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Treatment responses of patients with acute myeloid leukemia (AML) are known to be heterogeneous, posing challenges for risk
scoring and treatment stratification. In this retrospective multi-cohort study, we investigated whether combining pyroptosis- and
immune-related genes improves prognostic classification of AML patients. Using a robust gene pairing approach, which effectively
eliminates batch effects across heterogeneous patient cohorts and transcriptomic data, we developed an immunity and pyroptosis-
related prognostic (IPRP) signature that consists of 15 genes. Using 5 AML cohorts (n= 1327 patients total), we demonstrate that
the IPRP score leads to more consistent and accurate survival prediction performance, compared with 10 existing signatures, and
that IPRP scoring is widely applicable to various patient cohorts, treatment procedures and transcriptomic technologies. Compared
to current standards for AML patient stratification, such as age or ELN2017 risk classification, we demonstrate an added prognostic
value of the IPRP risk score for providing improved prediction of AML patients. Our web-tool implementation of the IPRP score and
a simple 4-factor nomogram enables practical and robust risk scoring for AML patients. Even though developed for AML patients,
our pan-cancer analyses demonstrate a wider application of the IPRP signature for prognostic prediction and analysis of tumor-
immune interplay also in multiple solid tumors.
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INTRODUCTION
Pyroptosis is a process of programmed death of inflammatory
cells, mainly operating through the activation of a variety of
caspases mediated by inflammasomes. Pyroptosis causes shearing
and multimerization of various gasdermin family members,
including gasdermin D (GSDMD), resulting in cell perforation,
which in turn leads to cell death [1]. Compared with apoptosis, cell
pyroptosis occurs faster and it is accompanied by the release of a
large number of pro-inflammatory factors [2]. Therefore, cell
pyroptosis is closely related to the immune process, but it is also
essential for tumor development. Recent studies have shown that
pyroptosis-related genes are associated with the prognosis of
cancer patients. For example, Ye et al. [3] found that a pyroptosis-
related signature can effectively predict the prognosis of patients
with ovarian cancer. Shao et al. [4] proposed a pyroptosis
signature, which is closely related to the degree of immune
infiltration in gastric cancer patients. Similarly, Ju [5] and Lin [6]
et al. found that pyroptosis-related genes can be used for
prognostic prediction of skin cutaneous melanoma and lung

adenocarcinoma, respectively. These studies indicate the impor-
tance of the pyroptosis process in tumor development and
treatment responses. However, whether pyroptosis also plays a
role in hematological cancers remains an open question.
Compared with solid tumor sampling, the bone marrow or
peripheral blood of leukemia patients is easier to access, and
therefore an accurate and practical prognostic signature for
leukemia patients has potential for more direct clinical application.
Since most hematological malignancies are very heterogeneous
diseases, robust patient-specific prognostic signatures are
required for clinical applications.
Inconsistent data formats and batch effects between different

profiling platforms often challenge the development and applica-
tion of prognostic gene signatures. For example, transcriptomic
data from microarrays and RNA sequencing have rather distinct
distributional properties. Data sets profiled in various patient
cohorts may also have been processed with different data
processing methods, making the signatures extracted in one
study suboptimal in the other cohorts. In particular, using
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traditional prognostic signatures, it is often difficult to find a
common cutoff for risk classification that would be suitable
among multiple patient cohorts and studies. To make the gene
signature and risk cutoff widely applicable, we developed a novel
analytic approach based on mRNA expression levels of gene-pairs
to construct a robust prognostic model, and show how one-hot
binary encoding of the gene-pairs effectively eliminates the
influence of batch effects. To demonstrate the robustness of the
gene pairing approach, we apply it here for the first time to
establish a gene-paired immunity and pyroptosis related prog-
nostic (IPRP) signature for AML patients. In comparison with ten
existing signatures, we show how the IPRP signatures provides a
universally applicable risk score for heterogeneous AML datasets
and cohorts of patients, profiled with different transcriptomic
platforms. Even if developed in AML patient cohorts, our pan-
cancer analyses show its wider application for survival prediction
and analysis of tumor immunity in multiple cancer types.

MATERIALS/SUBJECTS AND METHODS
AML patient cohorts and gene expression data
To develop a robust prognostic signature for AML patients, we
used 5 AML cohorts, that contained a total of 1327 patients, and
associated gene expression data sets (Supplementary Table 1,
Supplementary Fig. 1, and Supplementary Data).

Differential expression analysis
To integrate both pyroptosis and immune processes in the
signature development, we identified differentially expressed
genes (DEGs) between the double favorable prognosis group
(FF) and double unfavorable prognosis (UU) groups. The screening
criteria for DEGs were |log2FC | >1 and FDR < 0.001 (Wilcoxon test).
Finally, we obtained 3720 DEGs, and these genes were used for
subsequent feature selection.

Feature selection and model building
Among the 3720 DEGs, univariate Cox regression and LASSO
regularized regression were used to reduce the number of
features to 26 genes (see Supplementary Fig. 2). To construct
the paired IPRP signature, we paired these 26 genes after the first
LASSO regression and applied one-hot binary encoding: if
expression of gene A > expression of gene B, then the feature
“Gene A | Gene B” was marked as 1, and otherwise it is marked as
0, as shown in Eq. (1).

Gene AjGene B ¼ 1; Expression Að Þ> Expression Bð Þ
0; Expression Að Þ � Expression Bð Þ

�
(1)

We deleted the gene-pairs with frequency of the “1” label in the
training set less than 0.2 or greater than 0.8, since such features do
not contain significant classification information. Using this paired
approach, we obtained 112 gene-pairs as features, which were
further reduced by the second LASSO regression. Finally, multi-
variate Cox regression (with “both” option in the feature selection)
was used to construct the IPRP signature which contains 10 gene-
pairs. The above analyses were carried out using “glmnet”,
“survival” and “survminer” packages in R.

Validation of the prognostic model
To demonstrate the robustness and added values of the paired
IPRP signature of 10 gene-pairs, we compared its performance
against the unpaired IPRP signature of 26 genes, and against 10
other signatures that were used as comparison models, namely
Pyroptosis signature, IRG signature [7], Autophagy signature [8],
Hypoxia signature [9], CXCR signature [10] and 24-gene signature
[11], LSC17 signature [12], 7-gene signature [13], pLSC6 signature
[14], and PS29MRC signature [15]. We used the following criteria

for selection of these signatures: (i) The signature was constructed
based on key biological processes of AML or using a meta-analysis
of existing signatures. (ii) The genes in the signature had most of
the expression levels measured in the 5 AML datasets.

Gene mutation and immune profile analyses in AML cohorts
Since the TCGA-AML and BeatAML datasets include comprehen-
sive gene mutation data, the analysis of point mutations and
tumor mutation burden (TMB) was carried out in these two data
sets. The point mutation data were obtained from the GDC Data
Portal (https://portal.gdc.cancer.gov/) and BeatAML study [16],
respectively. The samples with mutation data were intersected
with the samples with the expression data (Supplementary Fig. 1),
which led to 104 patient samples in TCGA-AML and 261 patient
samples in BeatAML containing both genome-wide expression
data and point mutation data. For these patients, we used the
“maftools” package in R to make a waterfall plot (that only displays
top-20 mutations with the highest frequency), and calculated the
TMB by the number of non-synonymous somatic mutations
(single nucleotide variants and small insertions/deletions) per
million bases in the coding region. Please see Supplementary Data
for more details.

Pan-cancer analysis of overall survival and tumor immunity
To explore the wider value of IPRP score in other types of cancers,
data from 33 different cancer types in TCGA were used for pan-
cancer analysis. The TCGA pan-cancer data were downloaded
from the UCSC Xena database (https://xena.ucsc.edu/), out of
which 10,071 cancer patients have complete expression profiles,
point mutation data, overall survival (OS) and survival status.
These data were used to calculate the IPRP score and to perform
Cox prognostic analysis Benjamini-Hochberg correction to calcu-
late the hazard ratio. TMB has been shown to be associated with
the efficacy of immunotherapy in multiple caner types [17, 18].
Since AML is a cancer with low TMB, it is expected to have a low
reference value for immunotherapy in AML. Instead, we explored
the interplay between immunotherapy, TMB and IPRP score in
multiple solid tumors using the TCGA data, where we conducted a
pan-analysis of the expression levels of immunotherapy-related
targets CD47, CTLA4 and CD274 (PD-L1).

RESULTS
Clustering of AML patients based on pyroptosis and immune-
related genes
To construct and validate the IPRP signature, we used 5 AML
patient cohorts with genome-wide transcriptomic profiles (Sup-
plementary Figs. 1, 2 and Supplementary Table 1). We first
clustered the AML patients in the training dataset using the 22
pyroptosis and 156 immunity-related genes that distinguished the
survival status of the AML patients in the training data (Fig. 1;
p < 0.05; Log Rank test). There were no overlapping genes
between the immune and pyroptosis-related genes, which ensure
the orthogonality of the two clustering solutions. In both
clustering analyses, the increased area under the consensus CDF
curves was used for choosing the number (k) of clusters
(Supplementary Fig. 3), and k= 3 was found to provide the
optimal number of clusters based on the relative increase in the
area under the consensus CDF curves (Supplementary Fig. 3B, D).
The clustering results based on the pyroptosis-related genes show

that the patients in cluster A have more favorable prognosis, when
compared to the patients in clusters B and C (Fig. 1A, B; p= 0.007, Log
Rank test). Similarly, the clustering results based on the immunity-
related genes show that the patients in cluster B have more favorable
prognosis, compared to the patients in clusters A and C (Fig. 1C, D;
p< 0.001, Log Rank test). Even though the two gene sets were
distinct, there was significant consistency in the patient prognostic
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classification based on the pyroptosis and immunity processes
(Supplementary Table 2; p < 0.001, Chi-square test), motivating their
integration for improved performance; in particular, there were 73
patients with favorable prognosis based on both gene sets (FF
group), and 192 patients with unfavorable prognosis based on both
gene sets (UU group, Supplementary Table 2).
We next studied the differential expression between the

prognostic groups and obtained 3720 DEGs between the FF and
UU groups (FDR < 0.001, Wilcoxon test), of which 2140 genes were
up-regulated and 1580 genes were down-regulated in the FF
group (log |FC| > 1). To further explore the biological function of
these genes, we performed GSVA analysis of differentially
activated pathways. In the GSVA results, 19 of the top-20 KEGG
pathways were significantly activated in the FF group (FDR < 0.05,

Wilcoxon test), whereas only the ABC transporter pathway was
down-regulated in the FF group (Supplementary Fig. 4). Since high
expression of ABC transporter is associated with drug resistance
[19], the inhibition of this pathway in the FF group partly explains
the better prognosis of the AML patients in that group. In addition,
pathways related to glycolysis were also significantly activated in
the FF group, including glycosaminoglycan degradation and
glycolysis gluconeogenesis.
Interestingly, the activated pathways in the FF group were

implicated in 7 different cancers, with various tissue origins, both
hematological and solid tumors, yet still closely clustered with the
AML pathway activity (Supplementary Fig. 4). This indicates that
these cancers share similar gene expression programs that govern
the pyroptosis and immune-related processes.

Fig. 1 Clustering of the AML patients in the training dataset (n= 417) based on their gene expression profiles. A Clustering heatmap
based on 22 pyroptosis related genes in the AML training cohort. B Survival curves of patients in the pyroptosis-related clusters. Survival
differences were assessed with Log Rank test (cluster A compared with clusters B and C). Censored data at the last follow-up point was
excluded when plotting the survival curve of cluster A. C Clustering heat map based on the 156 immune-related genes in the AML training
cohort. D Survival curves of patients in the immune-related clusters. Survival differences were assessed with Log Rank test (cluster B compared
with clusters A and C).
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Construction of the IPRP signature for prognostic
classification of AML patients
Using univariate Cox regression, we first selected 763 genes out of
the 3720 DEGs between the FF and UU groups, which were
associated with survival differences in the training set (Supple-
mentary Fig. 2; p < 0.05, Wald’s test and Benjamini-Hochberg
multiple testing correction). In the next step, we used multivariate
penalized LASSO regression to further select 26 genes most
predictive of the survival status using optimal penalty coefficient
(Supplementary Fig. 5A, B). These 26 genes were subjected to
gene-pairing, resulting in a total of 325 (25 × 26/2) gene pairs; 112
of these pairs had a frequency of “gene A > gene B expression”
between 20% and 80% in the training set, which were considered
to have sufficient information content. In the gene-pair LASSO
regression (Supplementary Fig. 2), 30 of the 112 gene-pairs were
selected for survival prediction in the training set (Supplementary
Fig. 5C, D). Finally, using multivariate Cox regression, there remain
10 gene-pairs (among 15 genes) associated with survival
differences, which formed the IPRP signature (Fig. 2A, Supple-
mentary Table 3); these 10 gene pairs include 5 risk factors
(HR > 1) and 5 protective factors (HR < 1). Therefore, the calcula-
tion of the IRPR risk score is based on:

Sum ¼�0:384´COL9A2 NPDC1þ 0:438 ´ PLXNC1j jSLC24A3þ 0:441

´ FZD6 MYO1Bþ 0:362´ TCF4j jTAF1C� 0:569

´ TAF1C ACSL3þ 0:433 ´ACSL3j jCRTAPþ 0:378

´ACSL3 IGLL1� 0:788 ´ACSL3j jDNMT3B� 0:277

´CYP2E1jMYO1B� 0:465 ´ SLC36A1jFSTL1

RiskScore ¼ eSum

To investigate the prognostic performance of the 10 gene-pair
IPRP signature, we applied the risk score estimated in the training
data to 5 independent AML patient cohorts (4 external cohorts
and 1 internal test cohort, see Supplementary Fig. 1), which were
not used in the construction of the IPRP signature. To mimic a
future application of the signature into new patient cohorts, we
used the median value of IPRP risk score in the training set (0.684)
as the cutoff to separate between the high risk and the low risk
patients also in the other cohorts. Notably, the unified IPRP risk
score showed a wide prognostic value in distinguishing the
survival status of the AML patients across the AML patient cohorts
(Fig. 2B–G, Supplementary Fig. 6). This is a rather striking result,
given the wide heterogeneity of the disease and of the AML
cohorts in terms of differences in patient characteristics, treatment
procedures, follow-up times and transcriptomic platforms (Sup-
plementary Table 1). Consistently, the high risk group had a worse
prognosis in all the cohorts, indicating that the risk score based on
the paired IPRP signature of only 10 gene-pairings is a robust
prognostic factor in AML.

Comparative evaluation of the IPRP signature against other
signatures
To further study the sources of robustness and added value of the
paired IPRP signature, we compared its performance against an
unpaired IPRP signature, pyroptosis-only signature and 10 existing
prognostic signatures for AML (see Methods). To study the
robustness of the signatures, we calculated the risk scores based
on these signatures in the internal test set and 4 external AML
patient cohorts (Fig. 3). Compared with the distribution of the IPRP
risk score (Fig. 3A), the other risk scores were distributed relatively
differently across the AML cohorts (p < 0.001, ANOVA test), due to
lack of robustness to the various characteristics of the datasets and
cohorts, which makes it difficult to determine a common risk cutoff
applicable in various data sets and cohorts. In contrast, the risk score
calculated based on the paired IPRP signature resulted in similar
distributions, regardless of the AML cohort or whether RNA-seq or

microarray platform was used for transcriptomic profiling
(p= 0.123, ANOVA test). This demonstrates that the signature and
risk score from the gene-pairing approach is less sensitive to
differences in the characteristics of data cohort. See Supplementary
Data for more results of the effects of batch effects.
We further compared the paired IPRP model against the

existing 10 signatures in terms of their survival prediction accuracy
using AUC-ROC analyses and permutation test (Figs. 4, 5, and
Supplementary Table 6). The paired IPRP signature achieved its
best AUC performance in the external TCGA-AML dataset (Fig. 4).
When averaging over the follow-up time points, the IPRP signature
showed consistently accurate prognostic classification results,
compared to many of the existing signatures (Fig. 5). Even though
some of the other signatures resulted in a relatively high
prognostic accuracy in a particular cohort, especially in those
they were established, they did not lead to comparable accuracy
in other cohorts. For instance, the Autophagy signature had a
good performance in GSE37642, where it was trained, and in the
FIMM AML cohort, but it showed significantly poorer performance
in TCGA-AML and GSEA 106219 datasets. These results show that
the paired IPRP signature provides a robust prognostic risk score
for AML patients (Supplementary Table 6).

Establishment of a web-based nomogram for AML risk scoring
Toward more routine clinical application, we built an easy-to-use
nomogram based on the paired IPRP score for AML risk scoring
using the data from the BeatAML cohort. To investigate whether
the paired IPRP score is an independent risk factor, we first divided
the BeatAML samples with complete clinical information into a
training set (n= 152) and a test set (n= 72). Univariate
independent prognostic analysis in the training set showed that
age at diagnosis along with several other clinical factors and IPRP
risk score were independent prognostic factors for AML patient
survival (Fig. 6A; p < 0.05, Wald’s test); however, in multivariate
prognostic analysis, when considering the variables available at
diagnosis, only the age at diagnosis, prior non-myeloid malig-
nancy, ethnicity, and IPRP risk score remained as independent risk
factors (Fig. 6B; p < 0.05, Wald’s test). The cumulative sum of points
from the remaining four factors, estimated in the BeatAML
training set, can be used to infer the risk of 1-, 2-, and 3-year
mortality of a patient based on the nomogram (Fig. 6C).
To verify the performance of the risk scoring nomogram, we first

carried out risk classification analyses in the BeatAML cohort, where
the 4-factor nomogram achieved the AUC-ROC values for 1-, 2-, and
3-years survival as 0.811, 0.803, and 0.853 in training set, and 0.737,
0.782, and 0.785 in BeatAML test set, respectively (p < 0.05,
permutation test; Fig. 6D, E). Notably, the accuracy of the 4-factor
nomogram was improved compared to that when using the IPRP
score alone (Supplementary Fig. 11A, B). Similar improvements were
observed also in the TCGA-AML cohort (Supplementary Fig. 11C, D),
and in the FIMM AML cohort (Supplementary Fig. 11E, F). These
results show that the 4-factor nomogram, which includes the paired
IPRP score, enables relatively accurate and simple prognostic
prediction of AML patients. We note that the prediction accuracies
for individual patients are not always perfect, as can be expected in
such a challenging prediction problem.
As expected, the age at diagnosis played a key role in the

nomogram, with a wide point range (Fig. 6C), and it had
significant association with the IPRP score (p < 0.001), even
though the correlation coefficient was modest (R= 0.24; Supple-
mentary Fig. 12B). This indicates that the IPRP score provides
additional prognostic information compared to age and other
patient characteristics. Interestingly, ELN2017 risk classification,
that is clinically used as a prognostic tool for AML patients, was
not identified as independent risk factor in the multivariate
prognostic analysis (p= 0.132; Fig. 6B). Including ELN2017 as an
additional factor into the nomogram and reconstructing the
nomogram (Supplementary Fig. 12A) did not improve its
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Fig. 2 Construction and validation of the paired IPRP signature and risk score in AML patients. A The hazard ratios of the IPRP signature
genes based on multivariate Cox regression in the training set. *p < 0.05, **p < 0.01, ***p < 0.001 (Wald’s test). Survival curves in the IPRP high
and low-risk groups in B GSE37642 (internal test set), C TCGA-AML, D GSE106291, E BeatAML, F FIMM AML cohorts. The median value of the
IPRP risk score in the training set (0.684) was used as the cutoff to separate between the high risk and the low risk patient groups in all the
AML cohorts. Statistical significance of the survival differences between the two groups was assessed with Log Rank test.
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prediction accuracy obviously either in the BeatAML or FIMM AML
cohorts (Supplementary Fig. 13), likely due to the significant and
expected association between IPRP score and ELN2017 classifica-
tion (p < 0.001, ANOVA test; Supplementary Fig. 12C).
To make the nomogram widely applicable, we implemented it as

a stand-alone and easy-to-use web-application (https://iprp.fimm.fi/).
By entering the patient’s clinical information (3 clinical factors) and
gene expression profiles (15 genes), the web-tool calculates in real-
time the risk points for each factor, along with the patient’s IPRP risk

score, the risk category, and the 1-,2-, and 3-year mortality risk. Since
the IPRP score is based on the robust gene-pairing approach, there
are no pre-requirements on the specific processing of the gene
expression input data, and the end-users only need to ensure that
the input gene format is consistent across the 15 genes.

Gene mutation analysis and immune profiling of AML patients
To explore how the IPRP risk groups relate to genetic background
of AML patients, we performed mutation analysis in the TCGA-

Fig. 3 The distributions of risk scores calculated based on various prognostic signatures across the AML cohorts. A Paired IPRP signature.
B Unpaired IPRP signature, C Pyroptosis signature, D IRG signature, E Autophagy signatures, F Hypoxia signature, G CXCR signature, H 24-gene
signature, I LSC17 signature, J 7-gene signature, K pLSC6 signature, L PS29MRC signature. The differences between the score distributions
across the cohorts were assessed with ANOVA test (not a formal statistical hypothesis testing).
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AML and BeatAML cohorts. We focused on the top-20 most
frequently mutated genes in these two cohorts and made
waterfall plots across the IPRP risk groups (Supplementary Fig. 14A,
D). The common finding in both the TCGA-AML and BeatAML
cohorts was that TP53 and RUNX1 exhibited significantly higher
mutation rates in the IPRP high risk group (p < 0.05, Chi-square
test). Both TP53 and RUNX1 are factors for the ELN2017 adverse
risk class. RUNX1 regulates normal and malignant hematopoiesis,
and somatic and germline RUNX1 mutations are associated with
poorer prognosis in AML patients [20], which is consistent with our
result. In both of the cohorts, patients in the high risk group had
higher TMB levels when considering all somatic mutations
(p < 0.05, Wilcoxon test; Supplementary Fig. 14B, E), and there
was a significant correlation between the TMB levels and IPRP
scores (p < 0.05, Supplementary Fig. 14C, F).
As an additional immunologic profiling of AML patients, we

further carried out immune infiltration analysis using the ssGSAE
method to quantify the immune cell content of AML patients, and
found that the amount of activated B cells, activated CD4 T cells,
activated CD8 T cells, natural killer T cells and type 2 T helper cells
in the high risk group were higher than those in the low risk group
(adjusted p < 0.05, Wilcoxon test and Benjamini-Hochberg correc-
tion for multiple testing; Supplementary Fig. 15). This suggests
that patients in the high risk group are characterized with a
modified immune profile.

The extended application of IPRP signature into pan-cancer
analyses
Inspired by the results showing that multiple cancer-related
pathways shared similar activity profiles with the AML pathway

across the prognostic groups (Supplementary Fig. 4), we finally
explored the potential wider application of the IPRP signature also
in other cancers. More specifically, we performed pan-cancer
analysis using the gene expression, point mutation and survival
information of 33 cancer patients in TCGA, including 2 hemato-
logical cancers and 31 solid tumors. Even though developed in the
AML patients, the IPRP score showed a significant prognostic
value in 7 cancers types (adjusted p < 0.05, Wald’s test and
Benjamini-Hochberg correction method; Fig. 7A). The IPRP score
was a protective factor in 2 cancers (HR < 1), and a risk factor in 5
cancers (HR > 1), further supporting the varied effect of pyroptosis
in different tissues and genetic backgrounds [21]. In comparison
with the six established immune subtypes [22], Cox regression
identified these immune subtypes as prognostic factors in three
cancers, not including AML, but in two additional cancers not
captured by the IPRP signature (Supplementary Fig. 16). This
shows that the IPRP signature provides complementary and a
wider range of pan-cancer application than the established
immune subtypes. In total, IPRP distinguished survival differences
in patients with 11 tumor types (p < 0.05, permutation test;
Supplementary Fig. 17).
Even though immunotherapy does not currently play a role in

AML treatment, we wanted to explore the relationship between
IPRP score and immunotherapy in a pan-cancer analysis, given
that the pyroptosis and immunity are both key processes in
immunotherapy [23]. When investigating the key immunotherapy
targets, the IPRP score and CD47 expression were significantly
correlated in 15 cancer types (p < 0.05); only TCGT showed a
negative correlation, while the other cancers had positive
correlations (Fig. 7B). The IPRP score and CTLA4 expression were

Fig. 4 The prognostic performance of IPRP score across AML test cohorts. The receiver operating characteristic (ROC) curves of the paired
IPRP score in A GSE37642 (internal test set), B TCGA-AML, C GSE106291, D BeatAML, E FIMM AML cohorts. The colored curves correspond
to different follow-up time points in the survival data with ROC-AUC values. The black diagonal line corresponds to the random classifier
(ROC-AUC= 0.5). *p < 0.05, permutation test.
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Fig. 5 Comparison of the paired IPRP risk score and the other risk scores in AML patient cohorts. The bars indicate average ROC-AUC and
SD over the 1, 2, and 3-year time points. The statistical significance was calculated using paired Wilcoxon test. Red and blue * indicate that the
signature had either a lower or higher average ROC-AUC (p < 0.05, Wilcoxon test), compared to IPRP risk score, respectively. # Indicates that the
signature was originally developed in that particular patient cohort.
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significantly correlated in 9 cancers, among which there were
negative correlations in BRCA and KIRC, and the others were all
positively correlated (Fig. 7B). Furthermore, the IPRP score was
positively correlated with CD274 (PD-L1) in 14 cancers (Fig. 7B).
These results further demonstrate the varying role of IPRP across
the cancer types, and show the potential of IPRP score as

stratification tool for immunotherapy in the cases where the IPRP
score was positively correlated with the expression of immu-
notherapy targets. In the pan-cancer analysis of TMB, the IPRP
score showed positive correlation in 8 cancers (p < 0.05; Fig. 7B).
Even though the correlation levels remained relatively low, this
result supports the use of the IPRP score in a pan-cancer setting to

Fig. 6 The establishment and validation of risk nomogram in the BeatAML data set. A Univariate independent prognostic analysis.
B Multivariate independent prognostic analysis based on variables at the diagnosis stage. C 4-factor nomogram containing the paired IPRP
risk score. D The prognostic prediction accuracy in the BeatAML training set (n= 152). E The prognostic prediction accuracy in the BeatAML
test set (n= 72). The colored curves correspond to different follow-up time points in the survival data with ROC-AUC values. The black
diagonal line corresponds to the random classifier (ROC-AUC= 0.5). *p < 0.05, permutation test.
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stratify patients for immunotherapy (see Supplementary Data for
examples).
To provide potential explanations for the observed differences

in the utility and role of the IPRP score across cancer types, we
carried out additional analyses of immune infiltration and tumor
microenvironment (TME). In the TME analysis (Fig. 7C), we found
that the IPRP score and the immune cell content (ImmuneScore)
are positively correlated in 12 cancers (p < 0.05, including AML),
and negatively correlated in 6 cancers (p < 0.05, including kidney
renal clear cell carcinoma, KIRC). These results indicate that the
IPRP score is closely related to the TME status in most cancers, but
its effects vary considerably. Along the same lines, the IPRP score
and tumor purity were positively correlated in 7 cancers and
negatively correlated in 9 cancers. It is known that mainly

activated T cells directly kill tumor cells. Consistently, the
correlation of the IPRP score was negatively correlated with the
content of CD8+ T cells and positively correlated with the
CD4+ T cells in KIRC, and the content of CD8+ T cell in the high
risk group was greater than that in the low risk group
(Supplementary Fig. 18), which is opposite to AML (Supplementary
Fig. 15). This can partially explain why the IPRP score is a
protective factor in KIRC, while being risk factor in AML (Fig. 7C).

DISCUSSION
In this retrospective cohort study of AML patients, we established
a prognostic IPRP signature and an associated risk score, based on
a novel and robust gene pairing approach. Using 5 independent

Fig. 7 Pan-cancer analysis of the IPRP score. A Cox regression analysis of IRPR score across 33 cancer types, where p-values are adjusted with
Benjamini and Hochberg method for multiple testing. Red color indicates positive association (HR>1) and blue color negative association
(HR < 1). B Radar chart of the Spearman correlation between IPRP score and expression of CD47, CTLA4, CD274, and TMB level. The outer side
represents a positive correlation, and the inner side represents a negative correlation. The colors mark the immunotherapy targets and the
asterisks indicate the statistical significance (p < 0.05, Spearman correlation). C Tumor microenvironment (TME) and immune infiltration
(ssGSEA) analysis, where x indicates no significant association (p > 0.05). Statistical significance was assessed with Wald’s test for Hazard ratio
for patient prognosis, Spearman correlation for immune-related scoring, and permutation test for ROC-AUC values. ACC Adrenocortical
Carcinoma, BLCA Bladder Urothelial Carcinoma, BRCA Breast Invasive Carcinoma, CESC Cervical Squamous Cell carcinoma and Endocervical
Adenocarcinoma, CHOL Cholangiocarcinoma, COAD Colon Adenocarcinoma, DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma,
ESCA Esophageal Carcinoma, GBM Glioblastoma Multiforme, HNSC Head and Neck Squamous Cell Carcinoma, KICH Kidney Chromophobe,
KIRC Kidney Renal Clear Cell Carcinoma, KIRP Kidney Renal Papillary Cell Carcinoma, LAML Acute Myeloid Leukemia, LGG Brain Lower Grade
Glioma, LIHC Liver Hepatocellular Carcinoma, LUAD Lung Adenocarcinoma, LUSC Lung Squamous Cell Carcinoma, MESO Mesothelioma, OV
Ovarian Serous Cystadenocarcinoma, PAAD Pancreatic Adenocarcinoma, PCPG Pheochromocytoma and Paraganglioma, PRAD Prostate
Adenocarcinoma, READ Rectum Adenocarcinoma, SARC Sarcomav, SKCM Skin Cutaneous Melanoma, STAD Stomach Adenocarcinoma, TGCT
Testicular Germ Cell Tumors, THCA Thyroid Carcinoma, THYM Thymoma, UCEC Uterine Corpus Endometrial Carcinoma, UCS Uterine
Carcinosarcoma, UVM Uveal Melanoma.
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AML cohorts, we demonstrated that the IPRP score leads to more
consistent and accurate performance than the existing signatures,
and that the IPRP score effectively eliminates batch effects
between different patient cohorts and transcriptomic data sets.
Our web-tool implementation of the IPRP score and a simple
4-factor nomogram enables an easy application of the risk score
for AML patients. Compared to current standards for AML patient
stratification, such as age and ELN2017 risk classification, we
demonstrated a significant added value of the IPRP risk score for
providing improved prognostic prediction for AML patients.
We used AML as a case study to investigate the prognostic

power of pyroptosis- and immune-related genes in a hematolo-
gical malignancy. The treatment responses and overall survival of
patients with AML is known to be heterogeneous, influenced both
by patient-specific as well as disease-specific factors, making AML
a challenging case study for risk scoring and treatment
recommendations. Despite the differences in the treatments,
age, and genomic background of the AML cohorts, the robust IPRP
signature of 10 gene-pairs showed surprisingly consistent
performance across the AML cohorts. IPRP was shown to be
independent prognostic factor for AML patients, and quite
unexpectedly, also in a pan-cancer setting, where it showed
association with survival differences and tumor-immune interac-
tions in multiple solid cancer types.
Even though the IPRP score was not designed for immunother-

apy response prediction, the analysis of TMB, target expression of
immunotherapies, and immune infiltration suggest that patients
in the IPRP high risk group tend to be more suitable for
immunotherapy. We note these analyses are limited; for instance,
PDL1 expression may reflect the proportion of monocytes and
lymphocytes in the samples, and hence better predictors of
immunotherapy responses will be needed. A diverse range of
immunotherapies are now entering clinical development for AML
treatment [24], and once treatment data and genome-wide
expression and proteomics profiles have been made publicly
available, it will be interesting to study the applicability of the
current or extended signature for predicting immunotherapy
responses of individual patients.
The current work has some limitations and areas worth of future

improvement. In the pan-cancer analysis, we used the gene
expression levels of the immunotherapy targets as proxy for their
protein activity. However, as the mRNA levels do not always
correlate with the protein activity, there is a need for further
protein-level studies. Transfer learning could be further used to
increase the application range of the model also for cancer types
without enough training data available [25]. While the current
IPRP signature was treatment-agnostic, it was shown to have
predictive accuracy for various treatment modalities. In the future,
it would be interesting to establish separate models for the main
treatment modalities of AML; for instance, predict which AML
patients receiving intensive induction treatment become eligible
for alloHSCT.
There is a close relationship between pyroptosis and various

human diseases, especially malignant tumors [21]. However, as
was shown in our pan-cancer results, pyroptosis clearly plays a
dual role in the pathogenesis and treatment responses. On one
hand, multiple signaling pathways and inflammatory mediators
released during pyroptosis are closely implicated in the tumor-
igenesis and drug resistance. On the other hand, pyroptosis
provides means to inhibit the occurrence and development of
tumors. Accordingly, the relationship between pyroptosis and
cancer biology is complex, and the effects may vary in different
tissues and genetic backgrounds. Our results on immune
infiltration and TME could only partly explain the differences
observed across the cancer types, and more research will be
required to illuminate the various effects of pyroptosis on cancer
development and treatment.

DATA AVAILABILITY
The R codes for implementation of the IPRP score are available at GitHub (https://
github.com/kwkx/IPRP). The web-app for the IPRP nomogram is running on the FIMM
server (https://iprp.fimm.fi/). The data repositories and accession numbers of the
datasets used for developing and testing the IPRP score are listed in
Supplementary Data.
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