results of an impor-
tant phase 2 randomized trial (NCT 02595905) on cispla-
tin with or without veliparib in metastatic triple-negative 
breast cancer in 323 eligible patients were published by 
Sharma et al. [46]. Among the patients were 37 BRCA-
mutant (BRCA+) carriers, 101 BRCA-like patients, as well 
as 110 non-BRCA-like patients. Progression-free survival 
was numerically improved for the BRCA+ and the BRCA-
like group when combined treatment was applied, al-
though for BRCA+ the difference with cisplatin alone was 
not significant. In the non-BRCA-like group, no benefit of 
veliparib addition was observed. Notably, when combined 
therapy was used, the authors observed a grade 3/4 neu-
tropenia (46 vs. 19%) and anemia (23 vs. 7%). A tentative 
conclusion based on these available data is that the com-
bined cisplatin and veliparib treatment is beneficial for 
patients with BRCA-like triple-negative breast cancer and 
merits further investigation.

In 2021, Turner et al. [47] reported on an open-label 
randomized phase 3 study of patients with mutated 
BRCA1/2 and HER2-negative advanced cancer and those 
who had relapsed within 12 months of adjuvant chemo-
therapy. The study compared the use of niraparib versus 
the chemotherapy chosen by the physician. However, af-
ter the preplanned interim analysis, recruitment was halt-
ed because of a high degree of discordance between local 
and central assessment of progression-free survival in the 
physician’s choice of chemotherapy arm that resulted in 
informative censoring. Nevertheless, the authors state 
that there was clear evidence of the efficacy of niraparib 
in this patient population. The outcome of this study 
needs to be supported by further data.

To the best of our knowledge, no further important 
and/or final trial outcomes on the use of olaparib, nirapa-
rib, rucaparib, veliarib, talazoparib (for structural formu-
las see reference [48]) either as monotherapy or in com-
bination with other agents have been published in the lit-
erature. It is unlikely that these results (of paramount 
importance for the treatment of triple-negative breast 
cancer patients) will be available soon; the list of ongoing 
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trials, published by the Educational Portal for Oncolo-
gists (see: oncologypro.esmo.org) reports that delays have 
occurred for various reasons.

Mechanisms of Resistance to PARP Inhibitors

In view of the invasive character of BRCA-driven 
breast cancer, PARPs are welcome candidates for precise 
targeting, but resistance to PARPs has been observed in 
patients. Below, we elaborate on the several mechanisms 
that play a role in this phenomenon.

The most common explanation for acquired resistance 
is the restoration of BRCA1/2 functionality by a process 
that restores the expression of functional BRCA, usually 
commonly called reversion mutation. This has been de-
scribed in PARP inhibitor treatment of ovarian, prostate, 
and breast cancer [49, 50].

Decreased trapping of PARP inhibitor has been attrib-
uted to loss of PARG (an inhibitor of poly[ADP-ribose] 
glycohydrolase that may complement PARP inhibitors in 
the process of cancer cell death by synthetic lethality) 
[51]. Endogenous and exogenous DNA lesions may chal-
lenge the replication fork, and subsequent fork breakage 
can cause genome instability. To prevent tumorigenesis, 
the rescue of the fork is essential, and the action of RAD1 
to stop cell cycle progression and other remodelers medi-
ate fork recovery and its restart. This process allows the 
stalled replication forks to restart [52, 53]. However, this 
process of stabilization may also occur in cancer cells pre-
venting their degradation due to PARP inhibitors. Thus, 
this restoration of stalled forks may result in uncontrolled 
duplication of cancer cells and resistance to PARP inhib-
itor [54].

Epigenetic changes in HRR may lead to PARP inhibi-
tor resistance because of hypermethylation of BRCA1/2 
genes without changing the DNA sequence. It is a fre-
quent phenomenon during tumorigenesis that results in 
decreased expression of corresponding mRNA and gen-
erates a deficiency in the homologous recombination sys-
tem thereby decreasing sensitivity to PARP inhibitors 
[55].

The upregulation of ABC drug-efflux transporter 
genes has often been found in chemotherapy-resistant 
breast cancers due to chromosomal translocation. The 
high expression of Abcb1b gene encodes for the ATP-
dependent broad substrate specificity efflux transporter 
P-glycoprotein, which is responsible for similar increased 
efflux of PARP inhibitors. This weakens the efficacy of 
these drugs [53, 56–58].

Triple-negative breast cancer harbors germline BRCA 
1/2 mutations and faulty 53BP1 in 10–20% of cases. This 
results in higher expression of RAD51, which compen-
sates for functional loss of BRCA1/2 and reactivates HRR. 
The increase of the HRR mechanism curtails the action of 
synthetic lethality by PARP inhibitors, causing drug re-
sistance (Fig. 1). Subsequently, cell survival occurs in a 
BRCA1/2-independent manner and explains the resis-
tance to PARP inhibitor [59–64].

Strategies to Overcome PARP Inhibitor Resistance

Franchet et al. [65] and Gralewska et al. [66] have de-
scribed mechanisms that lead to the activation of the cell 
cycle checkpoint proteins such as ATM (ataxia telangiec-
tasia mutated ), CHK2, ATR (ataxia telangiectasia and 
RAD3-related protein kinase) and its major downstream 
checkpoint serine/threonine checkpoint kinase CHK1 
(Fig. 2). This activation is crucial for the proper coordina-
tion of multiple DNA repair processes to maintain ge-
nome stability. Replication fork stability is required to 
overcome the consequences of oncogene activation, dys-
functional checkpoints as well as radiation therapy and 
chemotherapy. Activation of ATR/CHK1 leads to the ac-
tivation of another important nuclear kinase, called 
WEE1, which regulates the activity of various cyclin-de-
pendent kinases (CDKs) through phosphorylation. 
WEE1 is primarily involved in the G2/M-phase check-
points (Fig. 2) [67–69]. Research over the past 10 years 
has demonstrated that this enzyme, together with the ex-
tra-nuclear kinase PKMYT1, controls genetic stability in 
nonmalignant cells and can act as a tumor suppressor. 
Paradoxically, it can act as a pseudogene that recognizes 
DNA damage in malignant cells due to chemotherapy 
while also initiating their repair [70]. Understandably, the 
pharmacological suppression of this type of DNA damage 
repair process provides the rationale for targeting these 
kinases in cancer. Against this background, it has been 
postulated that inhibition of both PARP, WEE1, and the 
ATR/CHK1 pathway would help to overcome PARP in-
hibitor resistance in tumor cells and contribute to the res-
toration of HRR, fork or both. Thus, in cancers with 
prominent reproduction stress, such as breast cancer in 
patients with the BRCA1/2 mutation, targeting these dif-
ferent fork-stabilizing mechanisms by the combination of 
PARP inhibitor and inhibition of ATR would lead to in-
creased DNA double-strand breaks and tumor cell death 
[71].
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Concluding Remarks and Future Directions

As discussed above, there is reliable evidence that 
stalled replication forks are a major source of double-
strand breaks and drive the development of cancer cells. 
In order to protect the fork during replication, DNA rep-
lication proteins (polymerases) monitor and guide prop-
er function, thereby preserving genome stability and cell 
health [72, 73]. However, during this process, a variety of 
obstacles may affect the function of these DNA polymer-
ases and result in replication stress. An excellent article by 
Bainbridge et al. [74] discusses at length the function of 
these polymerases. Briefly, the stalling of polymerases is 
caused by unrepaired DNA lesions created by endoge-
nous and exogenous sources, including impediments in 
DNA structures, repetitive sequences, and increased ex-
pression of oncogenes. Yet, through evolution, the jeop-
ardized cell has developed an ingenious system to cir-
cumvent distorted templates by DNA damage tolerance. 
This process, taking place during the S-phase, enables 
DNA replication while circumventing the lesions and en-
abling cell repair. This process is called translesion DNA 
synthesis and occurs with the help of specialized DNA 
polymerases. These enzymes insert bases opposite the 
damaged bases. Basically, it is a strand exchange mecha-
nism that anneals parent strands and generates newly 
synthesized strands to promote remodeling of the dam-
aged structure of replication forks. It enables the cell to 

continue replication beyond the damaged template and 
maintain genome stability. When the replication fork is 
restructured, it is protected by the recombinase Rad51 
that promotes the replication restart [75–77]. The poly-
merases that support the stabilization of the damaged 
fork belong to a large Y family. These DNA polymerases 
specialize in translesion DNA synthesis to complete rep-
lication beyond a damaged template using unique struc-
tural features that bind the damaged DNA [75].

Additionally, another mechanism that permits contin-
uous replication beyond the damaged template is homol-
ogous recombination using a newly synthesized sister 
chromatid (“template switching”) [76]. The abovemen-
tioned Y family polymerases apply a slow process that 
provides the time to repair the damage before the com-
plete genome duplication takes place. Although this syn-
thesis is not error-proof, each member of the Y family 
appears to assist in the high-fidelity repair of one specific 
kind of DNA damage [75, 76].

Notably, primase polymerase (“Primpol”) is unique in 
the sense that the protein shares the same active site for 
the DNA polymerase and primase activities [78]. Also, it 
has been documented that Primpol may restart a stalled 
replication fork by acting as either a translesion DNA 
polymerase or by repriming DNA synthesis downstream 
of the lesion to reinitiate DNA synthesis [79, 80]. This is 
in line with a study by Pilzecker et al. [81] who demon-
strated that Primpol has a critical antimutagenic activity 
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Fig. 2. Sensitizing cancer cells to DNA-damaging agent checkpoint 
inhibitors. Cancer cells deficient in tumor suppressor gene, like 
BRCA1/2, depend largely on checkpoint kinases to establish the 
G2/M checkpoint. Inhibition of checkpoint kinases in combina-
tion with DNA-damaging therapy leads to the G2/M checkpoint 
abrogation, mitotic catastrophe, and cell death. Notably, healthy 
cells are protected by 53BP1-dependent response (53BP1 is a p53 

binding protein). (Reproduced and partially reproduced from ref-
erence, Benada and Macurek [67], according to the license condi-
tions of http://creativecommons.org/licenses/by/4.0/.) p38, p38 
MAPkinase (mitogen-activated protein kinase), responsive to cell 
damage to initiate apoptosis; MK2, (MAPKAPK2), a downstream 
substrate of p38MAPkinase, involved in transcript stability and 
cell proliferation. (For further abbreviations: see article text.)
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and may stimulate error-free homology directed repair. 
Indeed, a high number of Primpol-deficient tumors in 
breast cancer patients with invasive lobular and ductal 
carcinoma [81]. A study by Quinet et al. [82] suggests that 
Primpol is indispensable for cell survival in the absence 
of functioning BRCA1, implying that therapeutic target-
ing of this polymerase may be a useful strategy.

Thus, it is evident that the damaged cell may take re-
course to several multi-connecting pathways to restore 
damaged DNA. As the replication fork has a central posi-
tion in genome stability, there are ongoing studies to un-
ravel the mechanisms that contribute to fork remodeling 
[83–85]. It is known that the tumor suppressor BRCA2 
protects the stalled fork from degradation. Stress proteins 
such as ubiquitinated proliferating cell nuclear antigen 
(PCNA), Rad51 and Rad52 function as stabilizing factors. 
These proteins act alone or in combination with BRCA2 
to harness the replication fork instability in BRCA-mu-
tant breast cancer. Of note, with genotoxic stress, PCNA 
ubiquitination allows for replication of damaged DNA by 
recruiting lesion-bypass DNA polymerases [86, 87]. In-
triguingly, this complex molecule protects both fork in-
tegrity and promotes resistance of BRCA-deficient cells 
to PARP inhibitors. Based on this knowledge, it has been 
suggested that ubiquitinated PCNA may even operate 
parallel to the BRCA-RAD51 pathway to protect the rep-
lication fork progression [88]. Further experimental evi-
dence made clear that, in response to DNA replication 
stress, the fork may reverse its direction thus providing 
time to start the repair procedure and preventing double-
strand breaks [89].

Detailed knowledge on various involved mechanisms 
is lacking and delays the translation from bench to bed-
side. For example, on the strength of the fact that the rep-
lication fork fulfils a central role in genome stability, sev-
eral unsolved questions remain in relation to cancer treat-
ment. Just to name a few: Is it possible to promote fork 
reversal and restart in a clinical setting [90]? What is the 
detailed biochemical relationship between fork stabiliza-
tion and resistance to PARP inhibitors [91]? How does 
stalled fork stabilization work out in BRCA1/2-deficient 
cancer cells [92]?

On the clinical side, it is of immense importance to 
study the effectiveness of different PARP inhibitors for 
various subtypes of breast cancer [27, 93, 94]. As cancer 
is a disease caused by abnormalities in the genome, the 
mutational profile points to diagnosis and therapeutic 
options that include radiotherapy, chemotherapy, and 
immunotherapy along with precision agents such as 
PARP inhibitors as part of the treatment options. In this 

respect, the mutation profile also helps to understand 
why patients do not respond to treatment [95]. While for 
the most part, this paper deals with breast cancer, it ap-
pears that other cancers such as pancreatic, ovarian, and 
prostate malignancies may also be caused by BRCA defi-
ciencies [96]. Understandably, the development of a 
broad biomedical perspective on the clinical use of PARP 
inhibitors for BRCA mutational female breast cancer is 
just one example. The progress in treatment of ovarian 
cancer may serve as an example of how PARP inhibitors 
may change the therapeutic landscape [97–103].
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