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Requirement of Peptidyl-Prolyl
Cis/Trans isomerases and
chaperones for cellular uptake
of bacterial AB-type toxins

Katharina Ernst*

Institute of Pharmacology and Toxicology, Ulm University Medical Center, Ulm, Germany
Bacterial AB-type toxins are proteins released by the producing bacteria and

are the causative agents for several severe diseases including cholera,

whooping cough, diphtheria or enteric diseases. Their unique AB-type

structure enables their uptake into mammalian cells via sophisticated

mechanisms exploiting cellular uptake and transport pathways. The binding/

translocation B-subunit facilitates binding of the toxin to a specific receptor on

the cell surface. This is followed by receptor-mediated endocytosis. Then the

enzymatically active A-subunit either escapes from endosomes in a pH-

dependent manner or the toxin is further transported through the Golgi to

the endoplasmic reticulum from where the A-subunit translocates into the

cytosol. In the cytosol, the A-subunits enzymatically modify a specific substrate

which leads to cellular reactions resulting in clinical symptoms that can be life-

threatening. Both intracellular uptake routes require the A-subunit to unfold to

either fit through a pore formed by the B-subunit into the endosomal

membrane or to be recognized by the ER-associated degradation pathway.

This led to the hypothesis that folding helper enzymes such as chaperones and

peptidyl-prolyl cis/trans isomerases are required to assist the translocation of

the A-subunit into the cytosol and/or facilitate their refolding into an

enzymatically active conformation. This review article gives an overview

about the role of heat shock proteins Hsp90 and Hsp70 as well as of

peptidyl-prolyl cis/trans isomerases of the cyclophilin and FK506 binding

protein families during uptake of bacterial AB-type toxins with a focus on

clostridial binary toxins Clostridium botulinum C2 toxin, Clostridium

perfringens iota toxin, Clostridioides difficile CDT toxin, as well as diphtheria

toxin, pertussis toxin and cholera toxin.
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Introduction

Bacterial protein toxins cause several severe diseases,

including botulism, cholera or whooping cough. These

proteins are crucial virulence factors inducing characteristic

cellular effects and thereby causing the typical toxin-associated

clinical symptoms in humans or animals. A subgroup of

bacterial protein toxins, the AB-type toxins, are secreted by

the producing bacteria and therefore act independently from the

bacteria. Moreover, AB-type toxins display a characteristic

subunit structure and organization. They consist of two

functional domains: an enzyme domain (A-domain) that

exhibits enzymatic activity and a binding/translocation domain

(B-domain) facilitating toxin binding to a cellular receptor as

well as translocation of the enzyme domain into the cytosol.

Therefore, these toxins act intracellular as enzymes and display

high substrate specificity as well as outstanding potency.

Due to their structure, AB-type toxins are divided into

single-chain, binary and AB5-type toxins (Figure 1). In single-

chain toxins, such as the diphtheria toxin (DT), the A- and B-

domain are located on one single protein (Collier, 1975). In

binary toxins the two domains are located on two non-linked

proteins called components. The Clostridium (C.) botulinum C2

toxin (Ohishi, 1983a; Ohishi, 1983b), the C. perfringens iota

toxin (Stiles and Wilkins, 1986) and the Clostridioides (C.)

difficile CDT toxin (Perelle et al., 1997) are constructed in a

binary manner. Only if both, the A- and B-component, are

present, the formed holotoxin elicits cytotoxicity on the target

cell. AB5 toxins such as the Bordetella (B.) pertussis toxin (PT) or

the Vibrio (V.) cholerae cholera toxin (CT) consist of one

A-subunit and five B-subunits secreted by the bacteria as a
Frontiers in Cellular and Infection Microbiology 02
non-covalently linked holotoxin (Hirst and Holmgren, 1987;

Stein et al., 1994).

AB-type toxins have a sophisticated uptake mechanism to

enter the target cell cytosol. Due to the different intracellular

trafficking routes, AB-type toxins are distinguished in short- and

long-trip toxins (Figure 2). Short-trip toxins, including DT or

clostridial binary toxins, enter cells via receptor-mediated

endocytosis. Acidification of these toxin-loaded endosomes

leads to conformational changes of the toxin. The binding/

translocation subunit inserts hydrophobic regions into the

endosomal membrane, thereby facilitating the translocation of

the enzyme domain into the cytosol. After receptor-mediated

endocytosis, long-trip toxins, including PT and CT, are

transported retrogradely from endosomes through the Golgi

apparatus to the endoplasmic reticulum (ER). Their enzymes

subunits are translocated from the ER to the cytosol.

AB-type toxins display different enzymatic activities such as

protease (e.g. botulinum and tetanus neurotoxins) or

glucosyltransferase (e.g. Clostridioides difficile TcdA and TcdB)

activities. Many medically relevant toxins such as DT, PT, CT

and binary clostridial toxins are ADP-ribosyltransferases which

covalently transfer an ADP-ribose moiety from their co-

substrate NAD+ to their specific substrates. The substrates of

ADP-ribosyltransferases include amongst other the elongation

factor 2, substrate of DT, a-subunits of inhibitory G proteins

(Gai), substrate of PT, a-subunits of stimulatory G proteins

(Gas), substrate of CT and G-actin, substrate of clostridial

binary toxins. Modification of these substrates leads to specific

cellular effects resulting in the respective clinical symptoms.

During the last years, it was shown that several AB-type

toxins rely on the activity of host cell peptidyl-prolyl cis/trans
FIGURE 1

Different structures of bacterial AB-type toxins. Single-chain toxins consist of one single polypeptide chain and both domains, A-and B-domain,
are located on this protein. For DT, the binding/transport B-domain can be subdivided in two further functional domains. The R-domain is
responsible for receptor-binding and the T-domain is required for translocating the enzyme domain into the cytosol. Binary toxins express their
functional domains on two separate proteins, then called A- and B-components. In solution or at the cell surface, seven B-components form a
ring-shaped homooligomer to which the A- component binds. AB5-toxins such as CT or PT consist of one A-subunit and five B- subunits. The
B-subunits form homo- (CT) or hetero- (PT) oligomers which non-covalently interact with the A-subunit. In contrast to binary toxins, formation
of the AB5-holotoxin takes place in the periplasm of the producing bacteria, i.e. before the toxin is secreted.
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isomerases (PPIases) as well as chaperones of the heat shock

protein family for their cellular uptake in particular to facilitate

the translocation of their enzyme subunits from cellular

compartments such as endosomes into the cytosol (Ernst

et al., 2017b). In this review the requirement and role of

PPIases and chaperones for the cellular uptake of AB-type

toxins are described.
Host cell PPIases and chaperones

Molecular chaperones are essential to eukaryotic cells

because they enable protein homeostasis, which means

maintaining the integrity of the cellular protein network. In

this context the ability to adapt to changing environmental

conditions is of great importance. To this end, chaperones not

only interact and facilitate the correct folding of newly

synthesized proteins but also help to avoid aggregation of

proteins especially under stress conditions such as increases in

temperature. This review focuses on two protein families that are

involved in protein folding: heat shock proteins (Hsps) and
Frontiers in Cellular and Infection Microbiology 03
peptidyl-prolyl cis/trans isomerases (PPIases). Notably, an

interplay of Hsps and PPIases has been shown, for example

for the activation and folding of steroid hormone receptors

(Pratt and Toft, 1997). The role of the heat shock proteins

Hsp90 and Hsp70 as well as of PPIases of the cyclophilin (Cyp)

and FK506 binding protein (FKBP) families for the uptake of

several bacterial AB-type toxins was investigated during the last

years (Ernst et al., 2017b). Therefore, the use of specific

pharmacological inhibitors of these chaperones and PPIases

was crucial to determine their requirement for toxin

uptake (Figure 3).
Hsp90 and Hsp70

Molecular chaperones act as buffers against changing

environmental conditions such as temperature increases which

originates the name heat shock proteins (Ritossa, 1996). However,

Hsp90 is not only expressed under heat shock conditions but is

one of the most abundant proteins in the cytosol under

physiological conditions (Schopf et al., 2017). As a highly
FIGURE 2

Uptake and intracellular routes of bacterial AB-type toxins. Long-trip toxins that for example comprise the AB5-toxins pertussis and cholera
toxins (exemplarily depicted in this figure), bind to a cellular receptor via their B-subunits. After receptor-mediated endocytosis, long-trip toxins
travel through the Golgi to the ER. Here, the enzyme subunit is released, unfolds and is transported via the ER-associated degradation (ERAD)
pathway into the cytosol. Short-trip toxins, including amongst others clostridial binary toxins (exemplarily depicted in this figure) and diphtheria
toxin, also bind to a receptor on the cell surface followed by receptor-mediated endocytosis. Acidification of endosomes leads to pore
formation of the B-subunit due to conformational changes and unfolding of the A-subunit. The enzyme subunit translocates through the pores
into the cytosol of cells. Here, long- and short-trip toxins enzymatically modify their specific substrates causing cellular effects and thereby
clinical symptoms of the respective disease (Barth et al., 2004; Wernick et al., 2010; Barth and Ernst, 2016; Teter, 2019).
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conserved protein, it is involved in various processes in the cell

such as stress response, cell cycle control and survival, as well as

hormone signaling. Confirming the correct conformation and

activation of proteins is a key function of Hsp90. Hundreds of

Hsp90 substrate proteins, also called clients, are known (Biebl and

Buchner, 2019). Hsp90 contains three functional domains. The C-

terminal dimerization site is responsible for formation of Hsp90

homodimers (Pearl and Prodromou, 2000). The middle domain

connects to the N-terminal nucleotide binding domain which

binds ATP resulting in a closed conformation of the Hsp90 dimer.

ATP hydrolysis by an intrinsic ATPase activity facilitates

conformational changes of the client protein and release of the

folded client (Biebl and Buchner, 2019). Hsp90 often interacts

with various co-chaperones that influence the processed clients as

well as regulate the ATPase activity. An MEEVD-motif at the

dimerization domain allows the interaction of Hsp90 with co-

chaperones that contain tetratricopeptide repeat (TPR) domains.

These co-chaperones include Hsp70 Cyp40, FKBP51 or FKBP52

(Ratajczak and Carrello, 1996). Thereby, an Hsp90 machinery is

formed which facilitates the folding and activation in a stepwise

cycle that is best investigated for the steroid hormone receptors as

client proteins (Pratt and Toft, 2003; Biebl and Buchner, 2019).

Since Hsp90 is involved in diseases such as cancer, viral infections

or neurodegenerative diseases, pharmacological targeting of

Hsp90 activity was investigated in the last years. Inhibitors such

as radicicol (Rad) or geldanamycin (GA) bind selectively to the

Hsp90 ATP-binding pocket and thereby inhibit Hsp90 activity
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(Pratt and Toft, 2003; Biebl and Buchner, 2019). Although

derivates of Rad and GA tested in phase I and II clinical trials

were discontinued due to lack of efficacy at the tolerated doses,

these inhibitors are valuable tools to discover and unravel the role

of Hsp90 in cellular processes such as uptake of bacterial AB-type

toxins (Ernst et al., 2017b; Biebl and Buchner, 2019).

Another prominent member of the molecular chaperone

family and a co-chaperone of Hsp90 is Hsp70, an abundant,

highly conserved protein that is involved in a wide range of

cellular activities such as folding of newly synthesized proteins,

translocation of polypeptide chains into mitochondria or the ER

or prevention of aggregation and refolding of misfolded proteins

(Rosenzweig et al., 2019). Assistance of protein translocation

mostly occurs due to entropic pulling by Hsp70, which means

that Hsp70 binds the translocating protein very close to the

translocation pore. Thereby, the Brownian movement is limited,

and a one-way pulling motion is generated (Clerico et al., 2015;

Finka et al., 2015; Rosenzweig et al., 2019). A comparable

mechanism might be involved in Hsp70-assisted translocation

of bacterial AB-type toxins. Hsp70 encompasses four domains:

The N-terminal nucleotide binding domain, the substrate

binding domain, a helical lid domain and a disordered C-

terminal tail (Rosenzweig et al., 2019). ATP binding and

hydrolysis is crucial for Hsp70 function and is prevented by

the inhibitor VER-155008 (VER) (Williamson et al., 2009). The

substrate binding site of Hsp70 is inhibited by the 9-

aminoacridizinium derivative HA9, which also showed a

higher specificity for Hsp70 compared to its constitutive from

Hsc70 (Ernst et al., 2016; Ernst et al., 2017a). Another inhibitor

2-phenylethynesulfonamide (PES) was shown to inhibit Hsp70

chaperone activity without affecting its substrate binding site

(Schlecht et al., 2013). These pharmacological inhibitors were

crucial to investigate the involvement of Hsp70 during uptake of

bacterial AB-type toxins such as DT, PT or CT.
Cyclophilins and FKBPs

Cyps and FKBPs are PPIases that catalyze the cis/trans

isomerization of prolyl-bonds. This often represents a rate-

limiting step in protein folding. The highly conserved families of

Cyps and FKBPs comprise several isoforms with single- or

multidomain structures (Schiene-Fischer, 2015; Hähle et al.,

2019; Braun et al., 2022). The single-domain isoform FKBP12 as

well as CypA contain a single PPIase domain and are involved in

various cellular processes such as signal transduction or oxidative

stress response (Schiene-Fischer, 2015). Cyp40 as well as FKBP51

and FKBP52 represent multidomain isoforms that contain three

tetratricopeptide repeat (TPR) domains in addition to the PPIase

domain (Schiene-Fischer, 2015; Hähle et al., 2019). Thereby,

interactions with proteins containing an MEEVD motif such as

Hsp90 or Hsc70 are facilitated (Davis et al., 2010; Schiene-Fischer,

2015). Binding of Cyps or FKBPs to the Hsp90 machinery affects
FIGURE 3

The activity of chaperones and PPIases is inhibited by specific
pharmacological inhibitors in cells. Rad/GA and VER block the
ATPase activity of Hsp90 and Hsp70, respectively. HA9 inhibits
the substrate binding domain of Hsp70. PES inhibits Hsp70
chaperone activity. CsA and FK506 inhibit the PPIase activity of
Cyps and FKBPs, respectively. CsA and FK506 are licensed drugs
with immunosuppressive effects. VK112 and NIM811 are
derivatives of CsA that were specifically designed to still inhibit
the PPIase activity without immunosuppression which would be
desirable for a potential therapeutic option of Cyp-inhibition in
the context of an infection with toxin-producing bacteria
(Rosenwirth et al., 1994; Williamson et al., 2009; Prell et al.,
2013; Schlecht et al., 2013; Ernst et al., 2016; Biebl and Buchner,
2019; Hähle et al., 2019; Braun et al., 2022). (Rad, radicicol; GA,
geldanamycin; VER, VER-155008; PES, 2-
phenylethynesulfonamide; CsA, cyclosporine A; Cyps,
cyclophilins; FKBPs, FK506 binding protein).
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Hsp90 activity and was shown for the activation and folding of

steroid hormone receptors (Prodromou et al., 1999). The activity

of Cyps and FKBPs is inhibited by cyclosporine A (CsA) and

FK506, respectively. CsA and FK506 both mediate an

immunosuppressive effect because the complex of CsA-Cyps as

well as FK506-FKBPs binds to the protein phosphatase

calcineurin. Thereby, calcineurin is inhibited and no longer able

to dephosphorylate the transcription factor nuclear factor of

activated T-cell (NF-AT). NF-AT then remains in the cytosol

unable to promote the transcription of interleukins which results

in decreased T-lymphocyte activation (Liu et al., 1991; Braun et al.,

2022). FK506, also known as tacrolimus, and CsA are licensed

immunosuppressive drugs that are applied for example after

organ transplantation to prevent organ rejection. Comparable to

Hsp90 and Hsp70 inhibitors, CsA and FK506 were used to

investigate the role of Cyps and FKBPs during uptake of

bacterial AB-type toxins. Since CsA and FK506 are both

licensed drugs, novel derivatives that were specifically modified

to lack the immunosuppressive effect (see also 3.5) are of

particular interest as a potential basis for novel therapeutic

strategies against disease-causing toxins that depend on Cyps

and FKBPs for their cellular uptake.
Role of PPIases and chaperones
for the uptake of bacterial AB-
type toxins

To achieve their cytotoxic effects and thus to cause clinical

symptoms, AB-type employ a very elaborate uptake mechanism

that involves the step of membrane translocation either from

endosomes or other intracellular compartments such as the ER.

Therefore, the enzyme subunits of these toxins have to be

unfolded to fit through narrow translocation pores either

formed by the B-subunits of the toxin itself or by using

translocation pores of the ER. In the cytosol, the enzyme

subunits have to be refolded to achieve their native and active

conformation. Thus, the hypothesis was established that host cell

protein folding helper enzymes such as PPIases and heat shock

proteins are required to facilitate the directed translocation of

the enzyme subunits to the cytosol and to assist their refolding

into an active conformation. In the following, the role of PPIases

and heat shock proteins during cellular uptake of clostridial

binary toxins (see 3.1), DT (see 3.2), PT (see 3.3) and CT (see

3.4) is described in more detail.
Clostridial binary toxins

Clostridial binary toxins are short-trip toxins that

translocate their enzyme components from acidified

endosomes into the cytosol (Figures 1, 2). In the cytosol, the
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A-components enzymatically modify G-actin resulting in the

depolymerization of the actin cytoskeleton (Figure 4) (Barth

et al., 2004). The C. botulinum C2 toxin that represents the

prototype of this toxin family causes necrosis and hemorrhagic

lesions in the intestinal mucosa in animal experiments with mice

(Ohishi et al., 1980; Simpson, 1982; Ohishi, 1983a; Ohishi,

1983b). C2-induced fluid accumulation in the intestinal loop

of pheasants and chickens was also observed (Kurazono et al.,

1987). For C. perfringens iota toxin, enterotoxicity in livestock

such as lambs and calves was reported (Songer, 1996; Billington

et al., 1998). Iota toxin and C. difficile CDT toxin share a high

extent of sequence homology and their A- and B-components

are interchangeable (Perelle et al., 1997; Barth et al., 2004).

C. difficile is clinically highly relevant and causes antibiotic-

associated diarrhea as well as pseudomembranous colitis

(Kampouri et al., 2021). Increasing case numbers have been

observed during the last year, especially in North America and

Europe. In most cases, C. difficile infections are healthcare

associated and can lead to severe complications that are

associated with high mortality. Infections are treated with

specific antibiotics such as metronidazole, vancomycin or

fidaxomicin. However, 10-30 % of patients develop at least one

recurrence of disease and the risk for recurrence increases with

each episode (Leffler and Lamont, 2015; Kampouri et al., 2021).

The main virulence factors of C. difficile are the AB-type toxins

TcdA and TcdB that glucosylate Rho-GTPases thereby

disturbing Rho-dependent signaling pathways and resulting in

destruction of the actin cytoskeleton (Aktories et al., 2017).

Treatment with the monoclonal antibody bezlotoxumab

directed against TcdB in addition to antibiotic therapy has

been shown to reduce the risk of recurrence of C. difficile

infection. Significant benefits were especially observed in high

risk patients (e.g. age >65) (Johnson and Gerding, 2019).

Hypervirulent C. difficile strains that are associated with more

antibiotic resistances, increased production of TcdA and TcdB

and overall increased disease severity and mortality additionally

produce the CDT toxin (Aktories et al., 2018). Although the

precise role of CDT as a virulence factor is still under

investigation, it was shown that in addition to destruction of

the actin cytoskeleton, CDT induces long microtubule-based

protrusions in target cells. In a mice infection model, C. difficile

bacteria get caught in these protrusions thereby increasing

colonization of the bacteria in the gut (Schwan et al., 2009;

Schwan and Aktories, 2017). Moreover, CDT was demonstrated

to suppress protective colonic eosinophilia (Cowardin

et al., 2016).

Structures and cellular uptake mechanisms of C2, iota and

CDT toxins are widely comparable. CDT consists of the binding/

translocation component CDTb and the enzyme component

CDTa. After proteolytic activation, seven CDTb monomers

assemble to form a ring-shaped CDTb heptamer, also called

pre-pore (Anderson et al., 2020). The CDTb heptamer binds to a

specific receptor, the lipolysis-stimulated lipoprotein receptor
frontiersin.org
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(LSR), on the cell surface (Papatheodorou et al., 2011). The LSR

is also the specific receptor of the iota toxin (Nagahama et al.,

2018). Additionally, CD44 was identified as a co-receptor for

CDT (Wigelsworth et al., 2012). C2 toxin binds to carbohydrate

structures on the cell surface (Eckhardt et al., 2000). CDTa then

binds to the CDTb heptamer and after receptor-mediated

endocytosis, acidification of endosomes triggers translocation

of CDTa through a pore formed by the CDTb heptamer into the

cytosol (Sheedlo et al., 2020). A prerequisite for translocation is

the unfolding of CDTa to fit through the narrow CDTb-pore.

For C2 toxin, the inner diameter of the heptamer pore was

shown to be 2-3 nm (Schleberger et al., 2006). In the cytosol, the

clostridial enzyme components covalently transfer an ADP-

ribose moiety from their co-substrate NAD+ onto their specific

substrate monomeric actin (G-actin) (Figure 4) (Aktories et al.,

1986; Popoff et al., 1988; Schering et al., 1988; Gülke et al., 2001).

Interaction of ADP-ribosylated G-actin with the growing end of

filamentous actin (F-actin) is reduced due to steric hinderance

(Wegner and Aktories, 1988). At the other end of the actin

filament, release of G-actin is still ongoing. In the end, this

results in complete depolymerization of the actin cytoskeleton

and leads to rounding of cultured, adherent cells.

The first host cell chaperone that was identified to play a role

in toxin uptake was Hsp90. In 2003 it was shown for a diphtheria

fusion toxin as well as for the C2 toxin that Hsp90 was required

for the uptake of the toxin enzyme components into the cytosol

(Haug et al., 2003b; Ratts et al., 2003). Later, the requirement of

Hsp90 was also shown for iota and CDT toxin (Haug et al., 2004;
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Kaiser et al., 2011). The activity of Hsp90 in cells was inhibited

by the specific pharmacological inhibitors Rad and GA. Hsp90

inhibition significantly delayed the intoxication of cells with C2,

iota and CDT toxins (Haug et al., 2003a; Haug et al., 2004; Kaiser

et al., 2011). This was first shown by analyzing the toxin-induced

specific changes in cell morphology. Due to ADP-ribosylation of

G-actin, the cytoskeleton of cells is destroyed. This leads to a

characteristic cell rounding that can be observed in adherent

cells such as Vero, HeLa or CaCo-2 cells. Cells pre-incubated

with Hsp90 inhibitors prior to intoxication revealed less

rounded cells compared to samples treated with toxin only

(Haug et al., 2003a; Haug et al., 2004; Kaiser et al., 2011).

Hsp90 inhibitors also led to a reduced amount of ADP-

ribosylated G-actin in toxin-treated cells indicating inhibition

of intoxication. To unravel which step of toxin uptake and mode

of action requires the activity of Hsp90, a set of experiments was

performed with each experiment addressing single steps of the

uptake or mode of action. Thereby, it was shown that upon

Hsp90 inhibition less enzyme molecules reach the cytosol and

that specifically the translocation of the enzyme component

from endosomes to the cytosol is facilitated by Hsp90. Other

steps such as receptor-binding, endocytosis, or in vitro enzyme

activity were not affected by Hsp90 inhibitors (Haug et al.,

2003a; Haug et al., 2004; Kaiser et al., 2011).

Hsp90 is known to interact with other protein folding helper

enzymes in a concerted manner to facilitate protein folding.

Interaction of Hsp90 with for example Hsp70, Cyps and FKBPs

is mediated by the MEEVD motif in Hsp90 and the TPR regions

in the binding partners (Pratt and Toft, 1997; Biebl and Buchner,

2019). The reported concerted action of an Hsp90-

multichaperone complex led to the hypothesis that the uptake

of bacterial proteins might also rely on further co-chaperones in

addition to Hsp90. Accordingly, the requirement of Cyps and

FKBPs for translocation of C2 toxin and then for iota and CDT

toxin was shown (Kaiser et al., 2009; Kaiser et al., 2011; Kaiser

et al., 2012; Ernst et al., 2015). The activity of Cyps and FKBPs in

cells was inhibited by CsA and FK506, respectively. Inhibition of

Cyps and FKBPs also resulted in reduced amount of enzyme

components in the cytosol due to impairment of translocation

from endosomes. Like Rad, CsA and FK506 did not inhibit

receptor-binding, endocytosis, or enzyme activity in vitro

(Kaiser et al., 2009; Kaiser et al., 2011; Kaiser et al., 2012;

Ernst et al., 2015). Moreover, the protein-protein interaction

of the enzyme components with chaperones and PPIases was

investigated. This revealed a direct interaction of the enzyme

components of C2, iota and CDT toxin with Hsp90 and different

isoforms of Cyps and FKBPs. Co-precipitation, dot blot analysis

as well as isothermal titration calorimetry revealed the small

isoform CypA as well as the multi-domain isoform Cyp40 as

interaction partners. A dissociation constant of 1 µM was

determined for the interaction of C2I with Cyp40 (Ernst et al.,

2015). For the family of FKBPs, only multi-domain isoform

FKBP51 but not the small isoform FKBP12 showed binding to
FIGURE 4

ADP-ribosylation of G-actin by clostridial binary leads to
depolymerization of F-actin. The enzyme components of C2,
iota and CDT toxin, C2I, Ia and CDTa, respectively, covalently
transfer an ADP-ribose moiety from their co-substrate NAD+

onto their specific substrate monomeric actin (G-actin). If ADP-
ribosylated G-actin binds to an actin filament (F-actin) no
additional G-actin molecule can be attached because of steric
hinderance. Due to the dynamic structure of F-actin, the other
end of the filament continues to depolymerize thereby making
more G-actin molecules available for ADP-ribosylation by the
toxin enzymes. Therefore, in the end the complete actin
cytoskeleton is depolymerized and most of the G-actin is ADP-
ribosylated. In adherent cells, this leads to a characteristic cell
rounding that is used as a specific and highly sensitive readout
for intoxication in cells (Wegner and Aktories, 1988).
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the enzyme components of clostridial binary toxins (Kaiser

et al., 2012).

Another co-chaperone of Hsp90, Hsp70, was also shown to

be required for the translocation process of C2, iota and CDT

toxin enzyme components (Ernst et al., 2016; Ernst et al., 2017a).

By using different inhibitors of Hsp70, it was shown that both

the substrate binding domain, inhibited by the novel inhibitor

HA9, and the ATP-binding domain, inhibited by VER, are

required for uptake of C2, iota and CDT toxin. A direct

interaction of the enzyme components with Hsp70 as well as

with the constitutive form Hsc70 was demonstrated (Ernst et al.,

2016; Ernst et al., 2017a). Interestingly, the interaction of the

enzyme components with Hsp70, Hsc70 and also with FKBP51

and Cyp40 was enhanced when the enzyme components were

treated with guanidinium hydrochloride to induce their

denaturation (Kaiser et al., 2012; Ernst et al., 2015; Ernst et al.,

2016; Ernst et al., 2017a). During cellular uptake of the toxins,

the only time the enzyme components are in an unfolded

conformation is during the translocation from endosomes to

the cytosol. Therefore, enhanced interaction of the denatured i.e.

unfolded enzymes with chaperones and PPIases underlines their

requirement to facilitate this step of toxin uptake. So far, an

interaction was shown by in vitro protein-protein interaction

analysis such as dot blot or isothermal titration calorimetry.

With the fluorescence-based proximity ligation assay, it was

possible to show that the enzyme component C2I of C2 toxin is

in close proximity (max. 40 nm distance) with Hsp90, Hsp70,

Cyp40 and FKBP51 in cells (Ernst et al., 2017a; Ernst et al.,

2018b). This assay is based on immunofluorescence with an

internal signal amplification mechanism to overcome the

detection limit in fluorescence microscopy to visualize single

molecule interactions.

The importance of Hsp70 activity for the uptake of the C.

difficile CDT toxin was additionally demonstrated in a complex

human intestinal organoid model, so called miniguts (Ernst

et al., 2017a). Miniguts are derived from hair sheet

kera t inocyte cu l tures of hea l thy donors . Ce l lu lar

reprogramming results in induced pluripotent stem cells that

were differentiated into intestinal organoids. Miniguts

recapitulate basic characteristics of the human gut such as

crypt-like structures and a polarized intestinal epithelium with

epithelial as well as non-epithelial cell types e.g. goblet cells.

When treated with CDT toxin, miniguts lose their F-actin

structure due to ADP-ribosylation of G-actin (Ernst et al.,

2017a). Consequently, the integrity of miniguts is severely

compromised shown also by disorganization of the adhesion

protein E-cadherin. In the presence of the Hsp70 inhibitor VER,

F-actin, E-cadherin and the overall structure of miniguts was

more preserved and resembled more closely to the structure of

untreated control miniguts (Ernst et al., 2017a).

Since the requirement of Hsp90, Hsp70, Cyps and FKBPs for

uptake of clostridial binary toxins was shown (Figure 5), the

effect of simultaneous inhibitions of these host cell factors was
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investigated. Enhanced inhibition of intoxication of cells with

C2, iota or CDT toxin was observed if CsA and FK506 or CsA

and Rad were combined compared to application of the single

inhibitors (Kaiser et al., 2009; Kaiser et al., 2011; Kaiser et al.,

2012). Combination of all four inhibitors, Rad, VER, CsA and

FK506, resulted in an even stronger inhibition compared to the

single substances as well as to the combination of two or even

three inhibitors (Ernst et al., 2018b; Ernst et al., 2021b).

Moreover, by combining the inhibitors it was possible to

reduce the concentration of each inhibitor and still achieve a

protective effect against intoxication (Ernst et al., 2021b).

Taken together, it was shown that the clostridial binary

toxins C2, iota and CDT toxin require Hsp90, Hsp70, Cyps and

FKBPs for translocation of their enzyme components from

endosomes to the cytosol. Translocation through the pores

might be due to Brownian motion of the unfolded enzyme.

Binding of Hsps and PPIases to the enzyme components

probably causes a directed movement into the cytosol by

preventing the enzyme from sliding back into the endosomes

due to Brownian back-and-forth motion. Inhibition by specific

pharmacological inhibitors of Hsps and PPIases therefore

reduced the amount of enzyme components in the cytosol of

target cells and delayed intoxication. Moreover, Hsp70

inhibition also protected human miniguts from CDT-

intoxication. The current therapeutic strategy against C.

difficile associated diseases such as severe pseudomembranous

colitis comprises antibiotic treatment as well as a neutralizing

antibody against TcdB, one of the main virulence factors.

However, antibiotic resistance of C. difficile is an increasing

problem and infection with C. difficile reoccurs in ca. 30% of

patients (Kampouri et al., 2021). Therefore, additional strategies

targeting further toxins of C. difficile such as CDT toxin might be

beneficial for sustained curative treatment. Inhibition of Hsps or

PPIases to prevent cellular uptake of toxins and therefore cellular

effects might provide a basis for development of novel

therapeutic strategies to treat toxin-mediated diseases.
Diphtheria toxin

DT is produced by Corynebacterium diphtheriae colonizing

the upper respiratory tract and is the causative agent for the

disease diphtheria (Pappenheimer, 1977). DT is one of the best

characterized bacterial toxins and was first described in 1888

(Roux and Yersin, 1888). Fever, swollen glands, and sore throat

are symptoms of diphtheria. Moreover, formation of an

adherent membrane, the so-called pseudomembrane, impairs

breathing as well as swallowing. If the inflammation also affects

the nasal cavity and larynx, the obstruction of the airways can get

more severe resulting in dyspnea, suffocation and death. In

severe cases, DT is also distributed via the bloodstream which

then can cause myocarditis or neuropathy (Atkinson et al., 2007;

Ott et al., 2022). Before the introduction of a vaccination against
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diphtheria in the 1920s, children were mainly affected by the

disease with a high prevalence as well as mortality (English,

1985; Atkinson et al., 2007; Ott et al., 2022). Despite the

availability of a vaccination, diphtheria is not eradicated and

outbreaks still occurred recently, for example in Bangladesh,

Haiti or South Africa (Clarke et al., 2019; Ott et al., 2022).

Moreover, case numbers worldwide have been increasing during

the last years. Thus, C. diphtheriae is considered to be a re-

emerging pathogen (Ott et al., 2022). The current therapy

consists of antibiotics in combination with neutralizing

antibodies against circulating DT. Strategies to neutralize or

inhibit the already endocytosed DT are not available.

DT is a single chain AB-type toxin containing the

enzymatically active A-domain, DTA as well as the transport

domain DTB (Figure 1) (Collier and Kandel, 1971). DTB itself

comprises two functional domains. The receptor-binding

domain, R-domain, is responsible for binding to a specific

receptor, the heparin-binding epidermal growth factor-like

growth factor (HB-EGF) (Choe et al., 1992; Naglich et al.,

1992). The transmembrane T-domain of DTB is important for

the translocation of DTA into the cytosol. Recently, it was shown

that the T-domain also partly facilitates binding of DT to cells
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(Fellermann et al., 2020). A loop of 14 amino acids as well as a

disulfide bond connect DTA and DTB (Gill and Pappenheimer,

1971). As a short-trip toxin, DT is taken up by receptor-

mediated endocytosis and translocates its enzyme domain

from early acidified endosomes into the cytosol (Figure 2).

Furin proteases cleave DTA from DTB. However, in

endosomes, the domains are still connected by the disulfide

bond (Gill and Pappenheimer, 1971). Low endosomal pH causes

unfolding of the T-domain and its insertion into the endosomal

membrane thereby forming a membrane pore (Boquet et al.,

1976; Donovan et al., 1981; Kagan et al., 1981). DTA translocates

through the pore into the cytosol (Papini et al., 1993b; Papini

et al., 1993a; Lemichez et al., 1997) which requires at least partial

unfolding of DTA (Falnes et al., 1994; Falnes and Olsnes, 1995).

DTA is finally released after the reduction of the interchain

disulfide bond during or after translocation (Moskaug et al.,

1987; Papini et al., 1993b; Madshus, 1994; Schnell et al., 2015). In

the cytosol, DTA ADP-ribosylates the cytosolic elongation factor

2 (EF-2) (Collier and Cole, 1969; Pappenheimer, 1977). EF-2 is

required for protein synthesis in eukaryotic cells and ADP-

ribosylation leads to its inactivation. This causes an arrest in

chain elongation during protein translation, leading in the end to

cell death by apoptosis (Collier and Cole, 1969).

A functional role of Hsp90 for translocation of DTA into the

cytosol was first demonstrated in 2003 (Ratts et al., 2003).

Therefore, a fusion protein, DAB389IL-2, was used where the

receptor-binding domain was substituted for human

interleukin-2 (IL-2) to specifically target cells expressing IL-2

receptors (Ratts et al., 2003). A cytosolic translocation factor

complex was shown to be required for DTA translocation. By

applying mass spectrometry sequencing, Hsp90 as well as

thioredoxin reductase were identified from these protein

complexes. This protein complex containing Hsp90 was

required for translocation of DTA from partially purified

endosomal vesicles that were pre-loaded with DT. Further

studies were conducted with another fusion protein consisting

of the enzyme domain DTA fused to the N-terminal part of the

lethal factor which is the enzyme component of the binary

anthrax toxin (Dmochewitz et al., 2011). The N-terminus of

the lethal factor called LFN has no enzyme activity but still

interacts with its B-component, the protective antigen (PA).

Thereby, the resulting fusion protein, termed LFNDTA, can be

transported into cells via PA and then ADP-ribosylates the DT-

substrate EF-2. A direct interaction of LFNDTA or DTA with

Hsp90 and CypA was shown. Moreover, CsA and Rad inhibited

intoxication of cells with PA + LFNDTA as well as translocation

of LFNDTA into the cytosol demonstrating that Cyps and Hsp90

also facilitate the translocation of LFNDTA (Dmochewitz

et al., 2011).

Later it was shown that Hsp70, Cyps and FKBPs facilitate

the translocation of DTA into the cytosol besides Hsp90

(Schuster et al., 2017). Again, this was demonstrated by using

specific pharmacological inhibitors of chaperone and PPIase
FIGURE 5

The activity of Hsp90, Hsp70, Cyps and FKBPs is required for the
translocation of the enzyme components C2I, Ia and CDTa of
clostridial binary C2, Iota and CDT toxins, respectively. These
clostridial binary toxins are taken up via receptor-mediated
endocytosis. Acidification of endosomes leads to conformational
changes resulting in pore formation of the B-heptamer into the
endosomal membrane. The enzyme components are at least
partially unfolded and translocate through the narrow pore into
the cytosol. If the activity of Hsp90, Hsp70, Cyps or FKBPs is
inhibited by specific pharmacological inhibitors, less enzyme
molecules reach the cytosol and cells are protected from
intoxication (Haug et al., 2003a; Haug et al., 2004; Kaiser et al.,
2009; Kaiser et al., 2011; Kaiser et al., 2012; Ernst et al., 2015;
Ernst et al., 2016; Ernst et al., 2017a). (Cyps, cyclophilins; FKBPs,
FK506-binding proteins).
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activities which reduced morphological effects of intoxication,

the amount of ADP-ribosylated EF-2 as well as the amount of

DTA in the cytosol (Schuster et al., 2017). Enzyme activity of

DTA in vitro as well as binding of DT to cells was not affected by

chaperone/PPIases inhibitors. Direct evidence that chaperones/

PPIases facilitate the pH-dependent translocation of DTA was

given by mimicking the acidic endosomal conditions directly at

the cytoplasmic membrane. Therefore, binding of DT is allowed

at 4°C followed by a pulse with warm acidic medium. This leads

to translocation of DTA directly across the cytoplasmic

membrane, therefore bypassing other steps of intracellular

trafficking. Inhibition of Hsp90, Hsp70, Cyps or FKBPs

prevented translocation of DTA across the cytoplasmic

membrane (Schuster et al., 2017). A direct interaction of DTA

with different isoforms of chaperones and PPIases was shown

by dot blot analysis and co-precipitation. Here too, the

interaction was increased if DTA was denatured prior to dot

blot interaction analysis. Moreover, DTA interacted with

fragments of FKBPs that only contain the PPIase domain.

However, this interaction was weaker compared to the full-

length FKBPs indicating that other domains of the large FKBP

isoforms, FKBP51 and 52, are required for interaction with

DTA (Schuster et al., 2017).

Taken together, it was shown that DT requires the same set

of Hsps and PPIases as the clostridial binary toxins for

translocation of its enzyme domain into the cytosol. Inhibition

of Hsp90, Hsp70, Cyps or FKBPs resulted in a reduced amount

of DTA in the cytosol of target cells and delayed the intoxication

of cells with DT (Ratts et al., 2003; Dmochewitz et al., 2011;

Schuster et al., 2017)
Pertussis toxin

PT is a major virulence factor of B. pertussis and is secreted

during infection of the upper respiratory tract. The disease is

highly transmissible and characterized by severe paroxysmal

coughing typically lasting for several weeks. Complications such

as vomiting or pneumothorax or in more severe cases

pneumonia, seizures or apnea can occur. These complications

can be life-threatening especially in newborns and infants

(Mattoo and Cherry, 2005). A hallmark of severe infant

disease is leukocytosis, the rapid and unregulated increase in

circulating leukocytes. Leukocytosis is associated with PT

expression as well as with poor disease outcome and death. In

2014, the number of pertussis cases in children <5 years of age

was estimated at >24.1 million with 160,700 deaths worldwide by

the WHO (Yeung et al., 2017). Despite high vaccination rates,

especially in Western countries, case numbers increased during

the last years, reaching an all-time high since vaccination has

been introduced in the 1950s (Locht and Antoine, 2021).

Therapeutic options against pertussis symptoms are limited.

Antibiotic therapy is important to prevent further
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transmission but in most cases, is started too late to alleviate

patients from symptoms (Mattoo and Cherry, 2005).

As an AB5 toxin, PT consists of an enzymatically active A-

subunit, PTS1 and a non-covalently bound pentameric B-

subunit (Figure 1). The B-pentamer consists of subunits S2-5

with two molecules of S4 (Tamura et al., 1982). Assembly of the

AB5 holotoxin occurs in the periplasm of the bacteria. PT binds

to sialic acid structures that are present on many glycolipids and

glycoproteins as terminal carbohydrates (Witvliet et al., 1989).

After receptor-mediated endocytosis, PT takes a retrograde

route through the Golgi network to the ER (Figure 2) (Plaut

and Carbonetti, 2008). In the ER, binding of ATP to the central

pore of the B-pentamer leads to the release of PTS1 from the

holotoxin (Burns and Manclark, 1986; Hazes et al., 1996).

Released PTS1 is thermally unstable and unfolds thereby it is

recognized by the ER associated degradation pathway (ERAD)

(Pande et al., 2006; Banerjee et al., 2016). ERAD transports

unfolded or misfolded proteins through translocon pores into

the cytosol where they are degraded. In its unfolded, linear

conformation, PTS1 is a substrate for ERAD and can be

transported through the narrow membrane-spanning

translocon pore. Proteins transported through ERAD usually

undergo ubiquitinylation at lysine residues which marks them

for proteasomal degradation. The lack of lysine residues protects

PTS1 from subsequent ubiquitinylation and therefore

proteasomal degradation (Worthington and Carbonetti, 2007).

In the cytosol, PTS1 catalyzes the covalent transfer of an ADP-

ribose moiety from its co-substrate NAD+ onto the a-subunits
of inhibitory G proteins (Gai) of G protein coupled receptors

(GPCRs) (Katada and Ui, 1982; Bokoch et al., 1983). Gai is a
negative regulator of the adenylate cyclase. ADP-ribosylation

inhibits Gai and therefore leads to increased cAMP levels upon

receptor st imulat ion result ing in disturbed cAMP

signaling (Figure 6).

The uptake of PT also depends on the activity of host cell

factors Hsp90, Hsp70, Cyps and FKBPs (Figure 7) (Ernst et al.,

2018a; Kellner et al., 2019; Ernst et al., 2021a; Kellner et al.,

2021). Inhibition of these chaperones/PPIases in cells resulted in

a reduced amount of ADP-ribosylated Gai but had no effect on

enzyme activity in vitro i.e. ADP-ribosylation of recombinant

Gai by PTS1. Binding of PT to cells was not affected by the

inhibitors as well. To investigate if the inhibitors also prevented

PT-mediated effects on cAMP signaling, a novel bioassay, the

interference in Gai-mediated signal transduction (iGIST) assay,

was used (Paramonov et al., 2020; Ernst et al., 2021a). This assay

is based on HEK293 cells that expresses the somatostatin

receptor 2 (SSTR2), which is a Gai-coupled GPCR sensitive to

PT, together with a cAMP sensitive luciferase. Activation of

SSTR2 by the high affinity agonist octreotide counteracts a

simultaneous activation of the adenylate cyclase by its known

activator forskolin. This results in down-modulated cAMP

signaling that is detected by the intracellular cAMP sensitive

luciferase. Treatment of cells with PT leads to inactivation of Gai
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and in this case application of forskolin and octreotide result in

increased cAMP levels because the down-modulation induced

by SSTR2-activation is no longer possible (Paramonov et al.,

2020). Rad and VER effects could not be investigated because

they caused decreased cAMP levels on their own in this assay.

However, CsA and FK506 prevented the PT-mediated cAMP

increase in this kinetic bioassay (Ernst et al., 2021a).

In fluorescence microscopy experiments, chaperone/PPIase

inhibitors caused a reduced signal of PTS1 in cells compared to

cells treated with only PT suggesting that they interfere with the

uptake of PTS1 into the cytosol (Ernst et al., 2018a; Ernst et al.,

2021a). In another study, digitonin-based cell fractionation of

PT-treated cells was performed in the presence or absence of the

Hsp90 inhibitor geldanamycin (Kellner et al., 2019). This assay

allows the separation of cells in cytosol and membrane fractions.

PTS1 was detected in the cytosolic fractions by surface plasmon

resonance using an anti-PTS1 antibody. The results showed that

in the presence of geldanamycin less PTS1 is detected in the

cytosol of PT-treated cells. To confirm that Hsp90 facilitates the

translocation of PTS1 from the ER into the cytosol but does not

interfere with trafficking of PT to the ER, CHO cells were

transfected with a plasmid for expression of PTS1 directly in

the ER. Thereby other steps of intracellular uptake are bypassed

and the translocation of PTS1 into the cytosol can be analyzed in

an isolated manner. Here too, geldanamycin as well as CsA led to

a reduced amount of PTS1 in the cytosol of digitonin-

fractionated cells (Kellner et al., 2019; Kellner et al., 2021).

A direct interaction of PTS1 with Hsp90, Hsc/p70, the Cyp

isoforms CypA and Cyp40 as well as the FKBP isoforms FKBP51

and 52 but not FKBP12 were detected by dot blot assay (Ernst

et al., 2018a; Ernst et al., 2021a). Moreover, PTS1 showed a

reduced interaction with FKBP51/52 fragments only containing

the PPIase domain. This suggests that PTS1 not only interacts

with the PPIase domain but that other domains of the large

FKBP isoforms might be required. The proximity ligation assay

also revealed a close proximity of PTS1 with Cyp40, FKBP51,

Hsp70 and Hsp90 in cells. A strong and robust signal in this

assay was detected after 30 mins of pulse-chase incubation of

cells with PT which was still detectable after 24 or 48 h indicating

that the activity of chaperones/PPIases might not only be

required for translocation from the ER to the cytosol but for

continued stabilization of PTS1 in cytosol (Ernst et al., 2021a).

An inhibitory effect of CsA on the uptake of PTS1 into cells

of a primary human bronchial airway epithelium model was

shown (Ernst et al., 2021a). This airway epithelium is generated

from human primary basal cells differentiated into different cell

types such as ciliated and secretory cells that are grown at air-

liquid interface conditions. Application of PT to the airway

epithelium resulted in detection of PTS1 selectively in secretory

(CC10 or MUC5B positive) cells but not in ciliated (ß-IV-

tubulin positive) cells. Treatment of the airway epithelium

with CsA but not Rad or FK506 caused a reduced signal for

PTS1 in fluorescence microscopy experiments suggesting that
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uptake of PTS1 into the cytosol is also inhibited by CsA in this

human airway epithelium model (Ernst et al., 2021a).

Taken together, translocation of PTS1 into the cytosol of

target cells depends on the activity of Hsp90, Hsp70, Cyps and

FKBPs. Inhibition of these host cell factors protected cells

from PT-intoxication and resulted in reduced amounts of

PTS1 in the cytosol. The protective effect of Cyp-inhibition

was also shown in a primary human bronchial airway

epithelium model.
Cholera toxin

CT is one of the main virulence factors produced by V.

cholerae (Haan and Hirst, 2004; Sánchez and Holmgren, 2008)

and the causative agent for severe watery diarrhea that is

characteristic for cholera (Haan and Hirst, 2004; Sack et al.,

2004). The massive loss of water can be life-threatening. Without

treatment, death can occur within hours after the first symptoms

(Harris et al., 2012). According to the WHO position paper in

2017, an estimated 2.86 million cases of cholera occur annually

in endemic countries resulting in an estimated 95 000 deaths

(WHO position paper, 2017). Treatment against cholera consists

of replacing lost fluids and electrolytes and in severe cases

antibiotic treatment against the toxin-producing bacteria.

V. cholerae is spread via a direct fecal-oral contamination or

by ingestion of drinking water with fecal contaminations and

then colonizes the small intestine. Here, CT is secreted into the

intestinal lumen. As an AB5-toxin, CT consists offive B-subunits

that form ring-shaped oligomers (B-oligomer, CTB) and an A-

subunit that comprises the catalytic activity, CTA1, as well as a

helical linker CTA2 (Figure 1). CTA1 and CTA2 are expressed as

one polypeptide chain that is nicked post-translationally but still

linked by a disulfide bond. CTA2 interacts non-covalently with

the B-oligomer in the periplasm of the bacteria thereby forming

the AB5-holotoxin. CTB facilitates the binding to the cellular

receptor, GM1 gangliosides (Zhang et al., 1995; Haan and Hirst,

2004; Sánchez and Holmgren, 2008). Like PT, CT travels

retrogradely to the ER (Figure 2) (Wernick et al., 2010).

Reduction of the disulfide bond by protein disulfide isomerase

in the ER leads to the release of CTA1 from the holotoxin

(Majoul et al., 1997; Orlandi, 1997; Tsai et al., 2001; Taylor et al.,

2011b; Taylor et al., 2014). Released CTA1 spontaneously

unfolds under physiological temperature due to thermal

instability (Pande et al., 2007; Taylor et al., 2011a). Transport

to the cytosol occurs through the ERAD pathway and like PT,

CT contains no lysine residues thereby being protected from

ubiquitin-dependent degradation (Rodighiero et al., 2002; Teter

and Holmes, 2002; Teter et al., 2003; Massey et al., 2009;

Banerjee et al., 2010; Taylor et al., 2011a). In the cytosol,

CTA1 ADP-ribosylates the a-subunits of stimulatory G

proteins (Gas) of GPCRs thereby activating Gas (Figure 8).

This leads to a stimulation of the adenylate cyclase and therefore
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to a massive increase if intracellular cAMP which in turn

activates protein kinase A. Subsequently, protein kinase A

leads to opening of the chloride channel, cystic fibrosis

transmembrane regulator (CFTR). In enterocytes of the

intestine, this leads to chloride release into the intestinal

lumen which is followed by extensive water secretion and

therefore causes the watery diarrhea (Haan and Hirst, 2004;

Sánchez and Holmgren, 2008).

Also, for CT, a requirement of Hsp90 for translocation of its

enzyme subunit CTA1 from the ER to the cytosol was

demonstrated. The direct interaction of Hsp90 with CTA1 was

ATP-dependent and inhibited by the Hsp90-inhibitor

geldanamycin (Taylor et al., 2010). Interaction was analyzed at

37 °C degree suggesting that Hsp90 interacts with the unfolded

CTA1. Moreover, in cells treated with geldanamycin the CT-

mediated increase in cAMP was inhibited. If CTA1 was

expressed directly in the cytosol of cells, Hsp90 inhibition had

no effect on the cytopathic activity (Taylor et al., 2010). Knock-

down of Hsp90 strongly protected cells from CT-intoxication

demonstrating the crucial role of Hsp90 for the intoxication

process. Digitonin-based cell fractionation showed that in the

presence of geldanamycin less CTA1 reaches the cytosol of cells

indicating that Hsp90 is involved in facilitating the translocation

of CTA1 from the ER to the cytosol (Taylor et al., 2010). Direct

expression in the ER and subsequent translocation of CTA1 into

the cytosol revealed that upon Hsp90 inhibition again less CTA1

molecules reached the cytosol. This further confirms that Hsp90

is required for the translocation step rather than for any

upstream steps of toxin uptake (Taylor et al., 2010).

Geldanamycin also inhibited CT-mediated effects in an ileal

loop model of intoxication. Therefore, CT was injected into
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surgically sealed sections of rat intestines. CT causes a distended

morphology due to water accumulation. In the presence of

geldanamycin, this CT-induced distended morphology was

significantly reduced compared to intestinal loops treated only

with CT indicating protection from intoxication in this

pathophysiologically relevant ileal loop model (Taylor

et al., 2010).

The role of Hsp90 for CT-intoxication was further

elucidated and a co- as well as post-translocation role of

Hsp90 was shown (Burress et al., 2014). Hsp90 not only

facilitates the translocation of CTA1 into the cytosol but also

refolds disordered CTA1 into its active conformation. This was

shown by isotope-edited Fourier transform infrared

spectroscopy (FTIR). An ATP-derivative that cannot be

hydrolyzed inhibited refolding of CTA1 by Hsp90 as well as

translocation of CTA1 from partially purified CT-loaded ER.

Binding of the ATP-derivative/Hsp90 complex to CTA1 was not

affected. This indicates that ATP hydrolysis by Hsp90 is required

for CTA1 refolding and its translocation (Burress et al., 2014).

Moreover, it was shown that incubation of disordered CTA1 at

37°C with Hsp90 and ATP results in a gain of function

conformation. This was shown by significantly enhanced in

vitro enzyme activity of CTA1 at 37°C in the presence of

Hsp90 and ATP (Burress et al., 2014). Further in vitro

interaction analysis by surface plasmon resonance revealed

that Hsp90 is not released after CTA1 folding but continues to

bind to CTA1 even in the presence of Hsp90 co-factors such as

Hsp40 or p23 or other host factors represented by addition of

cytosolic extracts to the interaction partners (Burress et al.,

2014). Based on these data, an Hsp90-dependent ratchet

mechanism was proposed combining extraction and

translocation of CTA1 from the ER to the cytosol with its

refolding. Thereby, a unidirectional transport will be favored

by preventing the folded parts of CTA1 to translocate back into

the ER (Taylor et al., 2010; Burress et al., 2014).

By generating overlapping peptides of CTA1, two binding

sites for Hsp90 with the amino acid sequences RPPDEI and

LDIAPA were identified (Kellner et al., 2019). RPPDEI

comprises residues 11-16 and LDIAPA 153-158 of CTA1.

Expression of CTA1 mutants, lacking either one of the

identified motifs, in the ER of cells showed that both mutants

were not detected in the cytosol after digitonin-based cell

fractionation suggesting that both binding sites are required

for toxin translocation into the cytosol. Moreover, CTA1

constructs with point mutations in the binding motif revealed

the RPP as key residues for efficient translocation of CTA1 from

the ER to the cytosol (Kellner et al., 2019). Interestingly, the

RPPDEI motif was also found in the sequence of other toxins

translocating from the ER such as PT but not in toxins

translocating from endosomes such as DT or clostridial binary

toxins. This suggests that recognition of endosome-translocating

toxins by Hsp90 appears to be different from how ER-

translocating toxins interact with Hsp90 (Kellner et al., 2019).
FIGURE 6

The enzyme subunit of pertussis toxin, PTS1, covalently transfers
an ADP-ribose moiety from the co-substrate NAD+ onto the a-
subunits of inhibitory G proteins (Gai) of G protein coupled
receptors (GPCR). The thereby inactivated Gai can no longer
down-regulate the adenylate cyclase (AC) upon GPCR activation.
This leads to disturbed cAMP signaling (Locht et al., 2011).
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In contrast to PT, DT and clostridial binary toxins, it was shown

that inhibition of Cyps by CsA did not protect cells from CT-

intoxication (Burress et al., 2019).

It was further hypothesized that the proline isomerization in

the RPPDEI motif is crucial for interaction with Hsp90 and that

Hsp90 only recognizes cis prolines in this motif (Kellner et al.,

2021). Folded CTA1 contains trans prolines. Unfolding might

lead to cis prolines since this is the preferred conformation of

proline-proline bonds in proteins. Refolding by Hsp90 could

lead to maintaining of the cis conformation which might also

explain the continued interaction of Hsp90 with CTA1 even

after translocation and refolding (Burress et al., 2014; Kellner

et al., 2021). The authors moreover proposed that endosome-

translocating toxins lacking the RPPDEI motif might require

PPIases for trans-to-cis isomerization to prepare them for

interaction with Hsp90 (Kellner et al., 2021).

In addition to Hsp90, Hsc70 is also involved in translocation

and refolding of CTA1 (Figure 9) (Burress et al., 2019).

Inhibition of both Hsc70 and Hsp70 by the inhibitor PES

significantly reduced the CT-mediated cAMP increase

compared to cells treated with CT only. Interestingly, knock-

down of either Hsc70, Hsp70 or the Hsp90 adaptor protein Hop

did not result in inhibition of CT-mediated cAMP increase
Frontiers in Cellular and Infection Microbiology 12
suggesting that Hop is not involved in CT uptake and that the

known redundant functions of Hsc and Hsp70 probably

compensate the others knock-down. Moreover, PES-treatment

resulted in reduced translocation of CTA1 that was expressed

directly in cells and redirected to the ER (Burress et al., 2019). A

direct binding of Hsc70 to both, folded and disordered, CTA1

was demonstrated. This interaction was independent of Hsp40, a

protein often required for delivery of client proteins to Hspc70.

Binding of Hsp90 and Hsc70 occurs at different sites of CTA1

because Hsp90 was able to bind to the pre-formed Hsc70/CTA1

complex and vice versa. By generating overlapping peptides of

CTA1, it was revealed that Hsc70 binds to a specific sequence,

YYIYVI, in CTA1 (Burress et al., 2019). It was also shown by

structure analysis that Hsc70 facilitates refolding of CTA1

(Burress et al., 2019).

Taken together, it was shown that Hsp90 and Hsp70 but not

Cyps are required for translocation of CTA1 into the cytosol of

target cells. Hsp90 and Hsp70 not only facilitate the

translocation but also the refolding of CTA1 into its active

conformation. Moreover, Hsp90 not only interacts during but

also after translocation most likely to stabilize the active

conformation of the thermally instable CTA1.
Effect of novel derivatives of PPIase
inhibitors on bacterial toxins

The use of established inhibitors was essential to investigate

and unravel the role of chaperones and PPIases during uptake of

bacterial toxins. However, these inhibitors have some drawbacks

regarding potential therapeutic application. CsA and FK506 are

potent immunosuppressive drugs that are used for example after

organ transplantation to avoid organ rejection. In context of an

infection with bacteria, downregulation of the immune system is

not be desired. For CsA, non-immunosuppressive derivatives

such as VK112 (Prell et al., 2013; Braun et al., 2022) or NIM811

(Rosenwirth et al., 1994) were generated that lack the typical

immunosuppressive effect while maintaining inhibition of the

PPIase activity of Cyps. VK112 protected cells from intoxication

with the clostridial binary toxins C2, iota and CDT toxin (Ernst

et al., 2015), as well as with DT (Schuster et al., 2017) and PT

(Ernst et al., 2018a). Inhibition of pH-dependent membrane

translocation by VK112 was exemplarily shown for the C2 toxin

(Ernst et al., 2015). A cell-impermeable CsA derivative, MM284

(Malesevic et al., 2013), had no inhibitory effect on intoxication

with C2 toxin or DT indicating that extracellular Cyps do not

play a role for their mode of action (Ernst et al., 2015).

Moreover, the effect of NIM811 was tested in a B. pertussis

infection model using infant mice (Ernst et al., 2021a). In contrast

to investigating adult mice, infant mice more accurately

recapitulate hallmarks of severe disease observed in humans

(Scanlon et al., 2017). One hallmark in human disease is severe

leukocytosis which is associated with expression of PT as well as
FIGURE 7

The activity of Hsp90, Hsp70, Cyps and FKBPs is required to the
uptake of PTS1 into cells. After receptor-mediated endocytosis,
PT is transported through the Golgi to the ER where PTS1 is
released from the B-oligomer (PTB). This leads to unfolding of
PTS1 due to thermal instability. Unfolded PTS1 is transported into
the cytosol by the ER-associated degradation pathway. Upon
inhibition of Hsp90, Hsp70, Cyps and FKBPs, intoxication of cells
by PT is reduced, less PTS1 is detected in cells. For inhibition of
Hsp90 and Cyps it was shown that less PTS1 molecules reach
the cytosol suggesting that assistance of PTS1-translocation
from the ER to the cytosol by chaperones and PPIases is the
common underlying mechanism (Ernst et al., 2018a; Kellner
et al., 2019; Ernst et al., 2021a; Kellner et al., 2021). (FKBPs,
FK506 binding proteins; Cyps, cyclophilins).
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with fatal outcome in newborns and infants (Mattoo and Cherry,

2005; Scanlon et al., 2019). Therefore, 7-day old mice were

infected with a wild type B. pertussis strain producing PT via

aerosol. This was followed by intranasal treatment with CsA,

NIM811 or vehicle. CsA or NIM811 had no effect on the bacterial

burden that was analyzed from homogenized lung tissue 7 days
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post-infection. However, CsA and NIM811 both significantly

inhibited leukocytosis which was measured by determining the

white blood cell count from harvested blood by using a

hemocytometer. VK112 or NIM811 as specifically designed

derivatives represent interesting starting points for the

development of novel therapeutic strategies to treat diseases that

are caused by bacterial toxins that depend on the activity of Cyps

for their cellular uptake and therefore for their cytotoxic effect. A

major advantage of such derivatives is that CsA is an already

licensed drug with a known pharmacokinetics and safety profiles.

To determine which isoforms of Cyps or FKBPs play a

crucial role during toxin uptake, isoform-specific inhibitors are

of use. For FKBP51, an isoform-specific inhibitor called SAFit1

was used to investigate the uptake of DT (Gaali et al., 2015;

Schuster et al., 2017; Kolos et al., 2018; Hähle et al., 2019). Cells

were pre-incubated with SAFit1 and then challenged with DT.

DT intoxication was monitored by specific morphological

changes induced by DT. In the presence of FK506 or SAFit1,

less DT-intoxicated cells were observed compared to cells

treated only with DT. This result indicated that FKBP51 is

functionally involved in the cellular uptake of DT (Schuster

et al., 2017). Using isoform-specific inhibitors contributes to

fur ther e luc ida t ion of the prec i se mechani sm of

toxin translocation.

Common characteristics of
chaperone/PPIase-dependent toxins
and conclusion

A functional role of Cyps, FKBPs, Hsp90 and Hsc/p70 has

been demonstrated for several bacterial AB-type toxins.

Common characteristics as well as differences in the

requirement and interaction of the various toxins with the
FIGURE 8

The enzyme subunit of cholera toxin, CTA1, ADP-ribosylates the a-subunits of stimulatory G proteins (Gas) of G protein coupled receptors
(GPCR). This leads to a constitutively active adenylate cyclase (AC) and a massive increase in intracellular cAMP. Activation of protein kinase A
(PKA) results in inactivation of sodium channels and stimulation of the cystic fibrosis transmembrane regulator (CFTR) leading to secretion of
chloride ions into the intestinal lumen. This results in extensive water secretion causing the watery diarrhea characteristic of cholera (Haan and
Hirst, 2004).
FIGURE 9

The activity of Hsp90, Hsp70 but not Cyps is required to the
uptake of CTA1 into cells. After receptor-mediated endocytosis,
CT is transported through the Golgi to the ER where CTA1 is
released from the B-oligomer (CTB). This leads to unfolding of
CTA1 due to thermal instability. Unfolded CTA1 is transported
into the cytosol by the ER-associated degradation pathway.
Upon inhibition of Hsp90 or Hsp70 intoxication of cells by CT is
reduced and less CTA1 is detected in the cytosol (Taylor et al.,
2010; Burress et al., 2014; Burress et al., 2019; Kellner et al.,
2019; Kellner et al., 2021).
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protein folding helper enzymes have been observed. During the

course of investigation, the hypothesis that the enzyme activity

of a toxin determines if chaperones and PPIases are required for

cellular uptake. Table 1 gives an overview of toxins for which the

requirement of chaperones and PPIases was investigated. Most

toxins that need chaperones and PPIases for their uptake are

ADP-ribosyltransferases including clostridial binary toxins, DT

and PT. Toxins such as C. difficile TcdA and TcdB or the Bacillus

anthracis lethal toxin which are not ADP-ribosyltransferases are

independent of Hsp90, Cyps and FKBPs for their cellular uptake

(Haug et al., 2003a; Kaiser et al., 2009; Zornetta et al., 2010;

Dmochewitz et al., 2011; Kaiser et al., 2012; Steinemann et al.,

2018). Investigation of fusion toxins as well as artificial transport

of isolated enzyme subunits further supported this hypothesis.

The fusion toxin LFNDTA transported via PA, the B-component

of the anthrax toxin, into cells requires Hsp90 and Cyps to reach

the cytosol. The wildtype lethal toxin that has metalloprotease

activity and requires the same B-component, PA, for its uptake is

independent of Hsp90/Cyps (Zornetta et al., 2010; Dmochewitz

et al., 2011).

Another ADP-ribosylating toxin, PTC3 produced by

Photorhabdus luminescens, also requires the activity of Hsp90,

Cyps and FKBPs for the translocation of its enzyme subunit into

the cytosol (Lang et al., 2014). PTC3 shows a tripartite structure

with a linker protein in addition to the A- and B-subunit.

Moreover, PTC3 employs an elaborate syringe-like
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translocation machinery for injecting its enzyme subunit

TccC3 into the host cell cytosol (Lang et al., 2010;

Gatsogiannis et al., 2013). Moreover, the isolated enzyme

domain of TccC3 is efficiently transported into the cytosol of

target cells via PA. PA is used as a delivery system not only by

fusing cargo proteins to the N-terminal part of its natural

enzyme component lethal factor but also by addition of a His-

tag to the cargo. This enables the interaction with PA and

thereby transport and translocation of the His-tag protein into

the cytosol (Blanke et al., 1996; Lang et al., 2010; Beitzinger et al.,

2012). Comparable to the uptake of LFNDTA via PA,

translocation of the His-tagged enzyme domain of PTC3 via

PA was also inhibited by Rad, CsA and FK506 although uptake

of the wild type enzyme component lethal factor via PA was not

affected by these inhibitors (Lang et al., 2014).

Another fusion protein, C2IN-C3lim, consists of the N-

terminal part of the enzyme component C2I of C2 toxin fused

to the C3 toxin of C. limosum (C3lim). C3lim is an ADP-

ribosylating toxin but is only taken up efficiently into monocyte

derived cells (Barth et al., 2015). C2IN has no enzyme activity

but facilitates the interaction with the C2IIa heptamer enabling

the uptake of C2IN-C3lim into a variety of cell types. It was

shown that uptake of C2IN via C2IIa is independent of Hsp90

and PPIases. However, if C2IN-C3lim requires the activity of

Hsp90 and PPIases for efficient membrane translocation via

C2IIa from endosomes to the cytosol (Pust et al., 2007; Kaiser
TABLE 1 Overview of requirement of chaperones/PPIases for uptake of bacterial AB-type toxins.

Enzyme
activity

Toxin Hsp90 Hsp/
Hsc70

Cyps FKBPs References

ADP-RT C2 toxin ✓ ✓ ✓ ✓ (Haug et al., 2003a; Kaiser et al., 2009; Kaiser et al., 2012; Ernst et al., 2015; Ernst et al.,
2017a)

Iota toxin ✓ ✓ ✓ ✓ (Haug et al., 2004; Kaiser et al., 2011; Kaiser et al., 2012; Ernst et al., 2015; Ernst et al.,
2016; Ernst et al., 2017a)

CDT toxin ✓ ✓ ✓ ✓ (Kaiser et al., 2011; Kaiser et al., 2012; Ernst et al., 2015; Ernst et al., 2017a)

PTC3 toxin ✓ n.a. ✓ ✓ (Lang et al., 2014)

DT ✓ ✓ ✓ ✓ (Ratts et al., 2003; Dmochewitz et al., 2011; Schuster et al., 2017)

PT ✓ ✓ ✓ ✓ (Ernst et al., 2018a; Kellner et al., 2019; Ernst et al., 2021a; Kellner et al., 2021)

CT ✓ ✓ – n.a. (Taylor et al., 2010; Burress et al., 2014; Burress et al., 2019; Kellner et al., 2019; Kellner
et al., 2021)

C2IN-C3lim +
C2IIa

✓ n.a. ✓ ✓ (Pust et al., 2007; Kaiser et al., 2009; Kaiser et al., 2012)

LFN-DTA + PA ✓ n.a. ✓ n.a. (Dmochewitz et al., 2011)

HisTccC3hvr +
PA

✓ ✓ ✓ ✓ (Lang et al., 2014; Ernst et al., 2017a)

MP BoNT, TeNT ✓ – – n.a. (Azarnia Tehran et al., 2016; Pirazzini et al., 2018)

AIP56 ✓ n.a. ✓ – (Rodrigues et al., 2019)

LT – n.a. – – (Haug et al., 2003b; Zornetta et al., 2010; Dmochewitz et al., 2011)

GT TcdA, TcdB – n.a. – – (Haug et al., 2003b; Kaiser et al., 2009; Dmochewitz et al., 2011; Kaiser et al., 2012;
Steinemann et al., 2018)
(✓ = uptake of toxin depends on respective factor, n.a. = not analyzed). ADP-RT, ADP-ribosyltransferase; GT, Glycosyltransferase; MP, Metalloprotease.
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et al., 2009, Kaiser et al., 2012). This further supports the

hypothesis of a common Hsp90/PPIase-dependent membrane

translocation for ADP-ribosylating toxins.

A role of Hsp90 for cellular uptake has been reported for

toxins with different enzyme activities. Botulinum and tetanus

neurotoxins are single chain, short-trip toxins with a

metalloprotease activity. Both toxins require Hsp90 activity but

are independent of Cyps and Hsc/Hsp70 suggesting that Hsp90 is

more versatily involved in interactions with different bacterial AB-

type toxins compared to requirement of PPIases (Azarnia Tehran

et al., 2016; Pirazzini et al., 2018). A role of FKBPs was not

investigated for these toxins. Moreover, the single-chain AB-toxin,

AIP56, which is also a metalloprotease, depends on the activity of

Hsp90 and Cyps but not FKBPs (Rodrigues et al., 2019). It was

also shown that the ADP-ribosylating CT requires Hsp90 and

Hsc/p70 but not Cyps for translocation and folding of the enzyme

subunit (Taylor et al., 2010; Burress et al., 2014; Burress et al.,

2019; Kellner et al., 2019; Kellner et al., 2021). However, the

related PT, which is like CT a long-trip toxin and an ADP-

ribosyltransferase, depends on Hsp90, Hsc/p70, Cyps and FKBPs

(Ernst et al., 2018a; Kellner et al., 2019; Ernst et al., 2021a; Kellner

et al., 2021). These results challenge the hypothesis of a common

chaperone/PPIase dependent mechanism specific for ADP-

ribosylating toxins. The requirement of chaperones/PPIases is

rather more comprehensive including not only ADP-ribosylating

toxins but also toxins with other enzyme activities such as

metalloproteases. Moreover, the composition of chaperones and

PPIases that are required for efficient toxin uptake are more

variable and versatile with Hsp90 being the common

denominator so far. How widespread the use of chaperones and

PPIases by bacterial AB-type toxins is and what exactly

determines a toxin’s dependency on chaperones/PPIases has to

be revealed in future research.
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