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Abstract: The massive generation of data, which includes images and videos, has made data man-
agement, analysis, information extraction difficult in recent years. To gather relevant information,
this large amount of data needs to be grouped. Real-life data may be noise corrupted during data
collection or transmission, and the majority of them are unlabeled, allowing for the use of robust
unsupervised clustering techniques. Traditional clustering techniques, which vectorize the images,
are unable to keep the geometrical structure of the images. Hence, a robust tensor-based submodule
clustering method based on l 1

2
regularization with improved clustering capability is formulated.

The l 1
2

induced tensor nuclear norm (TNN), integrated into the proposed method, offers better low
rankness while retaining the self-expressiveness property of submodules. Unlike existing methods,
the proposed method employs a simultaneous noise removal technique by twisting the lateral image
slices of the input data tensor into frontal slices and eliminates the noise content in each image,
using the principles of the sparse and low rank decomposition technique. Experiments are carried
out over three datasets with varying amounts of sparse, Gaussian and salt and pepper noise. The
experimental results demonstrate the superior performance of the proposed method over the existing
state-of-the-art methods.

Keywords: subspace clustering; submodule clustering; l 1
2

induced tensor nuclear norm (TNN);
sparse and low rank decomposition

1. Introduction

Classification of data into sensible groups is essential in a wide variety of fields,
such as engineering, medical science, business, marketing and many more [1,2]. The
most popular approaches for classifying objects into groups are discriminant analysis and
clustering techniques [2,3]. Discriminant analysis is a supervised learning method in which
the class labels are already defined and the aim is to find the data that have not been
labeled [2,4]. In clustering, the problem is to group the unlabeled data into sensible groups.
Hence, clustering is useful in applications where there is little prior information about the
available data [3]. Due to massive data generation in recent years, clustering has been
found useful in various fields such as machine learning, pattern analysis, decision making,
etc. [5]. The popular clustering algorithms proposed in recent years include hierarchical
clustering, partitioning clustering, mixture resolve clustering, fuzzy clustering, and so
on [2,6]. The methods described above take into account all of the dimensions of the input
data during learning. Dealing with high-dimensional datasets, on the other hand, can be
more difficult due to the curse of the dimensionality problem [7,8]. As the dimensionality
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of the data grows, the data can become sparser, increasing the computational complexity
of clustering [5].

Even if the data are multidimensional, they can be expressed effectively in a union of
low-dimensional space [9]. In real-world scenarios, the high-dimensional data would
also be distributed across several low-dimensional subspaces [10,11]. Then, the aim
of subspace clustering is to identify these subspaces and segment the data based on
their dissimilarity [7,12]. Algebraic methods, matrix factorization methods, statistical
methods, and spectral clustering methods are the major types of subspace clustering
techniques [6,13,14]. Spectral clustering is simple to implement and can outperform tra-
ditional algorithms. Hence, it is the most popular method for high-dimensional data
clustering [15]. Depending on the type of affinity matrices derived from the data, various
spectral clustering algorithms have been proposed.

Shi et al. proposed a normalized spectral clustering method which measures the
dissimilarity between different groups and the similarity within the group using a nor-
malized Laplacian matrix [16]. Andrew et al. proposed another method with additional
row normalization [17]. Then, the sparse subspace clustering (SSC) algorithm proposed by
Elhamifar et al. utilizes the self-expressiveness property of the data [10]. The underlying
theory behind the self-expressiveness property is that every data point lying in a particular
subspace can be expressed as a linear combination of other data points that belong to the
same subspace [1,10]. The SSC algorithm aims to find a sparse representation that corre-
sponds to a minimal set of points belonging to the same subspace. Then, the solution of
the optimization problem is used for spectral clustering [10]. Liu et al. proposed subspace
segmentation by low rank representation (LRR) [18]. Similar to SSC, LRR also represents a
given data point as the linear combination of other data points [14] but instead of sparsest
representation, LRR tries to find the low rank representation.

When dealing with higher dimensional signals, such as images, all the aforementioned
methods map the 2D images into one-dimensional vectors. This approach is not so effective
in capturing the spatial structure information of the images. To address this problem,
instead of vectorizing the imaging data, a new approach called the union of free submodule
(UoFS) model was proposed, which preserves the spatial structure of the 2D data [18,19].
In this model, images are stacked together in a third order tensor space. Kernfeld et al.
proposed sparse submodule clustering (SSmC), which combines the UoFS model with
the self-expressiveness property exploited in the SSC algorithm. In this, each image is
interpreted as a linear combination of remaining images in the dataset [20]. However,
in SSmC, the correlation between images from the same submodule is not taken into
account [21]. To consider the inner correlation, the low rank structure of the multi-linear
data is exploited in the sparse and low-rank submodule clustering method (SLRSmC)
proposed by Piao et al. [21]. Identical to the scalar product, the tensor product is utilized
for constructing the submodule clustering method. SLRSmC, on the other hand, imposes a
low rank constraint on each image in the tensor, rather than a tensor low rank constraint.
Wu et al. resolved this problem by imposing a low tensor rank constraint using the tensor
nuclear norm (TNN) [19].

For enforcing the low rank constraint, the methods proposed in [19–21] use l1 norm
instead of l0 norm. This ensures that the optimization problem is convex since l1 norm
is considered the convex surrogate of l0 norm [22]. Relying on the UoFS model, many
extensions of the work proposed by Wu et al. were developed with the objective of ad-
dressing real-world scenarios, such as noise, incomplete observations, and so on. Francis et
al. proposed a tensor-based single stage optimization framework for clustering imaging
data under incomplete observations [6]. In this work, individual images with missing
samples are fetched in sequence from the input data tensor for reconstruction. Further,
reconstruction of the missing samples is carried out by the matrix completion [6]. In
another work, Johnson et al. replaced the low tensor multirank equivalent TNN by em-
ploying weighted tensor nuclear norm minimization (WTNN) for a more accurate low
rank representation [23]. Baburaj et al. proposed a noise robust tensor-based submodule
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identification approach, named re-weighted low rank tensor approximation and l 1
2

regular-
ization (RLRTAl 1

2
R) to perform clustering in the presence of gross errors [24], using the

re-weighted tensor nuclear norm. An error term was introduced into the model to separate
noise and data, which brings noise robustness to the clustering technique. Xia et al. pro-
posed a subspace clustering method for multi-view data in which the representation tensor
is learned by means of weighted tensor Schatten p-norm minimization (WTSNM) [25]. In
another work, Wu proposed a clustering-aware Laplacian regularized low-rank submodule
clustering (CLLRSmC) model that exploits the local manifold structure of the data [26]. In
this work, the nonlinear extension of the UoFS model which can adapt data drawn from a
mixture of nonlinear manifolds was presented.

Concurrently, the principle of sparse and low rank decomposition of matrices and
tensors was applied to many research problems for noise removal. Shijila et al. proposed
a unified framework of simultaneous denoising and moving object detection using low
rank approximation [27]. Jin et al. proposed an impulse noise removal algorithm named
robust ALOHA, which employs a sparse and low rank decomposition of a Hankel struc-
tured matrix [28]. They modeled impulse noise as a sparse component, then restored the
underlying image while preserving the original image features [28]. Similarly, Cao et al.
proposed a subspace-based non-local low rank and sparse factorization (SNLRSF) method
for hyperspectral image denoising [29].

Since real-world data are heavily influenced by noise, which reduces clustering ef-
ficiency, and current techniques are unable to completely recover the data from noise,
we propose a robust tensor based submodule identification technique with improved
clustering capability, taking the following factors into account.

1. A robust tensor-based submodule clustering algorithm is proposed in this paper,
which combines the clustering of 2D images with simultaneous noise removal in
a single framework. Real-world data, such as images and videos, are frequently
subjected to noise during acquisition, transmission, or due to limitations imposed by
material and technological resources. The presence of noise affects the performance of
clustering algorithms. To limit the effects of noise, existing methods usually include a
global error term in their optimization problem. However, following this approach
will not fully remove the noise encountered in individual images.

2. Hence, this work proposes a simultaneous noise removal scheme based on twisting the
third-order input data tensor, which allows lateral image slices to become frontal slices
of the twisted data tensor. Furthermore, images are extracted from this tensor data one
by one, and each image is subjected to a sparse and low rank decomposition approach.
Unlike the existing clustering methods, this procedure can find and eliminate the
noise content in each of the images from the data, and a clean noise-free data tensor
can be obtained for further clustering.

3. To better capture the low rankness and self-expressiveness property, l 1
2

induced TNN
is integrated into the proposed method. Furthermore, l 1

2
regularization is incorporated

into the submodule identification term because of its ability to induce more sparsity.
An optimization problem is formulated that enables the proposed method to perform
improved clustering, even in the presence of noise by employing the capabilities of
l 1

2
induced TNN and l 1

2
regularization, as well as simultaneous noise removal using

sparse and low rank decomposition.

2. Technical Background

In this paper, tensors, matrices, vectors and scalars are denoted by calligraphic upper-
case, bold uppercase, bold lowercase and nonbold letters, respectively. For a third-order
tensor X , X (:, l, m),X (l, :, m) and X (l, m, :) represent the (l, m)th mode-1, mode-2 and
mode-3 (tube) fibers respectively [19]. Similarly, X (i, :, :),X (:, i, :) and X (:, :, i) denote the
ith horizontal, lateral and frontal slices, respectively. Then, the ith frontal slice can also
be represented by X (i). Finally, xl,m,n represents the (l, m, n)th element of X . The rest
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of this paper is organized as follows. Section 2 presents the technical background. The
proposed optimization model and its solutions are described in Section 3. In Section 4,
the performance of the proposed method is evaluated and the experimental results are
presented. The conclusions are drawn in Section 5.

2.1. Sparse and Low Rank Matrix Decomposition

It is evident that natural images have a low rank structure and those of the same
rank will be increased when they are affected by noise [30]. Hence, noise removal can be
done by decomposing the data into a low rank and sparse component. Selecting the low
rank part only would provide noise-free data. In the sparse and low rank decomposition
method, a given matrix, X can be expressed as the sum of low rank component T and
sparse component S [22,31]. The formulation is given by [27]

min
T,S

rank(T) + λ‖S‖0

s. t. X = T + S
(1)

where, T denotes the low rank matrix, S represents the sparse matrix and λ represents
the regularization term. However, solving Equation (1) is NP hard due to its non-convex
nature [27]. In principal component pursuit (PCP), Candes et al. recovered the low rank
matrix by convex programming tools by the following formulation,

min
T,S

‖T‖∗ + λ‖S‖1

s. t. X = T + S
(2)

where ‖.‖∗ represents the nuclear norm and ‖.‖1 represents the l1 norm. The nuclear norm
of a matrix T is given by the absolute sum of singular values, and the minimization of ‖T‖∗
imposes a low rank nature [27]. The singular value decomposition (SVD) [32] approach
with a specific threshold can be applied to obtain the low rank in which singular values are
arranged in descending order. Since the first few singular values hold maximum energy,
smaller singular values can be omitted, as those values usually represent noise or other
sparse corruptions [27,33,34]. However, solving Equation (2) reduces the sparse content
alone, and hence, mitigating factors, such as Gaussian noise or group sparsity, cannot be
taken into account [22]. Zhou et al. extended the problem in Equation (2) by adding an
equality constraint, ‖X− T− S‖2

F ≤ σ, into their model in order to handle Gaussian noise
and other arbitrary corruptions, where σ is the threshold [22]. The formulation is given
by [22]

min
T,S

‖T‖∗ + λ‖S‖1 +
µ

2
‖X− T− S‖2

F (3)

where µ represents the penalty parameter [6,22].

2.2. Self-Expressiveness Property of Submodules

Since images and videos in real life often have noise components associated with
them, the management and grouping has become more challenging. The basic problem
of image clustering is to group a collection of N images Y = {Yi ∈ Rn1×n3}N

i=1 into L
categories [19]. However, the majority of existing clustering methods consider the images
as vectors belonging to an n1n3-dimensional space. Although this is a reasonable approach
in many cases, in image clustering, where the geometrical structure of the data have to be
taken into account, it cannot provide satisfactory results. In the UoFS model, the images are
considered to be lateral slices of a tensor Y ∈ Rn1×N×n3 [19]. The images can be assumed
to belong to a union of free submodules. Then, the problem of finding the clusters is
equivalent to finding out the submodules to which each image belongs. This approach
takes into account the spatial aspects of the images. Let Kn3 denote the set of all tubes
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belonging to R1×1×n3 . The above set of tubes can then be used to form a commutative ring
under regular addition and t-product [19,35]. The set of n1 × 1× n3 lateral slices can be
denoted by Kn1

n3 . Similar to vector spaces over field, Kn1
n3 forms a free module over the ring

Kn3 . As a result, a free submodule over the ring can be thought of as a generalized version
of the subspace over the field [6,19].

3. Proposed Method

Under the UoFS model, making use of the self-expressiveness property, an image
fetched from a submodule can be expressed as the t-linear combination of other images
present in the same submodule, as shown in Figure 1. Hence, for a third-order tensor
Y ∈ Rn1×N×n3 , there exists a coefficient tensor, Z ∈ RN×N×n3 such that Y ≈ Y ∗ Z [6].
Further, the tensor multirank can be used to capture the self-expressiveness property [19]
using the tensor nuclear norm ‖.‖~, which is the tightest convex relaxation of the tensor
multirank [36]. Since the structure of the solution Z also determines the performance of
the clustering, a block diagonal structure is required for the coefficient tensor, Z , which can
reveal the compactness between the intraclass components and the separation between the
interclass components [8,37,38]. Hence, in the UoFS model, an f-block diagonal structure
constraint is added [19]. In addition, images which belong to a single submodule are
highly correlated, while those that belong to different submodules are slightly correlated;
to capture this, a dissimilarity matrix, M ∈ [0, 1]N×N is defined, where each entry indicates
the dissimilarity between two images. The entries of M, mk,l are given by [19]

mk,l = 1− exp
(
−1− |〈Y(:, k, :),Y(:, l, :)〉|

γ

)
(4)

Here, Y(:, k, :) and Y(:, l, :) represent the kth and lth lateral slices of the 3rd order tensor
Y , and γ is the empirical average of all (1− |〈Y(:, k, :),Y(:, l, :)〉|) [19]. Once an optimum
coefficient tensor Z , is obtained, the clustering of data can be achieved using the spectral
clustering technique in which the (k, l)th entry of affinity matrix A can be calculated as [17]

ak,l = ‖Z(k, l, :)‖F + ‖Z(l, k, :)‖F (5)

Incorporating all the factors mentioned above, the clustering problem is formulated
into an optimization problem given by [19]

min
Z

∥∥Z∥∥~ + λ1

n3

∑
k=1
‖M�Z (k)‖1 + λ2‖Y − Y ∗ Z‖2

F (6)

where 8�′, ‖.‖1 and ‖.‖F represent the element-wise multiplication operator, l1 norm
and Frobenius norm, respectively. Further, ‖Z

∥∥
~ represents the tensor nuclear

norm (TNN) [19]. In addition, λ1 and λ2 stand for the regularization parameters for the
optimization problem.

Further, l1 norm is used in the submodule structure constraint term,
λ1 ∑n3

k=1‖M�Z (k)‖1 as well as in TNN of Z in the above expression. The methods men-
tioned in [19–21], l1 norm are used instead of l0 norm for imposing the low rank constraint.
The strong acceptance of l1 minimization in sparsity-related problems is because of its
convex nature and ability to provide the sparse solution with less computational bottle-
neck [39]. However, l1 regularization is a loose approximation of l0 regularization, and the
performance will be limited in many applications [40,41]. Hence, to improve the perfor-
mance, lq (0 < q < 1) regularization techniques can be employed. Therefore, in order to
extract the sparsest structure for the vector x ∈ RN , from the observation y = Ax, the lq
regularization problem is represented by

min
x∈RN

‖Ax− y‖2
2 + λ‖x‖q

q (7)
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where y ∈ Rm, A ∈ Rm×N . Then, ‖x‖q represents the lq quasi-norm and is defined by,

‖x‖q = (∑N
i=1 |xi|q)

1
q .

−→
Y Y −→

Z

=
n 1

n

*
n 1

n

N

n

N

Figure 1. Self-expressiveness property of free submodules. Red fibers represent non-zero fibers and
greyish fibers represent zero value fibers. Non-zero fibers represent coefficients from intra-cluster.
Zero fibers denote coefficients from inter-clusters.

The unit ball representations of all the norms are illustrated in Figure 2 in which l2
norm has the spherical shape, whereas in l1 norm, it is diamond shaped. It is obvious that
l1 regularization provides a sparser solution compared to l2 norm since there is higher
probability for the y = Ax line to coincide with the axes. However, as the value of q is
again reduced, the unit ball can assume the shape as shown in Figure 2d.

(e)

q : 0

(d)

q : 0.5

(c)

q : 1

(b)

q : 2

(a)

q :∞

Figure 2. Unit ball representation of (a) l∞ norm (b) l2 norm (c) l1 norm (d) l 1
2

norm and (e) l0 norm,

in the three dimensional space R3.

Hence, the probability of achieving sparser solution is higher as the value of q is
changed from 0 to 1. For q ∈ [ 1

2 , 1), the solution will be sparser for a smaller value of
q. No significant change is observed in the performance for q ∈ [0, 1

2 ) [39,42,43]. Hence,
l 1

2
regularization can be chosen as the optimum regularization method. In works such

as [19–21], TNN was used for imposing the low rank constraint in their optimization
problem. For a tensor X ∈ Rn1×n2×n3 , the expression for TNN with t-SVD X = U ∗ Σ ∗ VT

is given by [19],

‖X ‖~ =
n3

∑
k=1

min(n1,n2)

∑
i=1

|Σ̂(i, i, k)| (8)

where in U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are the orthogonal tensors. In addition,
Σ ∈ Rn1×n2×n3 is an f-diagonal tensor and Σ̂ is its Fourier transform. As in Equation (8),
TNN uses the l1 norm to determine the absolute sum of the singular values in each frontal
slice of the tensor Σ̂. However, in comparison to the l1 norm, l 1

2
regularization yields a more

sparse solution [39,43]. Hence, to obtain a more accurate low tensor rank representation, l 1
2

regularization is incorporated, and the Equation (8) can be rewritten as

‖X ‖~ 1
2
=

n3

∑
k=1

min(n1,n2)

∑
i=1

√
|Σ̂(i, i, k)| (9)

where the above expression can be called l 1
2

induced TNN. In TNN, the frontal slices of

the tensor Σ̂ contains n3 frontal slices, each slice being a diagonal matrix with singular
values σ1 ≥ σ2... ≥ σnmin ≥ 0, where nmin = min(n1, n2) as entries. Then, we apply the half
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thresholding function proposed by Xu et al. over the vector σ = (σ1, σ2, ..., σnmin), and it can
be expressed as [39],

hλ, 1
2
(σi) =


2
3 σi
(
1 + cos

( 2π
3 − 2

3 Ψλ(σi)
))

,

|σi| >
3√54
4 (λ)

2
3

0, otherwise

(10)

where Ψλ(σi) = arccos( λ
8 (
|σi |
3 )−

3
2 ) and i = 1 to nmin. Then, using the non linear

half thresholding operator, Hλ, 1
2
(.), we perform the expression given in Equation (10) for

all elements of σ. The expression for the half thresholding operator Hλ, 1
2
(.) is given by

Hλ, 1
2
(σ) = (hλ, 1

2
(σ1), hλ, 1

2
(σ2)..., hλ, 1

2
(σnmin))

Th , where Th denotes the threshold value [39,43].

After repeating the process for all frontal slices of Σ̂, the solution for l 1
2

induced TNN is
obtained. Furthermore, the solution’s detailed procedure is summarized and can be found
in Algorithm 1.

In real-life contexts, imperfections in an image may occur in different circumstances,
such as during acquisition, from any of the display systems or due to the constraints of
both material and technological resources [44]. In any of the ways, the presence of noise
in the data may adversely affect the outcomes of the algorithms [45]. The accuracy of
the clustering algorithms could be improved if the data become noise-free. To meet this
objective, each image is extracted by twisting the data tensor, X ∈ Rn1×N×n3 developed for
the clustering model, and

−→X ∈ Rn1×n3×N return the twisted tensor [46]. The kth image is
then transformed into the kth frontal slice,

−→X (k) ∈ Rn1×n3 of the twisted tensor,
−→X , where

k = 1 to N. This further allows each individual image to be taken in sequence by calling−→X (:, :, i) ∈ Rn1×n3 , where i = 1 to N. The removal of noise from an image can be achieved
by the sparse and low rank matrix decomposition method and is already illustrated in
Section 2.1. The concept of removing noise from a single image is given in Equation (3).
Then, for N number of images, Equation (3) can be modified such that

min
T ,S

N

∑
k=1

∥∥T (k)∥∥
∗ +

N

∑
k=1

∥∥S (k)∥∥1 +
1
2

N

∑
k=1

∥∥−→X (k) − T (k) − S (k)
∥∥2

F (11)

To incorporate all the challenges aforementioned, proposed method integrates the
following aspects into its optimization problem.

1. Compared to TNN, l 1
2

induced TNN is able to capture better low rankness. In
addition, due to its inherent noise robustness and better ability to catch the property
of self-expressiveness, l 1

2
induced TNN is introduced into the proposed method.

2. Compared to l1 norm, l 1
2

norm regularization is able to capture the f-block diagonal
structure in a better way such that the submodule structure constraint is modified
using l 1

2
norm.

3. To meet the objective of noise removal, we use the tensor
−→X ∈ Rn1×n3×N , where

−→X is the twisted version of the noisy data tensor X ∈ Rn1×N×n3 . Afterwards, noise
removal is carried out by employing the nuclear norm and l1 norm minimization on
each image to separate the noise content by combining the principles of sparse and
low rank decomposition techniques. As a result, the underlying images are restored,
and the sparse noise content is eliminated. This process delivers a noise-free data
tensor for further clustering process.

Incorporating the aforementioned factors, the tensor, T ∈ Rn1×n3×N is introduced
into the proposed optimization problem such that T is the clean data tensor, where the
noise removed images are stacked into its frontal slices, T (k) ∈ Rn1×n3 . Another tensor,
S ∈ Rn1×n3×N is defined, where the eliminated sparse noise content from each image
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is stored into its frontal slices, S (k) ∈ Rn1×n3 . In addition, the tensor, R ∈ Rn1×N×n3 is
incorporated, where R is the twisted version of the clean data tensor T such that R is
given for the clustering. Further, we employ variable splitting for Z into Equation (6) such
that Z = C and Z = Q [21]. Combining all the above, the proposed optimization problem
can be reformulated as

min
C,Q,Z

∥∥C∥∥~ 1
2
+ λ1

n3

∑
k=1

∥∥M�Q(k)∥∥ 1
2
1
2
+ λ2

∥∥R−R ∗ Z∥∥2
F

+ λ3

N

∑
k=1

∥∥T (k)∥∥
∗ + λ4

N

∑
k=1

∥∥S (k)∥∥1

s. t. Z = C, Z = Q, R =
−→T ,

N

∑
k=1

(−→X (k) = T (k) + S (k)
)

(12)

where ‖.‖~ 1
2

represents the l 1
2

induced TNN and ‖.‖
1
2
1
2

represents l 1
2

norm. Further, ‖.‖∗, ‖.‖1

and ‖.‖F denote the nuclear norm, l1 norm and Frobenius norm respectively. Finally,
−→X is

the twisted version of the noisy data tensor X ∈ Rn1×N×n3 . In the above expression, λ1, λ2,
λ3 and λ4 denote the regularization parameters of the proposed optimization problem and
among them, λ3 and λ4 balance the effect of low rank and sparsity constraints [27]. The
above constrained equation is transformed into a unconstrained one using the Augmented
Lagrangian (AL) method [19,47] given by

L(C,Q,Z ,G1,G2,G3,G4) =
∥∥C∥∥~ 1

2
+ λ1

n3

∑
k=1

∥∥M�Q(k)∥∥ 1
2
1
2

+ λ2
∥∥R−R ∗ Z∥∥2

F + λ3

N

∑
k=1

∥∥T (k)∥∥
∗ + λ4

N

∑
k=1

∥∥S (k)∥∥1

+ 〈G1,Z − C〉+ 〈G2,Z −Q〉+ 〈G3,R−−→T 〉+ 〈G4,
−→X (k) − T (k) − S (k)〉

+
µ

2

(∥∥Z − C∥∥2
F +

∥∥Z −Q∥∥2
F +

∥∥R−−→T ∥∥2
F +

N

∑
k=1

∥∥−→X (k) − T (k) − S (k)
∥∥2

F

)
(13)

where the tensors G1, G2, G3 and G4 are the Lagrangian multipliers, where µ ≥ 0 is the
penalty parameter and 〈., .〉 denotes the inner product [27]. The above problem can be
solved by iteratively minimizing the Lagrangian L over one tensor while keeping the
others constant [6].
C Subproblem: The update expression for C is given by

C [j+1] = arg min
C

‖C‖~ 1
2
+ 〈G1,Z − C〉+ µ

2

∥∥Z − C∥∥2
F (14)

The above expression can be transformed into the following form,

C [j+1] = arg min
C

‖C‖~ 1
2
+

µ[j]

2

∥∥∥∥∥C −
(
Z [j] − G

[j]
1

µ[j]

)∥∥∥∥∥
2

F

(15)

Solution to the above subproblem is obtained by,

C [j+1] = Hτ

[
Z [j] − G

[j]
1

µ[j]

]
(16)

where τ = 1
µ is the threshold value. The operation ofHτ [.] is detailed in Algorithm 1.

Q Subproblem: The update expression for Q is given by
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Algorithm 1 Tensor singular value half thresholding.

Require: Z ∈ RN×N×n3 , λ > 0, µ > 0, threshold, Th > 0
Ensure: Singular Value Half-thresholded, Zht ∈ RN×N×n3 as optimal solution

1: Ẑ = fft(Z , 3)
2: for i= 1 to n3 do
3: [U, Σ, V] = svd

(
Ẑ (i))

4: Û (i) = U, Σ̂(i) = Σ, V̂ (i) = V
5: σ = diag(Σ̂(i))
6: Hλ, 1

2
(σ) = (hλ, 1

2
(σ1), hλ, 1

2
(σ2), ...hλ, 1

2
(σN))Th

7: Σ̂h f (:, :, i) = diag(Hλ, 1
2
(σ))

8: end for
9: U = ifft(Û , 3),H 1

2
(Σt) = ifft(Σ̂h f , 3), V = ifft(V̂ , 3)

10: Zht = U ∗H 1
2
(Σt) ∗ VT

Q[j+1] =arg min
Q

λ1

n3

∑
k=1

∥∥M�Q(k)∥∥ 1
2
1
2
+ 〈G2,Z −Q〉+ µ

2

∥∥Z −Q∥∥2
F (17)

Above equation can be decomposed into n3 expressions and the kth frontal slice of Q
can be updated by

Q(k)[j+1]
=arg min

Q
λ1‖M�Q(k)‖

1
2
1
2
+

µ[j]

2

∥∥∥∥∥∥Q−
Z (k)[j] +

G(k)
[j]

2

µ[j]

∥∥∥∥∥∥
2

F

(18)

where Q(k)[j+1]
is the kth frontal slice/matrix of Q. The solution to the above subproblem is

given by the halfthresholding operator [42],

Q(k)[j+1]
= H λ1M

µi

Z (k)[j] +
G(k)

[j]

2

µ[j]

 (19)

where H λ1M
µi

is the halfthresholding operator [39]. Here, Q(k)
m,n is the (m, n)th element of kth

frontal slice/matrix of Q.
Z Subproblem: The subproblem for updating Z is given by

Z [j+1] = arg min
Z

λ2‖R−R ∗ Z‖2
F + 〈G

[j]
1 ,Z − C [j+1]〉+ µ[j]

2
‖Z − C [j+1]‖2

F

+
µ[j]

2
‖Z −Q[j+1]‖2

F + 〈G
[j]
2 ,Z −Q[j+1]〉

(20)

Above equation can be simplified as,

Z [j+1] = arg min
Z

λ2‖R−R ∗ Z‖2
F +

µ[j]

2

(∥∥Z − C [j+1]∥∥2
F +

∥∥Z −Q[j+1]∥∥2
F

)
(21)

Finding the Fourier transform on both sides, the above equation can be rewritten as,

Ẑ [j+1] = arg min
Ẑ

λ2
∥∥R̂ − R̂ ⊗ Ẑ∥∥2

F +
µ[j]

2

(∥∥Ẑ − P̂ [j+1]
1

∥∥2
F +

∥∥Ẑ − P̂ [j+1]
2

∥∥2
F

)
(22)
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where Ẑ , P̂ [j+1]
1 and P̂ [j+1]

2 are the Fourier transforms of kth frontal slice of Z , C [j+1] − G
[j]
1

µ[j]

and Q[j+1] − G
[j]
2

µ[j]
, respectively, and 8⊗′ indicates the slicewise multiplication [19]. The

analytic solution for the update of the kth frontal slice is given by

Ẑ (k)[j+1]
=

(
2λ2R̂(k)T R̂(k) + µ[j]

(
P̂ (k)[j+1]

1 + P̂ (k)[j+1]

2

))(
2λ2R̂(k)T R̂(k) + 2µ[j]I

)−1
(23)

T Subproblem: In T subproblem, the update expression is given by,

T [j+1] = arg min
T

λ3

N

∑
k=1

∥∥T (k)∥∥
∗ + 〈G4,

−→X (k) − T (k) − S (k)〉+ µ

2

∥∥−→X (k) − T (k) − S (k)
∥∥2

F

(24)

Above expression can be considered an N subproblems. Then, the update expression
for kth slice is given by,

T (k)[j+1]
= arg min

T
λ3

N

∑
i=1

∥∥T (k)[j]∥∥
∗ + µ[j]

∥∥∥T (k)[j] −
(−→X (k)[j] − S (k)[j] + G

(k)[j]
4

µ[j]

)∥∥∥
 (25)

Above expression can be solved using singular value thresholding,

T (k)[j+1]
= S λ3

µ[j]

−→X (k)[j] − S (k)[j] + G
(k)[j]
4

µ[j]

 (26)

S λ3
µ[j]

[.] is the singular value thresholding operator [48].

S Subproblem: Similarly, the update expression for S subproblem is given by

S [j+1] = arg min
T

λ4

N

∑
i=1

∥∥S (k)∥∥1 + 〈G4,
−→X (k) − T (k) − S (k)〉+ µ

2

∥∥−→X (k) − T (k) − S (k)
∥∥2

F (27)

Solution for the kth slice is given by,

S (k)[j+1]
= s λ4

µ[j]

−→X (k)[j] − T (k)[j+1]
+
G(k)

[j]

4

µ[j]

 (28)

where s λ4
µ[j]

[.] is the shrinkage operator defined in [27] and the expression is given by,

sθ>0(x) = sign(x)max(|x| − θ, 0), where θ represents the threshold value.
R Subproblem:

R[j+1] = arg min
R

λ2
∥∥R−R ∗ Z∥∥2

F + 〈G3,R−−→T 〉+ µ

2

∥∥R−−→T ∥∥2
F (29)

Solution for the above expression is given by,

R[j+1] =
(

2λ2Z [j+1] − 2λ2Z [j+1] ×ZT[j+1] − µ[j]I
)−1

(
G [j]3 + µ[j]−→T [j+1]

)
(30)

Finally, the stopping criterion is measured by the following condition,

max
{
‖Z [j+1] − C [j]‖∞, ‖Z [j+1] −Q[j]‖∞, ‖Z [j+1] −Z [j]‖∞

‖C [j+1] − C [j]‖∞, ‖Q[j+1] −Q[j]‖∞, ‖T [j+1] − T [j]‖∞

}
< ε (31)
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The overall algorithm can be summarized in Algorithm 2.

Algorithm 2 Robust tensor-based submodule clustering for noisy imaging data.

Require: Data: X ∈ Rn1×N×n3 and parameters λ1, λ2, λ3, λ4, µmax, ρ
Ensure: Z ∈ RN×N×n3 , T ∈ Rn1×n3×N

1: C [0]=Q[0]=Z [0]=G [0]1 =G [0]2 ← 0 ∈ RN×N×n3

2: T [0]=S [0]=G [0]4 ← 0 ∈ Rn1×n3×N

3: R[0]=G [0]3 ← 0 ∈ Rn1×N×n3 and t← 0
4: λ1 > 0, λ2 > 0, λ3 > 0, λ4 > 0, µ[0] > 0, ρ > 0
5: while not converged do
6: C [j+1] ← Update using Equation (16)
7: Q[j+1] ← Update using Equation (18)
8: Z [j+1] ← Update using Equation (23)
9: T [j+1] ← Update using Equation (24)

10: S [j+1] ← Update using Equation (28)
11: R[j+1] ← Update using Equation (30)

12: G [j+1]
1 = G [j]1 + µ[j](Z − C)

13: G [j+1]
2 = G [j]2 + µ[j](Z −Q)

14: G [j+1]
3 = G [j]3 + µ[j]

(
R−−→T

)
15: G [j+1]

4 = G [j]4 + µ[j] ∑N
k=1

(
X (k) − T (k) − S (k)

)
16: µ[j+1] = ρµ[j]

17: Check the convergence using Equation (31)
18: [j]← [j + 1]
19: end while

4. Results and Discussions

The performance of the proposed method is evaluated on Coil20 http://www.cs.
columbia.edu/CAVE/software/softlib/coil-20.php (accessed on 5 June 2021), MNIST
http://yann.lecun.com/exdb/mnist/ (accessed on 5 June 2021) and UCSD http://www.
svcl.ucsd.edu/projects/anomaly/dataset.htm (accessed on 8 June 2021) datasets [19]. These
datasets are widely used for clustering, completion, noise reduction, and moving object de-
tection problems [6,19,42]. The dimensions, number of classes and total number of images
of these datasets have already been defined in various papers and can be found in [6,24] and
so on. For comparison with the proposed method, other recent clustering methods, such
as normalized spectral clustering [16], SSmC [20], SLRSmC [21], SCLRSmC [19], weighted
tensor nuclear norm (WTNN) minimization [23] and re-weighted low rank tensor approx-
imation and l 1

2
regularization, named (RLRTAl 1

2
R) [24], approaches are chosen. All the

experiments are implemented and run on a personal computer with i5 - 4590 CPU at 3.30
GHz and 8 GB of RAM. The results are compared using the standard evaluation metrics
such as the misclustering rate (MCR), adjusted Rand index (ARI), normalized mutual infor-
mation (NMI) and purity [6]. The definitions and expressions of MCR, ARI and purity can
be found in [6,24]. Then, normalized mutual information (NMI) is obtained by normalizing
the mutual information to a value between 0 and 1, where the value of 1 indicates perfect
labeling. In addition, purity and ARI are upper bound measures whose values lie in the
interval (0, 1) [24]. For those metrics, higher values indicate sound performance. In this
work, the clustering results for MCR are represented by (m± σ)%, where m is the mean,
σ is the standard deviation and smaller MCR value indicates improved performance [6].
To simulate sparse noise in the data, we create an algorithm which generates noise values
at random locations in the images. The amount of sparse noise applied to the data can be
modified by this algorithm, and the amount of sparse noise added is shown as a percentage
of the total pixels in the images of each dataset. In this work, the amount of sparse noise
are varied from 5% to 50% for all the datasets.

http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
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We first present the experimental results obtained from the Coil20 dataset. For the
Coil20 dataset, the values chosen for the regularization parameters are λ3 = 1.155 and
λ4 = 0.355. The proposed method exhibits a major improvement in its clustering efficiency,
and furthermore improved evaluation metrics are obtained. The reason is that the proposed
algorithm decomposes each image in the dataset into its sparse and low rank part. The
sparse part represents the noise encountered, and the algorithm removes this sparse noise
content. Consequently, the imaging data are free from noise and clean data are available
for clustering at the same time. Figure 3 shows the visual appearance of the simultaneous
noise removal of a single image from the coil20 dataset with 20% sparse noise applied. The
eliminated noise content from the noisy image is presented in Figure 3c, and the recovered
clean image is shown in Figure 3d, respectively.

(a) (b) (c) (d)

Figure 3. Illustration of noise removal of a single image from Coil20 dataset. (a) Input image (b)
Image with 20% sparse noise (c) Sparse noise content (d) Noise removed image.

The proposed method is compared against state-of-the art clustering algorithms. The
MCR values obtained using the Coil20 dataset for proposed method and other algorithms
are summarized in the first section of Table 1, with the best values shown in bold. Similarly,
the compared results of purity, NMI, and ARI metrics using Coil20 dataset are shown
in Figure 5a, Figure 5b and Figure 5c, respectively. Our method obtains better values of
MCR, purity, NMI and ARI metrics, compared to the state-of-the-art methods. For 10% to
20% of sparse noise content, the MCR values of the proposed method are (0.67± 1.08)%
and (2.56± 4.42)% (second and third row, last column of Table 1), and these values are
extremely small, compared to other algorithms. Similarly, purity and ARI values of the
proposed method for 20% of sparse noise content are 0.965, 0.922 and 0.912, respectively
(from Figure 5). Hence, it is evident from Table 1 and Figure 5 that the proposed method
outperforms other state-of-the-art clustering algorithms. The evaluation metrics of the
proposed method indicate small decrements for noise values exceeding 35% and more, but
the values are still better than its counterparts. Further, the noise-removed images achieved
by the proposed method using the Coil20 dataset for various levels of sparse noise content
are shown in Figure 4. The eliminated sparse noise content from the noisy images in the
dataset are clearly illustrated in the third row of Figure 4.

Second, experiments are conducted on the UCSD dataset, and the obtained MCR
values are provided in the second section of Table 1. For lower noise content ( 5% to 20%),
the proposed approach achieves smaller MCR values as reported in Table 1. For noise values
such as 30% and 40%, the MCR values for the proposed method are (10.62± 9.44)% and
(14.05± 8.92)%. In the same scenario, algorithms such as SSmC, SLRSmC and SCLRSmC
fail to achieve good clustering results (Table 1, Figure 5d–f). WTNN shows improved results
over the SSmC, SLRSmC, SCLRSmC and spectral methods for lower noise values, but its
performance reduces when the noise content in the imaging data is increased. Among the
methods we have compared, the RLRTAl 1

2
R method shows the second best performance.

The MCR metrics of this method are (0.75± 1.96)% to (15.33± 10.90)% for noise levels up
to 30%. In all of the scenarios considered, the proposed approach outperforms the state-
of-the-art methods significantly. In addition, l 1

2
norm regularization effectively captures

the f-block diagonal structure in a better way, and the self-expressiveness property of the
submodules is preserved in the proposed method. A few images from the UCSD dataset,
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which was recovered by the proposed method under various noise levels, are shown in
Figure 4. The proposed method’s efficiency is also checked using the MNIST dataset [19].
the MNIST dataset comprises images of handwritten digits from 0 to 9 with a resolution of
28× 28, where the number of images that belong to class is set as 30. The MCR metrics
obtained for the proposed as well as the compared methods are summarized in last section
of Table 1. The proposed method produces better clustering results than the state-of-the-art
methods.

Table 1. Table represents compared results of MCR (m ± σ)% for Coil20, UCSD and MNIST datasets. Best values are
highlighted in bold letters.

Dataset No. of
Clusters

Saprse
Noise (%) Spectral [16] SSmC [20] SLRSmC [21] SCLRSmC [19] WTNN [23] RLRTAl 1

2
R [24] Proposed

Coil 20 3

5 3.95 ± 5.05 6.55 ± 9.66 7.69 ± 4.44 3.13 ± 2.22 1.82 ± 2.12 0.75 ± 1.96 0.45± 1.14
10 9.23 ± 10.53 10 ± 17.23 5.55 ± 9.42 5.05 ± 6.56 5.05 ± 5.25 3.26 ± 1.55 0.67 ± 1.08
15 16.52 ± 14.44 17.32 ± 12.63 9.65 ± 7.48 9.95 ± 4.46 5.95 ± 3.22 7.25 ± 4.62 2.15 ± 2.90
20 21.23 ± 10.12 20.32 ± 10.55 15.55 ± 13.26 10.36 ± 8.05 9.56 ± 7.25 9.05 ± 8.02 2.56 ± 4.42
30 27.32 ± 25.02 26.32 ± 18.99 22.42 ± 17.54 19.25 ± 12.33 17.65 ± 14.22 15.33 ± 10.90 10.24 ± 11.23
40 34.56 ± 16.45 32.99 ± 12.56 33.21 ± 18.10 23.95 ± 16.52 20.44 ± 17.44 18.24 ± 14.64 14.98 ± 10.15
50 38.85 ± 23.23 37.36 ± 20.33 37.77 ± 10.18 28.66 ± 16.12 28.12 ± 19.31 21.02 ± 12.75 18.44 ± 11.22

UCSD 3

5 4.04 ± 5.62 7.78 ± 13.47 3.33 ± 4.56 4.12 ± 6.52 5.25 ± 2.12 0.55 ± 1.22 0.22 ± 0.95
10 6.26 ± 9.33 9.97 ± 15.39 4.04 ± 5.09 4.96 ± 5.34 4.80 ± 6.23 1.65 ± 2.32 1.22 ± 2.54
15 14.52 ± 12.22 12.22 ± 21.16 8.4 ± 2.19 6.22 ± 8.92 5.23 ± 6.55 2.23 ± 3.85 3.04 ± 3.46
20 19.52 ± 15.35 16.66 ± 25.86 14.4 ± 6.55 12.27 ± 13.46 11.02 ± 10.52 6.65 ± 5.98 5.25 ± 3.90
30 24.52 ± 12.85 17.66 ± 28.8 18.55 ± 22.19 16.35 ± 15.52 12.52 ± 12.05 11.24 ± 9.25 10.62 ± 9.44
40 31.23 ± 26.22 20.00 ± 26.45 30.05 ± 11.55 14.44 ± 25.01 19.25 ± 20.01 17.40 ± 10.53 14.05 ± 8.92
50 36.23 ± 21.22 38.44 ± 22.19 32.21 ± 10.25 27.45 ± 18.25 27.25 ± 12.22 23.22 ± 6.52 16.33 ± 7.58

MNIST 3

5 7.25 ± 2.15 7.15 ± 7.71 7.51 ± 7.22 5.90 ± 5.34 5.55 ± 1.98 2.6 ± 1.35 1.49 ± 0.95
10 9.35 ± 6.35 12.14 ± 11.09 10.05 ± 8.09 9.25 ± 2.94 9.12 ± 2.55 7.65 ± 5.04 4.40 ± 3.11
15 20.04 ± 9.45 17.35 ± 10.12 12.05 ± 9.02 12.43 ± 5.32 10.02 ± 5.37 9.56 ± 7.85 7.12 ± 4.67
20 27.46 ± 9.14 21.56 ± 10.43 27.21 ± 9.12 19.56 ± 12.21 14.29 ± 7.34 11.25 ± 6.04 7.85 ± 5.45
30 25.92 ± 16.05 25.00 ± 12.36 21.73 ± 12.58 22.93 ± 8.46 19.23 ± 7.37 18.63 ± 8.98 15.22 ± 10.33
40 43.86 ± 13.71 26.80 ± 19.55 38.09 ± 9.25 29.19 ± 8.65 29.23 ± 11.45 25.52 ± 13.14 21.35 ± 10.25
50 44.14 ± 17.39 46.83 ± 20.24 45.50 ± 10.21 35.20 ± 15.67 35.45 ± 10.65 31.25 ± 9.58 28.45 ± 12.45
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Figure 4. Illustrated noise-removed images achieved using proposed method from UCSD dataset (a–g) and Coil20 dataset
(h–k) for various levels of sparse noise. The sparse noise levels are indicated on the top of each input image. First row:
original input image, second row: images that have been corrupted by various levels of sparse noise, third row: eliminated
sparse noise content from each image, fourth row: noise-removed images.



J. Imaging 2021, 7, 279 14 of 20

0 10 20 30 40 50

 Data with sparse noise content shown in percentage (%)

0.5

0.6

0.7

0.8

0.9

1

P
u
ri

ty

Proposed

BR
R

WTNN

WTNN

SCLRSmC

SLRSmC

SSmC

Spectral

(a) Purity metric for Coil20 Dataset

0 10 20 30 40 50

 Data with sparse noise content shown in percentage (%)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

I

Proposed

BR
R

WTNN

WTNN

SCLRSmC

SLRSmC

SSmC

Spectral

(b) NMI metric for Coil20 Dataset

5% 10% 15% 20% 30% 40% 50%

Data with sparse noise content shown in percentage (%)

0

0.2

0.4

0.6

0.8

1

A
R

I

Proposed

BR
R

WTNN

WTNN

SCLRSmC

SLRSmC

SSmC

Spectral

(c) ARI metric for Coil20 Dataset

0 10 20 30 40 50

 Data with sparse noise content shown in percentage (%)

0.5

0.6

0.7

0.8

0.9

1

P
u
ri

ty

Proposed

BR
R

WTNN

WTNN

SCLRSmC

SLRSmC

SSmC

Spectral

(d) Purity metric for UCSD Dataset

0 10 20 30 40 50

 Data with sparse noise content shown in percentage (%)

0.4

0.5

0.6

0.7

0.8

0.9

1

N
M

I

Proposed

BR
R

WTNN

WTNN

SCLRSmC

SLRSmC

SSmC

Spectral

(e) NMI metric for UCSD Dataset

5% 10% 15% 20% 30% 40% 50%

Data with sparse noise content shown in percentage (%)

0

0.2

0.4

0.6

0.8

1

A
R

I

Proposed

BR
R

WTNN

WTNN

SCLRSmC

SLRSmC

SSmC

Spectral

(f) ARI metric for UCSD Dataset

Figure 5. Quantitative comparison of purity, NMI and ARI metrics of the proposed method and state-of-the art algorithms
under various levels of sparse noise using Coil20 and UCSD datasets.

To summarize, the proposed approach performs well and provides good clustering
results, even with noise-corrupted data for these three datasets. Furthermore, it outper-
forms all of the clustering algorithms that we compare in this work throughout every case.
The reasons for the improved performance are as follows: first, the proposed algorithm
is a unified optimization framework that clusters imaging data while also eliminating
noise from images. Furthermore, l 1

2
induced TNN, incorporated into the proposed method,

provides better low rankness and maintains the self-expressiveness property of submod-
ules. Second, the proposed method’s optimization equation demonstrates the benefit of l 1

2
regularization in providing better submodule identification. Finally, the simultaneous noise
removal reduces the impact of noise on the clustering performance and provides clean
data for further clustering. No other methods in the state of the art have a simultaneous
noise reduction scheme in their optimization problem for extracting the noise content
from individual images. In most of the approaches, a global error term is used in their
optimization problems to reduce the effect of noise when clustering. However, it is just a
partial solution that cannot be applied to all cases. On the other hand, the proposed method
handles individual images in the dataset and removes the noise content simultaneously,
which is the major contribution of the proposed method.

4.1. Analysis of the Proposed Method with Gaussian Noise and Salt and Pepper Noise

In order to further analyze the robustness of the proposed system, experiments were
conducted on imaging data that were distorted by different types of noise [49,50]. For
this study, we used Coil20 and UCSD datasets, and two cases were considered. In case
I, images that are corrupted by salt and pepper noise were considered. Salt and pepper
noise is a type of impulse noise, where the noise values include two extreme ranges of a
pixel value [28]. In one study, an impulse noise removal algorithm based on the sparse
and low rank decomposition method was proposed in which impulse noise types were
modeled as sparse components and the underlying image was restored with keeping
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the original features [28]. In this work, salt and pepper noise of various noise densities
(d) were added. The noise density level considered are d = 0.03 to 0.3. In the presence
of salt and pepper noise, it was observed that the proposed method provides improved
clustering performance as well as restoring the clean image with removed noise content.
To substantiate, a few of the recovered images from the UCSD dataset are displayed in
Figure 6. In this, the first row represents the original images, the second row denotes the
noise corrupted images of various noise densities and the last row represents the recovered
images. Further, the MCR metrics under salt and pepper noise are presented in Case I of
Table 2. Similarly, purity and ARI metrics of our method and the compared methods for
UCSD dataset are shown in Figure 7a and Figure 7b, respectively. In all cases, the proposed
method outperforms the state-of-the-art algorithms that we compared.

In case II, images corrupted by Gaussian noise were used. Gaussian noise in images is
most common when the lighting is low or the temperature is high [27]. This can happen
at any time during the capture or transmission process. In analysis, the noise variances
considered are σ2

n = 0.005, σ2
n = 0.01, σ2

n = 0.02, σ2
n = 0.03, σ2

n = 0.05, σ2
n = 0.07 and

σ2
n = 0.1. Case II in Table 2 summarizes the MCR metrics of the proposed method and the

compared methods. Figure 7c,d shows the compared results of purity and ARI metrics,
respectively. The obtained images of the proposed method under Gaussian noise are shown
in the last four columns of Figure 6. For noise variances up to σ2

n = 0.03, our method
successfully recovers the noise-free images, but for noise variance values of σ2

n = 0.05 or
more, the recovered images have an over-smoothing problem. However, by fine-tuning the
regularization parameters, this issue can be mitigated to a certain extent. Nonetheless, the
compared methods generate inadequate clustering performance under the same scenarios.
The second-best performance is achieved by the RLRTAl 1

2
R approach. Then, WTNN

performs reasonably to an extent for lower noise variances, but the results are deteriorated
for higher noise values. In comparison to the above methods, the other methods do
not perform as well. Hence, in the presence of Gaussian noise at different noise levels,
the proposed method performs well and outperforms state-of-the-art clustering methods
in general.
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Figure 6. Noise-removed images achieved using proposed method from UCSD and Coil20 datasets for various levels of salt
and pepper and Gaussian noise. The noise levels of salt and pepper noise and Gaussian noise are indicated on the top of
each input image. First row: original input image, second row: images that have been corrupted by various levels of salt
and pepper and Gaussian noise, third row: noise-removed images.
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Figure 7. Quantitative Comparison (a,b): purity metric and ARI metric for UCSD dataset for various levels of salt and
pepper noise. (c,d): purity metric and ARI metric for Coil20 dataset for various levels of Gaussian noise. of purity and ARI
metrics of the proposed method and state-of-the art algorithms under salt and pepper noise (d) and Gaussian noise (σ2

n).

4.2. Parameter Tuning and Convergence Analysis

The sensitivity analysis of all regularization parameters against the evolution metrics
NMI and ARI, and the convergence of the proposed algorithm are discussed in this section.
The parameters λ3 and λ4 are tuned manually to obtain the best results from the range
of (0.2–2.1). Figure 8b,c illustrates graphs of the two metrics, NMI and ARI, with these
regularization parameters. The graphs show that the proposed method provides good
evaluation scores for λ3 within the range of 0.70–1.5 and λ4 in 0.25–0.95. The optimal
values for the proposed method are found to be λ3 = 1.15 and λ4 = 0.65 within this
range. However, to obtain good evaluation scores and visual quality when using different
datasets, minor variations can be allowed in these values. Similarly, the parameters λ1
and λ2 balance the effect the submodule structure constraint term and representation error
term, respectively. The optimal values for λ1 and λ2 are identified as λ1 = 4.5× 10−3 and
λ2 = 7.5× 10−3. The sensitivity analysis of λ1 and λ2 with respect to the ARI metric is
shown in Figure 8a.
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Table 2. Compared results of MCR (m± σ)% metrics using Coil20 and UCSD datasets under various levels of salt and
pepper and Gaussian noise. For salt and pepper noise, noise density d and for Gaussian noise, noise variance σ2

n are added.
Best values are highlighted in bold letters.

Noise
Levels Spectral [16] SSmC [20] SLRSmC [21] SCLRSmC [19] WTNN [23] RLRTAl 1

2
R [24] Proposed

Case I: Salt and Pepper Noise (d)

UCSD

0.03 4.07 ± 5.25 3.95 ± 1.95 3.25 ± 1.04 2.53 ± 1.32 2.04 ± 1.66 1.95 ± 1.45 0.55 ± 0.64
0.05 4.20 ± 7.33 4.41 ± 2.36 3.50 ± 1.68 3.85 ± 1.27 2.32 ± 2.5 2.45 ± 1.80 0.60 ± 1.15
0.1 7.88 ± 5.60 8.45 ± 3.66 5.50 ± 7.22 6.55 ± 4.85 5.25 ± 7.05 3.05 ± 2.45 1.11 ± 1.80
0.2 11.32 ± 4.25 10.50 ± 7.45 11.25 ± 9.38 9.28 ± 6.68 5.38 ± 2.16 6.20 ± 2.56 1.60 ± 1.55
0.3 13.20 ± 7.85 11.75 ± 8.29 31.25 ± 8.67 12.12 ± 7.46 9.05 ± 10.12 8.75 ± 9.55 3.02 ± 4.54

Case II: Gaussian Noise (σ2
n)

Coil20

0.005 3.11 ± 2.42 2.25 ± 3.56 3.04 ± 1.80 2.75 ± 1.04 2.5 ± 1.02 2.5 ± 1.35 1.13 ± 0.95
0.01 9.85 ± 2.85 3.80 ± 7.25 4.57 ± 7.64 3.56 ± 5.83 3.52 ± 5.56 3.05 ± 4.82 1.45 ± 2.09
0.02 12.52 ± 9.50 13.22 ± 9.42 10.15 ± 10.50 9.22 ± 9.23 9.52 ± 7.45 5.52 ± 8.52 4.21 ± 6.52
0.03 18.47 ± 9.35 18.08 ± 6.24 15.45 ± 9.50 11.05 ± 7.15 10.50 ± 5.53 8.25 ± 6.40 6.16 ± 5.05
0.05 18.03 ± 11.51 15.80 ± 10.65 16.74 ± 14.44 13.80 ± 7.42 12.36 ± 9.27 9.54 ± 9.31 6.27 ± 5.38
0.10 23.03 ± 11.51 21.65 ± 10.11 20.33 ± 12.44 19.21 ± 17.52 15.05 ± 11.22 11.80 ± 10.02 9.03 ± 8.47

Similarly, the proposed algorithm has a high convergence rate and converges quickly
within 10–20 iterations. The proposed method’s convergence curves with the metrics NMI
and MCR (with mean value m) are plotted in Figure 9a,b, respectively. The plots show
that as the number of iterations increases, the change in NMI and MCR values converges
to zero. In addition, Table 3 shows the execution time required for the proposed method,
compared to the existing methods. Since the proposed algorithm employs l 1

2
regularization

and l 1
2

induced TNN, their solutions are to be computed iteratively. Furthermore, the
proposed method employs nuclear and l1 norm minimization for the simultaneous noise
removal of every image in the dataset. Therefore, an additional reasonable amount of time
is consumed by the proposed method. This marginal increase in computational time can,
however, be offset by the use of high-performance computing stations. In addition, the
proposed method has six subproblems and four multipliers to update, as presented in
Algorithm 2. In the proposed method, l 1

2
induced TNN, nuclear and l1 norm minimization

need more computational requirements. T ∈ Rn1×n3×N update involves nuclear norm
minimization on each slice, which requires O( 1

2 Nn1n2
3) operations. In S update, where

S ∈ Rn1×n3×N , it requires O(Nn1n3) operations. Finally, C ∈ RN×N×n3 update requires
O(N2n3log2n3 +

1
2 n3N2) operations. Therefore, the total computational complexity of the

proposed method is given by O(T(N2n3log2n3 +
1
2 n3N2 + 1

2 Nn1n2
3 + Nn1n3)) operations,

where T represents the number of iterations. Hence, the proposed method offers moderate
computational complexity.

(a) Sensitivity analysis of λ1 and λ2 (b) Sensitivity analysis of λ3 and λ4 (c) Sensitivity analysis of λ3 and λ4

Figure 8. Sensitivity analysis of the proposed method with the evaluation metrics NMI and ARI. (a) Sensitivity analysis of
λ1 and λ2 with ARI metric using Coil20 dataset, (b) Sensitivity analysis of λ3 and λ4 with NMI metric using Coil20 dataset.
(c) Sensitivity analysis of λ3 and λ4 with ARI metric using UCSD dataset.
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Figure 9. Convergence analysis of the proposed method. (a) Convergence analysis of the proposed
method with NMI metric using UCSD dataset, (b) Convergence analysis of the proposed method
with MCR (m) metric using Coil20 dataset.

Table 3. Execution time comparison of algorithms.

Execution Time Comparison (Sec)

Coil20 MNIST UCSD

Spectral [16] 8.7 6.5 9.1
SSmC [20] 9.2 8.4 10.3
SLRSmC [21] 14.9 13.7 17.5
SCLRSmC [19] 17.8 16.7 21.4
WTNN [23] 21.6 19.2 24.3
RLRTAl 1

2
R [24] 20.5 14.2 21.8

Proposed 26.5 22.1 29.5

5. Conclusions

This paper proposes a robust tensor-based low rank submodule clustering technique
for 2D imaging data with enhanced clustering capability. Traditional clustering methods
treat images as vectors, but the proposed method treats them as lateral slices of a third
order tensor, which aids in preserving the spatial information of the imaging data. The
proposed optimization problem incorporates l 1

2
induced TNN and l 1

2
regularization, which

facilitates achieving a more accurate low tensor rank approximation and submodule
segmentation. Unlike existing clustering techniques, the proposed method incorporates
a simultaneous noise reduction scheme by applying the principles of sparse and low
rank decomposition techniques to each individual noise corrupted image in the dataset.
Afterwards, the noise content is removed, and the underlying clean images are provided
for further clustering. The proposed method is compared to state-of-the-art clustering
algorithms. The experimental results show that the proposed method outperforms existing
state-of-the-art clustering algorithms in terms of NMI, MCR and purity metrics.
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44. Ghimpeţeanu, G.; Batard, T.; Bertalmío, M.; Levine, S. A decomposition framework for image denoising algorithms. IEEE Trans.

Image Process. 2015, 25, 388–399. [CrossRef]
45. Li, H.; He, X.; Yu, Z.; Luo, J. Noise-robust image fusion with low-rank sparse decomposition guided by external patch prior. Inf.

Sci. 2020, 523, 14–37. [CrossRef]
46. Hu, W.; Tao, D.; Zhang, W.; Xie, Y.; Yang, Y. The Twist Tensor Nuclear Norm for Video Completion. IEEE Trans. Neural Networks

Learn. Syst. 2017, 28, 2961–2973. [CrossRef] [PubMed]
47. Nocedal, J.; Wright, S. Numerical Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006.
48. Cai, J.F.; Candès, E.J.; Shen, Z. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20, 1956–1982.

[CrossRef]
49. Zeng, H.; Xie, X.; Cui, H.; Yin, H.; Ning, J. Hyperspectral Image Restoration via Global L1-2 Spatial–Spectral Total Variation

Regularized Local Low-Rank Tensor Recovery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3309–3325. [CrossRef]
50. Sheng, J.; Lv, G.; Xue, Z.; Wu, L.; Feng, Q. Mixed Noise Removal by Bilateral Weighted Sparse Representation. Circuits Syst.

Signal Process. 2021, 40, 4490–4515. [CrossRef]

http://dx.doi.org/10.1109/TCYB.2020.2968750
http://dx.doi.org/10.1109/TCSVT.2015.2416631
http://dx.doi.org/10.1137/130905010
http://dx.doi.org/10.1016/j.ins.2017.02.044
http://dx.doi.org/10.1109/TNNLS.2018.2851444
http://dx.doi.org/10.1109/TNNLS.2014.2306063
http://www.ncbi.nlm.nih.gov/pubmed/25420240
http://dx.doi.org/10.1007/s11063-018-9783-y
http://dx.doi.org/10.1007/s00041-008-9045-x
http://dx.doi.org/10.1109/TCYB.2019.2921827
http://www.ncbi.nlm.nih.gov/pubmed/31251208
http://dx.doi.org/10.1109/TSP.2014.2309076
http://dx.doi.org/10.1109/TIP.2015.2498413
http://dx.doi.org/10.1016/j.ins.2020.03.009
http://dx.doi.org/10.1109/TNNLS.2016.2611525
http://www.ncbi.nlm.nih.gov/pubmed/27705868
http://dx.doi.org/10.1137/080738970
http://dx.doi.org/10.1109/TGRS.2020.3007945
http://dx.doi.org/10.1007/s00034-021-01677-x

	Introduction
	Technical Background
	Sparse and Low Rank Matrix Decomposition 
	Self-Expressiveness Property of Submodules

	Proposed Method
	Results and Discussions
	Analysis of the Proposed Method with Gaussian Noise and Salt and Pepper Noise 
	Parameter Tuning and Convergence Analysis 

	Conclusions
	References

