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ABSTRACT

Plant homeodomain (PHD) fingers have emerged
as one of the largest families of epigenetic effect-
ors capable of recognizing or ‘reading’ post-
translational histone modifications and unmodified
histone tails. These interactions are highly specific
and can be modulated by the neighboring epigenet-
ic marks and adjacent effectors. A few PHD fingers
have recently been found to also associate with
non-histone proteins. In this review, we detail the
molecular mechanisms and biological outcomes of
the histone and non-histone targeting by PHD
fingers. We discuss the significance of crosstalk
between the histone modifications and conse-
quences of combinatorial readout for selective
recruitment of the PHD finger-containing compo-
nents of chromatin remodeling and transcriptional
complexes.

INTRODUCTION

Eukaryotic DNA is tightly packed into chromosomes
through formation of the chromatin fiber that folds into
loops and higher order structural elements. The chromatin
fiber is composed of arrays of nucleosomes, the repeating
particles responsible for the primary level of DNA com-
paction, and therefore referred to as the basic unit of chro-
matin. Each nucleosome consists of an octamer of four
histone proteins, H2A, H2B, H3 and H4 and a stretch
of double-stranded DNA wrapped almost twice around
the histone core (1). The nucleosome assembly is highly
dynamic allowing for spatial and temporal access to
DNA, which is essential in the regulation of gene tran-
scription and other DNA-related processes.

The nucleosomal particles undergo recurrent remodel-
ing accompanied by DNA unwrapping and rewrapping
and are subject to covalent modifications. Although the
modifications or epigenetic marks are found on both
histones and DNA, the latter can primarily be methylated,

whereas the former are modified by a wide array of
post-translational modifications (PTMs). A particularly
large number of PTMs have been identified in flexible
histone tails that protrude from the nucleosomal core
and are freely accessible to histone acetyltransferases,
deacetylases, methyltransferases, demethylases, kinases,
phosphatases and other enzymes capable of depositing
or removing PTMs (2–8). The list of naturally occurring
PTMs is rapidly growing and includes acetylation, methy-
lation, ubiquitination and sumoylation of lysine residues,
methylation and citrullination of arginine residues, phos-
phorylation of serine and threonine residues, and
ADP-ribosylation of glutamate and arginine residues.
PTMs alter the direct contacts between histones and
DNA and serve as docking sites for protein effectors.
Binding of effectors or ‘readers’ of PTMs to histones
recruits components of the transcriptional machinery
and remodeling complexes to chromatin, regulating
numerous vital nuclear processes (9). A dozen epigenetic
effectors have recently been identified, including the plant
homeodomain (PHD) finger.
The PHD finger is present in a variety of eukaryotic

proteins involved in the control of gene transcription
and chromatin dynamics. In the last few years, PHD
fingers were shown to recognize the unmodified and
modified histone H3 tail, and some have been found to
interact with non-histone proteins. In this review, we
examine the molecular mechanisms and functional
outcomes associated with binding of PHD fingers to
histone and non-histone ligands. We discuss the sensitivity
of the PHD finger to multiple histone modifications and
its ability to facilitate a specific biological event through
combinatorial action.

PHD FINGERS RECOGNIZE THE HISTONE H3 TAIL

The first PHD finger was identified almost 20 years ago
(10), yet its biological role remained unclear until 2006
when PHD fingers of BPTF and ING2 were found to
recognize histone H3 trimethylated at Lys4 (H3K4me3)
(11–14). Over a dozen more modules, including PHD
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fingers of ING(1,3–5), JARID1A, KDM7A, KIAA1718,
MLL1, PHF(2,8), PHO23, PYGO(1,2), RAG2, TAF3 and
YNG(1,2) have been shown to interact with H3K4me3
(12,15–34) and constitute one of the well-established
subsets highly specific for this PTM (Table 1). The
second major subset binds the unmodified histone H3
(H3K4) tail and, in addition to the founding members
BHC80 and DNMT3L (35,36), contains PHD fingers of

AIRE, ATRX, CHD4, DNMT3A, DPF3, JADE1 and
TRIM24 (37–48). A smaller number of PHD fingers
displays preference for histone H3 tails trimethylated at
Lys9 (H3K9me3) (49,50) and Lys36 (H3K36me3) (51)
or acetylated at Lys9 (H3K9ac) and Lys14 (H3K14ac).
The PHD2 finger of CHD4 prefers H3K9me3 or
H3K9ac (43,47), whereas the tandem PHD finger of
DPF3 has been shown to recognize H3K14ac (39,45).

Table 1. PHD finger-containing proteins recognize modified and unmodified histone H3 tails

Histone PTM Protein Host complex Function of the complex
(function of the protein)

Biological outcome References

H3K4me3 BPTF NURF ATP-dependent chromatin remodeler Nucleosome mobility
Transcription activation

(11,14,67)

ING1 mSin3a/HDAC1 Histone deacetylase Transcription repression (12,24)
ING2 mSin3a/HDAC1 Histone deacetylase Transcription repression (12,13)
ING3 NuA4/Tip60 Histone acetyltransferase Transcription activation (12)
ING4 HBO1 Histone acetyltransferase Transcription activation (12,23,26)
ING5 MOZ/MORF

HBO1
Histone acetyltransferase Transcription activation (12,22)

JARID1A (KDM5A) (Histone demethylase) Transcription repression (27)
KDM7A (c.e.) (Histone demethylase) Transcription activation (33)
KIAA1718 (Histone demethylase) (29)
MLL1 MLL1 (Histone methyltransferase)

Histone methyltransferase
Transcription activation (30–32)

PHF2 (Histone demethylase) Transcription activation (28)
PHF8 (Histone demethylase) Transcription activation (29)
PHO23 (s.c.) Rpd3 Histone deacetylase Transcription repression (12)
PYGO1/2 PYGO1/2/BCL9 Transcription factor

Wnt signaling
Transcription activation (21,34)

RAG2 RAG1/2 V(D)J Recombinase Recombination (18-20)
TAF3 TFIID Transcription factor Transcription activation (17,25)
YNG1 (s.c.) NuA3 Histone acetyltransferase Transcription activation (12,15,16)
YNG2 (s.c.) NuA4 Histone acetyltransferase Transcription activation (12)

H3K4 AIRE (Transcription factor) Transcription activation (37,38,40,41)
ATRX (ATP-dependent chromatin remodeler) Chromatin remodeling

Heterochromatin formation
(48)

BHC80 LSD1 Histone demethylase Transcription repression (35)
CHD4 NURD (ATPase)

ATP-dependent chromatin remodeler
Histone deacetylase

Transcription repression
Chromatin remodeling

(43,47)

DNMT3A (DNA methyltransferase) Transcription repression (42)
DNMT3L (Regulatory factor of DNA

methyltransferase)
Transcription repression (36)

DPF3 BAF Chromatin remodeling Transcription activation (39,45)
JADE1 HBO1 Histone acetyltransferase Transcription activation (44)
TRIM24 (Transcriptional intermediary factor) Transcription activation

and repression
(46)

H3K9me3 CHD4 NURD (ATPase)
ATP-dependent chromatin remodeler
Histone deacetylase

Transcription repression
Chromatin remodeling

(43,47)

Lid2 (s.p.) (Histone demethylase) Transcription repression (50)
SMCX (Histone demethylase) Transcription repression (49)

H3K36me3 ECM5 (s.c.) (putative histone demethylase) (51)
NTO1 (s.c.) NuA3 Histone acetyltransferase (51)

H3K14ac DPF3 BAF Chromatin remodeling Transcription activation (39,45)

PHD finger-containing proteins: BPTF, bromodomain and PHD finger transcription factor; ING, inhibitor of growth; JARID1A, Jumonji, AT-rich
interactive domain 1A; KDM7A, lysine-specific demethylase 7A; MLL1, mixed lineage leukemia 1; PHF, PHD-finger protein; PYGO, Pygopus;
RAG2, recombination activation gene 2; TAF3, TATA box-binding protein-associated factor 3; AIRE, autoimmune regulator; CHD4,
chromodomain helicase DNA-binding protein 4; DNMT, DNA (cytosine-5)-methyltransferase; DPF3, zinc and double PHD finger, family 3;
TRIM24, tripartite motif containing 24 and Lid2, Little imaginal discs 2.
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Binding of the PHD finger to histone H3 is essential in a
number of fundamental processes, particularly gene regu-
lation, nucleosome remodeling and recombination
(Table 1). Many histone-binding PHD fingers are found
in macromolecules that either possess catalytic activities
(histone demethylases and methyltransferases) or act as
scaffolding proteins that bridge multisubunit enzymatic
complexes to a particular genomic region (Figure 1a).
These in turn further modify the structural properties of
chromatin by removing PTMs, depositing new epigenetic
marks on histones and DNA, or modulating nucleosome
dynamics. For example, recognition of H3K4me3 by the
PHD finger of histone demethylase PHF8 enhances the
enzymatic activity necessary for transcriptional activation
(29,52,53), and association of the BPTF PHD finger with
H3K4me3 stabilizes the nucleosome remodeling NURF
complex at chromatin (11,14).

The biological outcome of a particular PHD–histone
interaction is highly context dependent. The ING2 and
ING5 PHD fingers both bind H3K4me3 in an almost

identical manner; however, these interactions lead to
opposing outcomes (12,13,22,54). ING2 is a component
of the mSin3A histone deacetylase (HDAC) complex
associated with gene repression, whereas ING5 is a com-
ponent of the MOZ/MORF histone acetyltransferase
(HAT) complexes associated with gene activation (54).
Each ING protein links the corresponding complex with
chromatin via its PHD finger, subsequently promoting
activity of the catalytic subunit. Likewise histone
demethylase LSD1 can be stabilized at promoters of
target genes through binding of the PHD finger of the
BHC80 subunit with unmodified H3K4 (35). Whereas
this interaction plays a role in LSD1-mediated transcrip-
tional repression, similar recognition of H3K4 by the
JADE1 PHD1 finger is essential for recruitment of the
gene activating HBO1 HAT complex (44). Thus the down-
stream effect of the interaction between a PHD finger and
histone tail is usually determined by the function of the
complex in which this module resides.

Figure 1. PHD fingers as epigenetic effectors. (a) Histone-recognizing PHD fingers are commonly found in enzymes (left) and proteins that stabilize
enzymatic complexes at chromatin (right) to further modify DNA and histones. (b–d) The specificity of a PHD finger can be increased by (b)
sensitivity to multiple PTMs, (c) combinatorial readout by multiple effectors in the same protein and (d) combinatorial action of multiple effectors in
different subunits of a complex. The effectors could recognize PTMs on a single histone tail (cis mechanism) or different histone tails (trans
mechanism).
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Structural basis of H3K4me3 recognition

Comparison of the atomic-resolution structures of the
PHD fingers in complex with H3K4me3 reveals a highly
conserved histone-binding mechanism (Figure 2a) (55).
The H3K4me3 peptide is bound in an extended conform-
ation in a large binding site. The peptide lies anti-parallel
to and pairs with the existing double-stranded b-sheet of
the protein forming characteristic backbone intermolecu-
lar hydrogen bonds. The fully extended side chain of
trimethylated Lys4 occupies a well-defined pocket in the
PHD finger, the so called aromatic cage, consisting of two
to four aromatic residues. In most of the complexes, the
aromatic rings are positioned almost perpendicular to
each other and to the protein surface and make cation–
p, hydrophobic and van der Waals contacts with the
trimethylammonium moiety of Lys4. An invariable tryp-
tophan residue of the aromatic cage separates the
Lys4me3-binding site from the adjacent Arg2-binding
pocket, which often contains acidic residues that restrain
the guanidinium group of Arg2 through ionic and
hydrogen-bonding interactions. Another distinguishable
feature of the H3K4me3 recognition is the conserved co-
ordination of the N-terminal amino group of Ala1 by a set
of hydrogen bonds involving two to three neighboring
backbone carbonyl groups in the PHD finger
(Figure 2a). Overall the binding interface in the complex
typically includes the first six N-terminal residues of the
histone tail with Thr3, Gln5 and Thr6 uniquely
contributing to each interaction.
The PHD fingers exhibit a high nanomolar to low

micromolar binding affinity for H3K4me3. Such
moderate interactions reflect the fact that PHD fingers
are involved in the regulatory on and off processes and
must be recruited to and released from chromatin on
demand. This in turn requires a delicate balance of
affinities efficient enough to attract and at the same time
low enough to dismiss the proteins when no longer
needed. Similar dissociation constants have been
reported for other histone-binding modules (9), reiterating
the physiological importance of this range of affinities.

Structural basis of H3K4 recognition

The unmodified H3 tail is bound by the H3K4-specific
PHD fingers with the same low micromolar affinity, and
some similarities in the binding mechanisms are evident.
Like H3K4me3, the H3K4 peptide adopts an extended
conformation and forms an additional anti-parallel
b-strand to the b-sheet of the PHD finger (Figure 2b).
The N-amino group of Ala1 of the H3K4 peptide is
hydrogen bonded to two or three backbone carbonyls of
the protein, and the guanidinium moiety of Arg2 is
commonly involved in hydrogen bonding and ionic inter-
actions. The differences arise from the distinct coordin-
ation of Lys4 and in some cases of other basic residues
including Arg8 and Lys9. Additionally, the PHD finger in
general binds a longer stretch of the unmodified histone
tail as compared to H3K4me3, recognizing up to nine
residues of H3K4. The H3K4-specific PHD fingers lack
the aromatic cage which is necessary for the recognition

of Lys4me3 and instead possess a cluster of the acidic
residues N-terminal to the first Cys residue. The acidic
cluster forms hydrogen bonds and salt bridges with the
side chain amino groups of unmodified Lys4 and some-
times Arg8 and Lys9, whereas a hydrophobic residue
preceding the third Cys residue of the PHD finger
inserts between Lys4 and Arg2. Recognition of unmodi-
fied Lys4 is most critical for H3K4-specific PHD fingers,
as methylation of Lys4 abolishes this interaction.

Structural basis of H3K9me3 recognition

CHD4 ATPase contains two sequential PHD fingers
separated by a short linker. While both PHD fingers in-
dependently recognize unmodified H3K4, the second
PHD2 finger binds �20- and �30-fold stronger to
H3K9me3 and H3K9ac, respectively (43,47). Analysis of
the solution structures of the CHD4 PHD2 finger in
complex with the H3K9me3 peptide and in the free state
reveals an increase in the number of well-ordered residues,
particularly, in those regions of the PHD finger that
contact the N-terminus of the peptide and Lys9me3 (47).
Although the CHD4 PHD2 finger does not have an
aromatic cage, found in the chromodomain, a major
reader of H3K9me3 (56,57), the backbone amide of
Lys9me3 is stabilized through the formation of a
hydrogen bond with an aspartate, and the solvent-exposed
aromatic ring of a phenylalanine of the protein makes a
cation–p interaction with the trimethylammonium group
of Lys9, most likely accounting for the observed increase
in binding affinity (Figure 2c).

Structural basis of H3K14ac recognition

The tandem PHD12 finger of DPF3 has been shown to
bind H3K14ac and other acetylated histone tails (39,45).
In contrast to CHD4, there is no linker between the two
PHD modules in DPF3, and they form a unique globular
domain. The tandem DPF3 PHD12 finger recognizes the
unmodified H3K4 peptide as strongly as a single PHD
finger recognizes H3K4, exhibiting a �2 mM affinity;
however, acetylation of Lys14 increases binding
4-fold (45). In the PHD12–H3K14ac complex, the first
four N-terminal residues of the peptide are bound by the
second PHD2 module in a manner similar to how unmodi-
fied H3K4 is bound by a single PHD finger (Figure 2c).
The first PHD1 finger, however, is unique and accommo-
dates Lys14ac in the binding pocket composed of hydro-
phobic and charged residues, thus expanding the list of
acetyllysine recognizing modules beyond bromodomain,
a well-known reader of acetylated lysine marks (58,59).

Sensitivity to multiple epigenetic marks

The PHD finger binds a significant stretch of the histone
tail, which allows for sensing of more than one PTM. This
ability to read a combination of PTMs augments specifi-
city and affinity and is imperative for the recruitment of
the chromatin modifying complexes to distinct genomic
regions (Figure 1b). A second PTM may also act as a
negative regulator, impeding interaction with the target
PTM. Several studies have shown that PHD fingers are
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Figure 2. The molecular mechanism of histone recognition by the PHD fingers. PHD fingers are specific for (a) H3K4me3 or (b) unmodified H3K4.
The histone-binding sites of the BPTF (2F6J), ING2 (2G6Q), BHC80 (2PUY) and AIRE (2KE1) PHD fingers are shown. The binding pockets for
Ala1, Arg2, Lys4me3 (or Lys4) and Lys9 of the H3K4me3 and H3K4 peptides are colored light blue, orange, pink and light green, respectively.

(continued)
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sensitive to the methylation, acetylation and phosphoryl-
ation states of residues surrounding Lys4 (Figure 2c).
Methylation of Arg2, which negatively correlates with
Lys4 methylation in eukaryotes (60,61), differentially
affects binding of the PHD fingers to the H3 tail,
enhancing or inhibiting this interaction in some cases
and having no effect in others. The guanidinium group
of Arg2 forms ionic and hydrogen bonding contacts
with acidic residues in a number of H3–PHD complexes,
such as H3K4me3-specific BPTF, INGs, JARID1A,
KDM7A, TAF3 and YNG1 and H3K4-specific AIRE
PHD1 and DPF3 PHD2. Substitution of the acidic
residues diminishes this interaction, suggesting a role of
unmodified Arg2 in binding energetics. In agreement,
affinities of the ING2, ING4 and TAF3 PHD fingers for
H3K4me3 and AIRE PHD1 for H3K4 decrease by a
�10-, 6-, 8- and 46-fold, respectively, when Arg2 is
dimethylated (19,23,25,40), but only a limited effect is
seen for BPTF (17). In the DNMT3L and PYGO1
complexes, where the side chain of Arg2 is fully exposed
to solvent, Arg2 methylation is permissible (21,42). The
Arg2-binding pocket in RAG2 lacks an acidic residue
and instead contains a tyrosine residue. Symmetrically
dimethylated Arg2 interacts with the tyrosine, enhancing
binding of the RAG2 PHD finger to H3K4me3
�1.4-fold (19).
All PHD fingers known to associate with unmodified

H3K4 do not tolerate methylation of Lys4.
Furthermore, the more methyl groups that are present at
Lys4, the weaker the interaction becomes. Conversely,
H3K4me3-specific PHD fingers do not recognize unmodi-
fied H3K4, and binding is diminished concomitantly with
the removal of each methyl group in Lys4me3. The modi-
fication of Lys9 is important in binding of AIRE and
CHD4. Acetylation or methylation of Lys9 causes a �5-
to 7-fold decrease in binding affinity of the AIRE PHD1
finger (40); however, it potentiates binding of the CHD4
PHD2 finger to H3K4 (43,47). Association of TAF3 with
H3K4me3 is augmented by acetylation of Lys9 and Lys14
(17), whereas acetylation of Lys14 enhances binding of the
tandem DPF3 PHD finger to H3K4 (45). The unmodified
N-terminal amino group of Ala1 is required for the inter-
action as acetylated H3A1ac peptide is not recognized by
the CHD4 PHD fingers (43,47).
In a recent study by Garske et al. (62), the effect of

PTMs within the first 10 residues of the histone H3 tail
on binding of several PHD fingers has been examined by a
combinatorial library screen. The screening confirmed that
the PHD fingers of AIRE, BHC80, CHD4, ING2 and
RAG2 show a strong sensitivity to the methylated state
of Lys4 (43,47,62). It was also found that phosphorylation
of Thr3 and Thr6 of the peptide inhibits binding of the
PHD fingers to either H3K4me3 or H3K4, whereas the
effect of methylation of Arg2 and Lys9 varies and depends

on the particular module. The negative effect of Thr3 and
Thr6 phosphorylation or Arg2 conversion to citrulline
on the interaction of the BPTF and RAG2 PHD fingers
with H3K4me3 is observed in the antibody-based micro-
arrays (63).

PHD FINGERS BIND TO NON-HISTONE PROTEINS

In addition to recognizing histone tails, several reports
have implicated PHD fingers in binding to non-histone
proteins, expanding their role as transcriptional regulators
and signaling components.

Pygopus (Pygo) and a co-factor BCL9 control
b-catenin-mediated transcription within the
Wnt-signaling pathway. The PHD finger of homologous
human PYGO1 and PYGO2 can simultaneously bind
H3K4me2/3 and homology domain 1 (HD1) of BCL9
(B9L in the case of PYGO2) (21,34). These concomitant
interactions of the PYGO1/2 PHD finger are essential for
Wnt responses during development. The crystal structure
of the ternary complex, PYGO1 PHD finger bound to
H3K4me2 and HD1, reveals that the PHD–HD1 interface
involves two sets of contacts. A loop connecting the sixth
and the seventh zinc-coordinating Cys residues is unusual-
ly long in the PYGO1 PHD finger. In the complex, this
loop folds into an a-helix (a1) and a b-strand (b5) with the
latter forming a parallel b-sheet with the only b-strand of
HD1, and the former making hydrogen bonding and
hydrophobic contacts with the a-helix of HD1.

The H3K4me2-binding pocket is located on the
opposite side of the PYGO1 PHD finger (Figure 3a). It
consists of four aromatic and hydrophobic residues but
also contains an aspartate that forms a hydrogen bond
with the proton of the dimethylammonim group of
Lys4. This additional contact may account for a �2-fold
increase in affinity toward H3K4me2 versus H3K4me3.
There is no discernible pocket for Arg2; however, Ala1
of the peptide is bound by a typical backbone carbonyl
net, whereas the side chain of Ala1 is involved in the inter-
actions with hydrophobic residues in the a1 helix and the
b5-strand of the PHD finger, exactly the same elements
that contact BCL9 HD1. Association of BCL9 HD1 with
PYGO1 PHD drives a short loop between the a1 helix and
the b5-strand out, opening up the binding cavity for Ala1
of the H3K4me2 peptide (21). Likewise in the homologous
PYGO2 complex, binding of B9L HD1 triggers allo-
steric remodeling of the binding channel for Thr3 of the
peptide (34). Such allosteric effects enhance affinities
of the HD1-bound PHD fingers of PYGO1 and PYGO2
to H3K4me2 �2- to 3-fold. The PYGO1/2
PHD–H3K4me2-HD1 assembly represents the first
example of the histone-binding function of a PHD finger
being modulated by a co-factor.

Figure 2. Continued
The bound peptides are shown as a ribbon diagram and colored green. (c) Binding of the PHD fingers to H3K4me3 and H3K4 is modulated by
additional PTMs. The structures of the PHD fingers of RAG2 (2V87), TAF3 (2K17), CHD4 (2L75) and DPF3 (2KWJ) are colored as in (a and b).
PTMs that enhance or inhibit recognition of the primary PTM are listed and colored red and blue, respectively. An aspartate residue in the aromatic
cage of TAF3 and the Lys14ac-binding pocket of DPF3 are colored wheat and yellow, respectively.

9066 Nucleic Acids Research, 2011, Vol. 39, No. 21



MLL1 methyltransferase is a member of the trithorax
family of evolutionarily conserved proteins required for
maintaining the expression levels of HOX and other de-
velopmental genes. Although MLL1 generally promotes
gene expression, it associates with numerous co-factors
that activate or suppress transcription. MLL1 contains
three consecutive PHD fingers, the third of which has
been shown to bind H3K4me3, the product of the enzym-
atic activity of the MLL1 SET domain that methylates
Lys4 (30–32). Additionally, the PHD3 finger was found
to interact with the RNA recognition motif (RRM) of a
nuclear cyclophilin Cyp33, an MLL1-associated
co-repressor (64). Several groups revealed the molecular
basis of these interactions (30–32,65) and Wang et al. (30)
uncovered the mechanism of the PHD3–H3K4me3–RRM
assembly by determining the crystal structure of the PHD3
finger and adjacent bromodomain in complex with the
H3K4me3 peptide and the solution structure of an
a-helix of the PHD3 finger in complex with the Cyp33
RRM domain.

The structure of the MLL1 PHD3–bromodomain
cassette in the apo-state demonstrates that the two
modules are in close contact involving the C-terminal
a-helix of the PHD3 finger (30). A proline residue in the
linker connecting the PHD3 finger with the bromodomain
adopts a cis conformation, facilitating the formation of a
pair of salt bridges between the two modules. Although
this bromodomain does not bind acetylated lysine
residues, it plays a significant role in modulating the
function of the PHD3 finger, affecting binding to both
H3K4me3 and Cyp33. In the presence of the
bromodomain, the binding affinity of the PHD finger
for H3K4me3 is augmented by �20-fold, whereas associ-
ation with an isolated Cyp33 RRM domain is abrogated
because the RRM-binding site is blocked by the
bromodomain. Remarkably, when full-length Cyp33 was

tested, the interaction between the PHD3 finger and
Cyp33 RRM was restored. Cyp33 is a peptidyl–prolyl
isomerase (PPIase) that generally catalyzes cis–trans
isomerization of a proline residue and acts on specific
proline residues in the histone H3 tail (32). Here, the
Cyp33 PPIase domain converts a Pro–His peptide bond
in the MLL1 PHD3–bromodomain linker from a cis to
trans conformation disrupting the PHD3–bromodomain
contacts and freeing the previously occluded Cyp33
RRM-binding site allowing PHD3 to interact with
RRM (30).
Binding of PHD3 to RRM involves a C-terminal a-helix

of the PHD finger, the same helix that associates with the
bromodomain. This a-helix interacts with one face of
the anti-parallel b-sheet and a loop connecting two of
the b-strands of the RRM domain (Figure 3b). The
RRM-binding site is adjacent to and does not visibly
overlap with the H3K4me3-binding site, however the
PHD–bromodomain cassette binds to H3K4me3 2.7-fold
weaker in the presence of full-length Cyp33 (30). Likewise
binding of a single PHD3 finger is reduced by 5.7-fold in
the presence of the RRM domain of Cyp33, and inter-
action of the PHD3 finger with Cyp33 RRM is decreased
by 4.4-fold in the presence of H3K4me3 (32).
The recognition of H3K4me3 and Cyp33 by the MLL1

PHD finger is a striking example of the context dependent
function of a PHD finger, aiding to interpret the different
regulatory environments of MLL1 and facilitating the
switch from transcriptional activation to repression.
Overall, these comprehensive studies uncovered a remark-
ably complex mechanism of functioning and regulation of
the MLL1 PHD3 finger. However, several remaining
questions need to be addressed. For example whether
the PHD3 finger is able to concomitantly recognize both
binding partners, how the bromodomain enhances
binding of the PHD3 finger to H3K4me3, and what the

Figure 3. The structural basis of non-histone recognition by PHD fingers. (a) The ternary complex of the PHD finger of PYGO1 (2VPG).
(b) The PHD finger of MLL1 binds to H3K4me3 (3LQJ) and the RRM domain of Cyp33 (2KU7).
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role is of the interaction of the Cyp33 RRM domain with
an RNA (65).

COMBINATORIAL READOUT BY THE PHD FINGER

As PHD fingers are present in a variety of proteins with
diverse functions but uniformly recognize H3K4me3 or
H3K4, several mechanisms exist to increase specificities
of the individual proteins and differentiate their functions.
An initial level of augmenting the specificity of a PHD
finger is provided by its sensitivity to multiple PTMs
(described above) (Figure 1b). The second level involves
the combinatorial action of two or more epigenetic readers
(Figure 1c). We note that the majority of PHD fingers are
found in proteins that contain several histone-binding
modules including multiple copies of PHD fingers or a
combination of a PHD finger with other effectors,
such as bromodomains, chromodomains, Tudor, etc.
commonly specific for distinct PTMs. These proteins
seldom act alone and more often comprise multisubunit
complexes. The interplay between effectors present in the
individual subunits within a complex generates a multifa-
ceted network of intertwined contacts that can provide an
even higher level of specification (Figure 1d). Together,
these contacts ensure the recruitment of a particular
complex to a specific genomic site, which is crucial for
eliciting a distinct biological outcome.

Combinatorial action in cis

The PHD finger and a neighboring domain could bind
multiple PTMs within the same histone tail or act in cis
(Figure 1c). The neighboring domain could be another
PHD finger, a distinct effector, or a catalytic
histone-binding unit. DPF3 is an example of a tandem
PHD finger, in which the two PHD modules act in com-
bination to recognize unmodified H3K4 via one module
and acetylated Lys14 (H3K14ac) via another (45). This
multivalent association with the histone tail plays a role
in transcriptional activation of the DPF3 target genes.
Combinatorial reading of PTMs by a PHD finger and a

catalytic histone-binding domain has been demonstrated
for the histone demethylases PHF8 and KIAA1718 (29).
PHF8 contains a PHD finger followed by a Jumonji
domain that demethylates H3K9me1/2 and H4K20me1
(29,52,53). An isolated Jumonji domain is promiscuous
and can demethylate other methylated lysine residues;
however, binding of the adjacent PHD finger to
Lys4me3 in a doubly modified H3K4me3K9me2 peptide
directs the substrate specificity of PHF8 to H3K9me2 and
increases its enzymatic activity by 12-fold (29). On the
other hand, KIAA1718 which also has a PHD–Jumonji
combination becomes less specific for H3K9me2 and more
specific for H3K27me2 upon interaction of the PHD
finger with H3K4me3. The crystal structures of the
PHF8 PHD–Jumonji modules bound to the
H3K4me3K9me2 peptide and of KIAA1718 PHD–
Jumonji bound to H3K4me3K27me2 elucidated the role
of the H3K4me3 mark in regulating the substrate specifi-
city. In the complexes, PHF8 adopts a bent conformation,
allowing for the PHD finger and the Jumonji domain to

simultaneously interact with Lys4me3 and Lys9me2, re-
spectively. In contrast, KIAA1718 is in an extended con-
formation that increases the distance between the active
sites of the two modules, hence precluding binding of the
Jumonji domain to Lys9me2 when the PHD finger asso-
ciates with Lys4me3 but allowing binding to the lysine
residues further apart from Lys4me3, such as Lys27me2.
These studies not only illuminated the intricate mechan-
ism of reading and erasing of PTMs by paired effectors in
a single macromolecule but also revealed a crosstalk
involving epigenetic marks with opposing roles in tran-
scription [reviewed in (5)].

The recent study by Tsai et al. (46), has identified a
tandem PHD–bromodomain cassette in a co-activator of
oestrogen receptor-a, TRIM24, that combinatorially
targets two marks via distinct non-catalytic readers. It
was found that the TRIM24 PHD finger binds to unmodi-
fied H3K4, whereas the adjacent bromodomain interacts
with the histone tail acetylated at Lys23 (H3K23ac)
contributing to the recruitment to and activation of
oestrogen-dependent genes associated with cell prolifer-
ation and cancer development. The crystal structures of
the PHD–bromodomain cassette determined with each
peptide bound individually, careful measurements of
binding affinities and modeling indicate that the two
modules of TRIM24 can simultaneously bind both
marks on the same tail. The dual recognition results in a
significant, �100-fold increase in affinity for the
H3K4K23ac peptide as compared to affinities for
shorter peptides containing only a single mark,
demonstrating the power of combinatorial readout.

Combinatorial action in trans

A major subunit of the ATP-dependent nucleosome re-
modeling NURF complex, BPTF contains a PHD finger
specific for H3K4me3 and a bromodomain that recognizes
H4K16ac and other acetylated Lys residues of the histone
H4 tail (11,14). The structure of the BPTF region
comprising both modules demonstrates that they are con-
nected by an a-helical linker and the binding sites of the
PHD finger and bromodomain are far apart (11). The
rigid nature of the linker suggests that the two modules
interact with histone H3 and H4 tails in either a single
nucleosome or a pair of adjacent nucleosomes.
Subsequent modeling studies reveal that the PHD–
linker–bromodomain assembly fits complementarily on
the surface of a single nucleosome with the PHD finger
and the bromodomain concurrently interacting with
H3K4me3 and H4K16ac, respectively (66). More
recently the intranucleosomal engagement of the two
domains and co-existence of the H3K4me3 and
H4K16ac marks on a single nucleosome have been con-
firmed experimentally (67) (Figure 1c, trans).

An even more complex combinatorial trans action can
be seen in chromatin modifying complexes containing
multiple PHD fingers and other PTM readers in different
subunits (Figure 1d). For example, the HBO1 HAT
complex acetylates lysine residues of histone H4 and
consists of several subunits including JADE1 and ING4,
both of which contain PHD fingers (54). Binding of the
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JADE1 PHD1 finger to unmodified H3K4 is essential for
localization of the HBO1 complex at chromatin, whereas
interaction of the ING4 PHD finger with H3K4me3
augments acetyltransferase activity of HBO1 and drives
acetylation at ING4 target promoters (26,44). Clearly,
multivalent recognition of PTMs by a combination of ef-
fectors within the same complex and the cooperative or
competitive nature of these interactions provide a
compelling way to fine-tune specificities, affinities and
breadth of functions of these complexes.

CONCLUSION REMARK

PHD fingers are versatile components of the epigenetic
machinery, which act in a multifaceted manner to alter
chromatin structure and dynamics and control fundamen-
tal DNA processes such as transcriptional activation and
repression. A wealth of studies over the past several years
reveals that the biological consequence of histone or
non-histone recognition by PHD fingers is highly
context dependent and often is the result of combinatorial
reading of an epigenetic landscape and the impact of the
local regulatory environment (Figure 4). The continuously
varying epigenetic landscape is the topic of much discus-
sion, and how the combinations of histone and DNA
modifications direct specific chromatin states has yet to
be elucidated. To fully understand the role of the PHD
finger in this process, it is imperative to move forward in
characterizing the combinatorial action of multiple effect-
ors, including PHD fingers, present in the individual
subunits of the same chromatin modifying complexes.
Another important objective is to study interactions of
the PHD fingers in the context of the full nucleosome
rather than with peptidic fragments, as has just been
reported by Ruthenburg et al. (67). Lastly, more
non-histone partners of PHD fingers are likely to be dis-
covered, further defining the overall biological role of this
large family of epigenetic effectors.
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