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Abstract

Automated assessment and prediction of marital outcome in couples therapy is a challeng-

ing task but promises to be a potentially useful tool for clinical psychologists. Computational

approaches for inferring therapy outcomes using observable behavioral information

obtained from conversations between spouses offer objective means for understanding

relationship dynamics. In this work, we explore whether the acoustics of the spoken interac-

tions of clinically distressed spouses provide information towards assessment of therapy

outcomes. The therapy outcome prediction task in this work includes detecting whether

there was a relationship improvement or not (posed as a binary classification) as well as dis-

cerning varying levels of improvement or decline in the relationship status (posed as a multi-

class recognition task). We use each interlocutor’s acoustic speech signal characteristics

such as vocal intonation and intensity, both independently and in relation to one another, as

cues for predicting the therapy outcome. We also compare prediction performance with one

obtained via standardized behavioral codes characterizing the relationship dynamics pro-

vided by human experts as features for automated classification. Our experiments, using

data from a longitudinal clinical study of couples in distressed relations, showed that predic-

tions of relationship outcomes obtained directly from vocal acoustics are comparable or

superior to those obtained using human-rated behavioral codes as prediction features. In

addition, combining direct signal-derived features with manually coded behavioral features

improved the prediction performance in most cases, indicating the complementarity of rele-

vant information captured by humans and machine algorithms. Additionally, considering the

vocal properties of the interlocutors in relation to one another, rather than in isolation,

showed to be important for improving the automatic prediction. This finding supports the

notion that behavioral outcome, like many other behavioral aspects, is closely related to the

dynamics and mutual influence of the interlocutors during their interaction and their resulting

behavioral patterns.
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Introduction

Behavioral Signal Processing (BSP) [1, 2] refers to computational methods that support mea-

surement, analysis, and modeling of human behavior and interactions. The main goal is to

support decision making of domain experts, such as mental health researchers and clinicians.

BSP maps real-world signals to behavioral constructs, often abstract and complex, and has

been applied in a variety of clinical domains including couples therapy [1, 3, 4], Autism Spec-

trum Disorder [5], and addiction counseling [6, 7]. Parallel work with focus on social context

rather than the health domains can be found in [8, 9]. Notably, couple therapy has been

among one of the key application domains of Behavioral Signal Processing. There have been

significant efforts in characterizing the behavior of individuals engaged in conversation with

their spouses during problem-solving interaction sessions. Researchers have explored infor-

mation gathered from various modalities such as vocal patterns of speech [3, 4, 10, 11], spoken

language use [1, 12] and visual body gestures [13]. These studies are promising towards the

creation of automated support systems for psychotherapists in creating objective measures for

diagnostics, intervention assessment and planning. This entails not only characterizing and

understanding a range of clinically meaningful behavior traits and patterns but, critically,

also measure behavior change in response to treatment. A systematic and objective study

and monitoring of the outcome relevant to the respective condition can facilitate positive and

personalized interventions. In particular, in clinical psychology, predicting (or measuring

from couple interactions, without couple, or therapist provided metrics) the outcome of the

relationship of a couple undergoing counseling has been a subject of long-standing interest

[14–16].

Many previous studies have manually investigated what behavioral traits and patterns of a

couple can tell us of their relationship outcome, for example, whether a couple could success-

fully recover from their marital conflict or not. Often the monitoring of outcomes involves a

prolonged period of time post treatment (up to 5 years), and highly subjective self reporting

and manual observational coding [17]. Such an approach suffers from the inherent limitations

of the qualitative observational assessment, subjective biases of the experts, and great variabil-

ity in the self-reporting of behavior by the couples. Having a computational framework for

outcome prediction can be beneficial towards assessment of the employed therapy strategies

and the quality of treatment, and also help provide feedback to the experts.

In this article, we analyze the vocal speech patterns of couples engaged in problem-solving

interactions to infer the eventual outcome of their relationship—whether it improves or not–

over the course of therapy. The proposed data-driven approach focuses primarily on the

acoustics of the interaction; unobtrusively-obtainable, and known to offer rich behavioral

information. We adopt well-established speech signal processing techniques, in conjunction

with novel data representations inspired by psychological theories to design the computational

scheme for the therapy outcome prediction considered. We formulate the outcome prediction

as binary (improvement vs. no improvement) and multiclass (different levels of improvement)

classification problems and use machine learning techniques to automatically discern the

underlying patterns of these classes from the speech signal.

We compare the prediction using features directly derived from speech with prediction

using clinically relevant behavioral ratings (e.g., relationship satisfaction, blame patterns, nega-

tivity) manually coded by experts after observing the interactions. It should be noted that

human behavioral codes are based on watching videos of interactions that provide access to

additional information beyond vocal patterns (solely relied by the proposed prediction

scheme) including language use and visual nonverbal cues.
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In addition to evaluating how well directly signal-derived acoustic features compare with

manually derived behavioral codes as features for prediction, we also evaluate the prediction of

the outcome when both feature streams are used together.

We also investigate the benefit of explicitly accounting for the dynamics and mutual influ-

ence of the dyadic behavior during towards the prediction task. The experimental results show

that dynamic functionals that measure relative vocal changes within and across interlocutors

contribute to improved outcome prediction.

The outline of the paper is as follows. We discuss relevant literature in Section 1. The Cou-

ple Therapy Corpus used in the study is described in Section 1 and illustrated in Fig 1. An

overview of the methodologies for speech acoustic feature extraction is given in Section 1 and

the use of behavioral codes as features is described in Section 1. We provide an analysis of the

proposed acoustic features in Section 1 and the results of the classification experiments in Sec-

tion 1. Finally, we conclude the paper with a discussion of our findings as well as possible

directions for future research in Section 1.

Related literature

Clinical psychotherapy is an important treatment method for a wide range of psychological

problems and disorders including depression, addiction, anxiety, domestic violence and rela-

tionship distress. Studies have shown that a typical therapy client is likely to be better off than

75% of the untreated individuals, on average [18].

Over the years, different approaches of psychotherapy have been proposed with methodical

differences, but with a shared common goal focused on the personal and social well-being of

the individual. In couple therapy, some widely used approaches are Emotionally Focused Cou-

ples Therapy (EFCT) [19], Gottman’s Method of Couples Therapy [20], Traditional Behavioral

Couples Therapy (TBCT) [21], Cognitive Behavioral Couples Therapy (CBCT) [22, 23], and

Integrative Behavioral Couples Therapy (IBCT) [24]. Many studies have compared these dif-

ferent schools of therapy in terms of effectiveness and realizability. Recent works have shown

that even though TBCT works well in a short-term basis, IBCT turns out to be the most effec-

tive one towards a positive long-term marital outcome [16, 25].

Apart from the inherent nuances of therapy methods, the subjectivity of the therapist and

the specific characteristics of the clients can potentially play an important role in therapy.

Fig 1. Overview of the work described in this paper. We use 2 out of 3 interactions (shown on left). We

employ automated feature extraction from acoustics and/or human behavioral coding (center) and machine

learning (right) to derive outcomes.

https://doi.org/10.1371/journal.pone.0185123.g001
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Therefore, it is critical to assess the quality and effectiveness of the therapy process by observ-

ing its outcome. Based on this objective, there have been numerous studies on therapy out-

comes and comparative analysis of different therapy methods relating to the outcomes. Many

of these works focus on the very definition of therapy outcome and the choice of outcome vari-

ables by accommodating contextual differences [18, 26–30]. Often, monitoring of outcome

over the course of the therapy serves as a good indicator of therapy effectiveness. This has trig-

gered a lot of research on longitudinal outcome studies [31, 32].

Among the different outcome studies, a considerable amount of research has been under-

taken in the specific domain of couple therapy, including those that have focused on defining

proper metrics for marital therapy outcomes. One of the obvious outcomes, of course, would

be the information if the couple stayed in the relationship or not within a certain time after the

intervention. However, divorce (or absence of it) does not always reflect the degree of marital

satisfaction; whether a couple in a distressed relationship would go through divorce depends

on a number of external factors like age, education, culture, religious beliefs and socio-eco-

nomic status of the spouses [33, 34]. Most of the studies on couple therapy outcomes have

focused on outcomes of the couples based on their behavior, either observed from their inter-

actions or through carefully designed questionnaires. One of the first studies of this kind was

conducted by Bentler and Newcomb [35], who found a high correlation between certain psy-

chological variables, such as self-perception and other personality traits, reported by the couple

through a questionnaire and their marital success. As a general trend of outcome studies in

couple therapy, researchers typically have proposed relevant behavioral descriptors of the cou-

ple and analyzed how they are related to, and predictive of, marital outcome. Gottman and

Krokoff [36] found certain interaction patterns, such as defensiveness and withdrawal, to be

detrimental for long-term marital success from the empirical studies they conducted. In [37],

the authors have shown codified observed behaviors, such as withdrawal, sadness, and humor,

to be indicators of marital success with a cascade representation of possible gradual deteriora-

tion with time. Another set of constructed variables, such as disappointment, withdrawal, and

fondness, describing the history of oral interviews of the couple were used by Buehlman et al.
[38]. Another work by Gottman et al. [39] received widespread attention for prediction of mar-

ital satisfaction and divorce. It also made many recommendations for therapy based on what it

deemed beneficial or detrimental for marriage. Other works with similar behavioral coding-

based approaches for the prediction of marital success or failure can be found in the literature

[40–42]. A comprehensive survey of the marital outcome prediction studies can be found in

[43]. Further, two recent books by Gottman [44, 45] have summarized his work on this topic.

In summary, a significant amount research in clinical psychology has sought answer to the

question “What leads to a divorce or an unsuccessful marriage?”. Even though these studies

have provided important insights into the key factors for marital success, they suffer from cer-

tain drawbacks. According to Heyman [46], these shortcomings can range from technical

issues like lack of rigorous statistical validation of the hypotheses of the studies to more practi-

cal shortcomings such as lack of sufficient reliable data [47]. Another criticism of these studies

is that the high prediction accuracy rates reported are often misleading as the experiments

were mostly data-fitting analysis instead of prediction with cross-validation and hence subject

to overfitting [48]. The limitation of using self-reporting behavioral traits by the couples was

highlighted in [49]. Kim et al. [50] also argued against the generalizability of these works and

highlighted the importance of further research and investigation of behavioral process models

of relationship outcomes. Another work [51] also raised concern about some possible method-

ological flaws in many previous works and in [39] in particular.

A more recent study investigated different factors being responsible for an unsuccessful

marriage [52]. It categorized these factors into three categories: demographic (e.g., education),
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intrapersonal (e.g., depression) and interpersonal (e.g., intimacy, commitment). According to

the findings of the hierarchical linear modeling technique used in this work, interpersonal fac-

tors have the strongest contribution to the success of a marriage. Moreover, it found that the

effect is even stronger during the initial stages of the therapy. In a follow-up of the same study

2 years after the termination of the therapy, communication factors such as encoded arousal

(based on pitch), power processes were also included [53]. These communication factors were

found to be the strongest predictors of the treatment response after 2 years. Finally, a 5 year

follow-up showed that commitment is a key factor behind outcome [54]. This study was based

on the Couple therapy corpus [25], which is used in the current work and described in a latter

section.

Over the past two decades, psychology and social science have seen a lot of changes in

computational aspects coinciding with advances in machine learning, artificial intelligence

and more recently fields like social signal processing [8, 9, 55, 56] and behavioral signal process-
ing [2, 57]. Researchers have shown that thin slices [58] or small segments of conversational

dynamics can predict interpersonal or behavioral traits or outcomes such as negotiation trends

[59], personality [60, 61], depression [62], deception [63, 64], and agreement [65].

In couple therapy, researchers have investigated various signal processing and machine

learning based computational methods to study key emotions and behaviors expressed

through different modalities of interactions. A majority of these works have used the afore-

mentioned Couple Therapy corpus to validate the signal-driven approaches with real world

data. A particularly relevant work on couple therapy is the one that used speech acoustic fea-

tures to predict different behavioral classes [3, 10], e.g., determining automatically if a person

blames his/her spouse during a conversation. Another work [4] analyzed dyadic interaction

dynamics, notably the process of entrainment or mutual adaptation of behavior through the

course of an interaction and related it to predicting the perceived affectivity. In [1], the

authors presented a framework for extracting behavioral information from language use by

the couples, while [66] showed the utility of combining speech and language information for

behavioral prediction. More recently, dynamic models to characterize the changes in behav-

ior of couples during interactions have been proposed–both in acoustic [67] and lexical

modalities [12], and extensions of the lexical work to produce more robust methods have

been introduces within a neural-net framework [68]. Finally, some early results from our cur-

rent work on prediction of marital outcome from acoustic features were presented in [69]

with a simpler methodology and basic analyses. In the current work, we developed a

improved framework that extracts both short-term and long-term temporal changes in

acoustic features.

Couple therapy corpus and outcomes

The Couple Therapy corpus used in this work is a collection of video recordings of interactions

of real couples in distressed relationships. The corpus was collected as a part of a longitudinal

study on couple therapy by collaborating researchers from University of California, Los Ange-

les and University of Washington [25]. The clinical trial that created this corpus primarily

focused on analyzing whether Integrative Behavioral Couple Therapy (IBCT) is more effica-

cious than Traditional Behavioral Couple Therapy (TBCT). To the best of our knowledge, it is

also the largest such collection of randomized clinical couple therapy interaction data [25]. All

study procedures were approved by the Institutional Review Boards at the University of Cali-

fornia, Los Angeles and the University of Washington, written consent was provided by all

study participants, and treatment was provided according to the principles of the Declaration

of Helsinki.
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One hundred and thirty-four chronically distressed couples were recruited to participate in

this study. All of them were male-female pairs legally married on average for 10.0 years

(SD = 7.6). They were also selected after a screening of psycho-pathological conditions that

might interfere with the behavioral aspects of interest, such as schizophrenia, bipolar disorder

or antisocial personality disorder.

The mean age of the husbands and wives in the study were 43.49 years (SD = 8.74) and

41.62 years (SD = 8.59), respectively. The majority of the participants identified themselves as

Caucasians (husbands: 79.1%, wives: 76.1%); other ethnic groups include African American

(husbands: 6.7%, wives: 8.2%), Asian or Pacific Islander (husbands: 6.0%, wives: 4.5%), Latino

or Latina (husbands: 5.2%, wives: 5.2%) and Native American/Alaskan (husbands: 0.7%).

The study consisted of three recording sessions collected over a span of 2 years for each

couple as illustrated in Fig 1. The first session took place just before the therapy started; the

second one was after 26 weeks of therapy and the last session was recorded after two years.

However, some of the couples did not follow up and as a consequence, the corresponding

post-therapy sessions (26 weeks or 2 years) are missing. Each spouse chose an issue critical to

their relationship and discussed it with their partner in each of these problem-solving interac-

tions. The short-term goal of these sessions was the mutual understanding of these conflicting

problems and to reach a resolution. Every session again has two parts based on the problem

under discussion: whether it was chosen by the husband or the wife. The couples had their

interaction in the absence of any therapist or research staff.

Behavioral Coding: Observational interaction measures by experts: As a part of the corpus,

we also have manually-specified behavioral annotations for each spouse in each session. It was

based on observations of the recorded audio-visual interaction of the couple. The behavioral

attributes of interest, which we refer to as the behavioral codes or simply codes, consist of 33

behavioral dimensions combining two established behavioral coding systems: the Couples

Interaction Rating System (CIRS, [70]) and the Social Support Interaction Rating System

(SSIRS, [71]). These codes are summarized in Table 1. Every session was annotated by multiple

(ranging from 2 to 9) human experts and the average of their ratings are used as the reference.

For the data we used, the average inter-annotator agreement of these codes in terms of Krip-

pendorff’s α [72] measure is 0.7528.

Marital Outcome Measures: The aforementioned couple therapy corpus has been used in a

number of research studies on marital outcome in response to different therapies [16, 17, 25].

The two common scales to measure marital satisfaction are the Dyadic Adjustment Scale

(DAS, [73]) and the Global Distress Scale(GDS, [74]). Simple comparison of pre-therapy and

post-therapy scores using these scales can tell us empirically whether there has been any

improvement in the relationship. Couples were categorized into four categories using the for-

mula provided in Jacobson and Truax [75] and a composite relationship satisfaction score

based on a combination of the DAS and the GDS. This categorical approach is more

Table 1. Behavioral coding systems used in the dataset: SSIRS (Social Support Interaction Rating System) and CIRS (Couple Interaction Rating

System).

Coding

System

Codes

SSIRS Global positive affect, global negative affect, use of humor, influence of humor by the other, sadness, anger/frustration, belligerence/

domineering, contempt/disgust, tension/anxiety, defensiveness, affection, satisfaction, solicits partner’s suggestions, instrumental

support offered, emotional support offered, submissive or dominant, topic being a relationship issue, topic being a personal issue,

discussion about husband, discussion about wife

CIRS Acceptance of the other, blame, responsibility for self, solicits partner’s perspective, states external origins, discussion, clearly defines

problem, offers solutions, negotiates, makes agreements, pressures for change, withdraws, avoidance

https://doi.org/10.1371/journal.pone.0185123.t001
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interpretable than a continuous score and useful for couples therapy domain since the catego-

ries are based on clinically significant change. In psychotherapy, clinical significance of a

change is qualitatively defined as the extent to which therapy moves a couple within the con-

trol group or functional population. The operational definitions of clinical significance are

based on various statistical approaches and are discussed in [75]. The four derived categories

are as follows:

• Type 1: deteriorated (i.e., they got measurably worse over treatment)

• Type 2: no change (i.e., no meaningful improvement)

• Type 3: improved (i.e., they got measurably better over treatment, but still clinically

insignificant)

• Type 4: recovered (i.e., they got measurably better over treatment and their score is above

the upper cut-off for clinically significant distress)

These outcome types represented the recovery (or the lack thereof) of the couples at the

time of either 26 weeks or 2 years relative to the time they started the therapy. In other words,

one such outcome variable is associated with every combination of interaction sessions(pre-
therapy to post-therapy). These outcome ratings will be considered as the reference labels for

our automatic classification tasks in this study.

Even though the original corpus had 134 couples, the outcome ratings could not be

recorded for some couples due to reasons such as dropout of couples from the study, or lack of

sufficient information to rate them. Also the audio quality of some of the recordings was poor.

Moreover, some couples had these outcomes labeled only for one of the post-therapy sessions

(either after 26 weeks or 2 years). After taking into account all such cases in the dataset, we had

141 instances of outcomes, which included (i) outcome after 26 weeks relative to pre-treat-

ment, and (ii) outcome after 2 years relative to pre-treatment. Therefore, we have 141 samples

in our analyzed dataset, every sample belonging to one of the four outcome classes (with rat-

ings 1 though 4) shown in Table 2. Among these, 53 couples have both outcome variables

(26 weeks and 2 years), and 35 couples have only one. There are total 229 recordings with, two

10-minute problem-solving interactions each, resulting in 458 10-minute interactions

altogether.

Note that the data comprise of two therapy treatments: Integrative Behavior Couples Ther-

apy (IBCT) and Traditional Behavior Couples Therapy (TBCT). As such, merging them

together in a single analysis corpus without exploiting knowledge of the therapy style, is

expected to result in a more challenging analysis and more robust models. It introduces no

bias, but increases model generalization. We elected to examine only main effects of acoustic

parameters for several reasons. First, our interest in this manuscript is on predicting relational

outcomes independent of treatment received. Second, and in contrast to earlier work on this

corpus, we examined a large number of acoustic parameters. Tests of interactive effects involv-

ing more than one acoustic parameter, type of treatment received, and pre-treatment satisfac-

tion are important directions for future research; however, these tests are also meaningfully

different research questions than the ones tested in this manuscript. Third, for the purposes of

Table 2. Number of data samples with different outcome ratings.

Outcome Decline No Change Partial Recovery Recovery

Rating 1 2 3 4

Count 12 26 34 67

https://doi.org/10.1371/journal.pone.0185123.t002
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machine learning, robustness can be better achieved through more diverse and larger amount

of data.

Acoustic feature extraction

In this section, we describe the process of acoustic feature extraction from the speech recorded

during dyadic conversations. Our aim is to capture relevant cues from the recorded speech

acoustic signal relevant to the behavioral outcomes of the speaker in general, and the outcome

of the couple therapy in particular. As a starting point, we extracted standard speech features

of various kinds including those which are represent both segmental spectral characteristics

and prosody. Furthermore, we designed additional meta-features from these standard acoustic

features to extract short- and long-term dynamics of the vocal cues of the interlocutors. These

meta-features range from turn-level (L1) features within a session to cross-session features

(L2). We discuss them in further detail in the following subsections.

Pre-processing of audio data

In this section, we describe the pre-processing steps employed to prepare the recorded speech

data for automated feature extraction and subsequent analysis. We started with all the sessions

that we had after the initial screening based on the availability of outcome measures. For every

10 minute session, we had single channel continuous audio recorded from a far-field micro-

phone (16 kHz, 16 bit). Originally the audio was collected with an analog recorder, and digital

copies were made prior to processing of the data.

Voice Activity Detection: In our study, we focus on acoustic features extracted only for

speech regions in the audio recordings of the conversations. For this purpose, we used an auto-

matic Voice Activity Detection (VAD) system as described in [76] to separate the audio stream

into speech and non-speech regions. This robust algorithm exploits the spectral characteristics

of the audio signal to distinguish speech from background audio. More specifically, it extracts

audio features like spectral shape, harmonicity, and long-term spectral variability features with

a long duration context window and feeds them to a Multilayer Perceptron classifier. Since we

do not have VAD ground truth (manually labeled speech and non-speech regions) for couple

therapy dataset, we used the manual transcripts and audio to force-align the text with audio

[10] to come up with a proxy for the ground truth. On the evaluation subset of the data, the

miss rate of VAD (speech detected as non-speech) was 17.1% and false detection rate (non-

speech detected as speech) was 13.6%.

Speaker Diarization: Since the speech was recorded continuously with a single channel

microphone during a conversation, we need to segment the speech regions belonging to each

speaker (the husband’s or the wife’s speech), prior to further speech analyses. To achieve this,

we performed speaker diarization in a two-step method: first, the algorithm segments the

speech stream based on possible speaker changes using Generalized Likelihood Ratio based

criteria in a frame-based analysis, following which speaker-homogeneous segments are clus-

tered using agglomerative clustering [77]. This way we partition the entire interaction session

into regions spoken by each of the speakers. We also automatically identified the speakers as

husband or wife using their average pitch information [78]. This simplistic approach was ade-

quate since these conversations always involve two people of different genders, and whose

pitch patterns tend to be distinct. Based on a performance evaluation similar to VAD, the dia-

rization error rate (DER) was found to be 27.6%. While this error rate for diarization is not sat-

isfactorily low, it might reflect the inaccuracies in the references, which is obtained by

automatic speech-to-text alignment. There are also some instances of overlapped speech in the

dataset which is not recognized by diarization algorithms.
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Different types of acoustic features

Following the pre-processing steps, we extracted various acoustic features from each of the 458

10-minute sessions, which are already segmented into speaker-specific speech regions and sep-

arated from silence regions.

The initial feature extraction is done on a frame-by-frame basis from the audio in every

10ms with a 25msHamming window. Pitch, intensity and Harmonics-to-Noise Ratio (HNR)

were computed with the Praat toolbox [79], while all other features were extracted using open-
SMILE [80]. In total, we used 74 acoustic features in this study, deemed relevant for capturing

behavioral information of interest [10], and summarized in Table 3.

While a larger number of acoustic features could be derived, given the data sample size we

restricted the features to a smaller set that nevertheless captured essential speech properties

grouped into three categories: Prosodic features, Spectral features, and Voice Quality features.

Spectral features: Even though vocal prosody is more easily interpretable in terms of reflect-

ing emotion and other psychological states of a speaker, speech spectral features are known to

encode critical behavioral information [4, 10, 81–84]. In this work, we use 15 Mel-frequency

cepstral coefficients (MFCCs), 8 log Mel-frequency band features (MFB) and 8 line spectral

frequencies (LSFs). The derivatives of these were also used as features.

Prosodic features: Pitch, intensity and their derivatives were the prosodic features used in

our study. These features have been of wide interest in psychology research due to the

interpretability they afford of the underlying behavioral mechanisms [85–87]. Prior behavioral

signal processing research in couples therapy has also validated this through predictive model-

ing [4, 10, 11, 88]. We used Praat [79] to extract pitch (f0) and intensity, while other prosodic

features were extracted using openSMILE [80].

Voice quality features: Jitter and shimmer are two widely used features for voice quality,

and were also considered in this study. Jitter is the short-term cycle-to-cycle variation of pitch,

whereas the analogous quantity for amplitude is called shimmer [89]. It has been shown that

these capture paralinguistic information and are used emotion recognition [90]. We have also

used derivatives of both jitter (also known as jitter-of-jitter) and shimmer. Another voice qual-

ity feature that we considered is Harmonics-to-Noise Ratio (HNR) which estimates the noise

level in human voice signal.

Static functionals

Frame-level analysis results in high dimensional data stream both due to the high dimension

of features extracted within each frame and the high frame rate. In order to represent the vocal

characteristics in a more compact way, often the statistics of the frame-level features such as

mean, median and standard deviation are obtained. In this work, we do the same for each of

the interlocutors—husband and wife—resulting in two sets of static functionals for every ses-

sion. As these are computed over one session for every speaker without considering the tempo-

ral dynamics or the influence of the other speaker, we call them static functionals. This

Table 3. Basic acoustic features used in the study.

Feature Type Feature Names

Spectral 15 MFCCs and their derivatives, 8 MFBs

and their derivatives, 8 LSFs and their derivatives

Prosody Intensity, Pitch and their derivatives

Voice quality Jitter, Shimmer, Harmonics-to-Noise Ratio and their derivatives

https://doi.org/10.1371/journal.pone.0185123.t003
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approach is common in most literature looking for session-level attributes from frame-level

speech analysis [3, 10, 91, 92].

Dynamic functionals

Most literature aimed at extracting emotion or other behavioral constructs at a global level

from speech relies on using static functionals over the frame-level features or low-level descrip-

tors [10, 82, 91]. This is a reasonable way to reduce the representation overhead of information

for high-level inference. Yet, it has been also recognized that due to a high degree of data com-

pression, important temporal information might be lost. This has also motivated some works

to employ diverse temporal information of speech features, especially in emotion recognition

[93, 94].

Important behavioral patterns are inherently dynamic. For example, dynamic coordination

of speech characteristics reflect the psychological states of the interlocutors [95]. In social con-

texts, they are also reflective of and influential to the nature of social relationships through

communicative behavior [96, 97].

This motivates the use of dynamic features that we discuss below. These are designed to be

robust and to potentially capture dynamical patterns of speech encoded with behavioral

information.

Short term dynamic functionals. The acoustic features described in the previous section

are based on features of each speaker in isolation, and hence do not fully capture interaction

phenomena like dyadic coordination and entrainment. To address this, turn-level analysis is

often adopted, for example, in the context of emotion recognition [98, 99]. Lee et al. [4] have

shown that interlocutors tend to adapt to each other’s behavior during their interaction. This

phenomenon, known as behavioral entrainment, is also reflected in speech acoustic patterns

and thus motivates the use of features which can capture such coupled changes.

The computation method of short-term dynamic functionals is as follows:

1. The mean of each acoustic feature over each turn of a speaker is computed. This way, every

turn taken by the interlocutors is represented by the averaged acoustic features of that turn.

2. Next, we compute the differences (“deltas”) between corresponding features in adjacent

turns within and across speakers. So in the dyadic conversation setting of couples, we

obtain three types of differences—husband-husband (HH) delta, husband-wife (HW) delta,

wife-wife (WW) delta features. One should note that another possible set of functionals,

namely, wife-husband (WH) contain the same information, albeit with a reversed sign.

Hence they are not considered to avoid unnecessarily increasing the feature dimensionality.

3. Finally, we use the statistical functionals of the turn-level delta features (as listed in Table 4)

as short-term dynamic functionals.

The rationale behind using turn-level measures is that these turn-level differences or delta
features can capture useful information about the mutual and self-influence of behavioral

Table 4. Different features representations used in the study.

Representation Input Scope Definition

Raw features Audio 25 ms window as described in Table 3

Static functionals Raw features 1 session (10 minutes) Statistics over entire session

Short-term dynamic Turns 1 session (10 minutes) Statistics over all turns

Long-term dynamic Segments Duration of therapy Delta between two sessions

https://doi.org/10.1371/journal.pone.0185123.t004
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patterns of the speakers over time within a session. The central idea of turn-level delta features

is presented through a schematic in Fig 2.

Long-term dynamic functionals. Since we want to extract information about changes in

a marital relationship between two different time-points: one before therapy and the other

after therapy, we constructed a set of functionals that connects both sessions. They are com-

puted as described below:

1. After removing the silence regions, we split each session into four equal segments.

2. Next, we perform session-level feature normalization by subtracting the mean from each

feature and dividing them by the standard deviation, computed over that session. This

reduces the effect of any mismatch in the recording conditions between sessions.

3. Then we take the average of every feature over each quarter, separately for the husband and

the wife. Each of these average values essentially represents a cumulative sample from the

respective quarters.

4. Finally, we compute differences between representative features from one quarter in the

pre-therapy session and corresponding quarter in the post-therapy session. These represent

long-term functionals of the features with respect to pre- and post-therapy sessions.

Fig 2. Short-term dynamic functionals capture the statistics of differences between the means of features of adjacent turns in the interaction, both

within an interlocutor (e.g., Wife to wife turn changes) but also across interlocutors (e.g., Wife to husband turn changes).

https://doi.org/10.1371/journal.pone.0185123.g002
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Conceptually, the design of the long-term dynamic functionals aims to capture two differ-

ent aspects. Firstly, it captures information from the four quarters of a session thus allowing

the features to represent the coarse evolution of dynamics within a session. Second, it captures

the direct change in dynamics in sessions before and after therapy.

Manually-derived behavioral codes as features

In this study, our aim is to investigate whether and how well we can automatically recognize

the outcome of marital therapy directly from speech acoustic features of a couple’s interaction.

The factors that underlie and influence an outcome such as the relationship status are complex,

and multifaceted. It is within this backdrop, we explore what insights automated signal-driven

machine-learning approach can offer. We are also interested in investigating how this direct

signal-based prediction would compare to a human-driven approach of manually extracting

behavioral information and using it for predicting relationship status change post-therapy.

For this purpose, we used the annotations for a set of behavioral codes provided by experts,

as described in Section 1. The code set consists of 33 codes in total. All behavioral codes were

defined using elaborate guidelines and to be rated on a scale from 1 (“not present”) to 9(“maxi-

mally present”). For example, a rating of 8 on the behavioral code for “blame” means the indi-

vidual was heavily blaming his/her partner during the interaction whereas a rating of 1 means

there was no blame at all.

It should be noted that these codes are based on the judgments of the raters using all modal-

ities of interaction present in the video recordings, i.e., speech patterns, facial expression and

other gestures, and language information. In other words, these codes are based on both verbal

and non-verbal behavior of the couple, made available to the trained annotators.

On the other hand, one limitation of the codes is that since they are each designed for the

behaviors of interest for specific research studies, they do not capture the complete behavioral

information exhibited by the individuals. Furthermore, they are also affected by subjective bias

inherent in human annotations [100].

Correlation analysis of features with outcomes

After extracting the speech acoustic features and computing functionals of those features, we

analyze their relevance to the outcome variable of interest, i.e., the relationship status of the

couple. In this section, we present a correlation-based analysis to compare the relevance of dif-

ferent features to the task of inferring the outcome.

We compute Pearson’s correlation coefficient between the outcome and every acoustic fea-

ture considered (represented by its static functionals). For this experiment, we have binarized

the outcome variable into two classes: recovery (outcome rating 4) vs. no recovery (outcome

rating 1, 2, and 3 combined). Pearson’s correlation ranges between −1 to +1 and quantifies

both the degree and direction of the linear association between the variables. More specifically,

a positive value of the coefficient refers to higher levels of one variable being associated to the

higher levels of the other, while a negative value represents higher levels of one variable being

associated to the negative levels of the other.

In Table 5, we have reported the five most correlated features with the outcome, based on

the magnitude of Pearson’s correlation coefficient. In this analysis, for every acoustic feature,

we chose the functional with the highest correlation (magnitude); then we compared them for

all the features and came up with this list of most relevant features. It should be noted that

some of the features are correlated among themselves and thus this list cannot be considered

as a sufficient way of identifying the efficacy of the features. However, it provides a
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straightforward and interpretable way to look into the relevance of the features, to complement

the classification experiments that we discuss in following section.

Moreover, we perform a two-tailed significance test of correlation to determine if the these

correlations are statistically significant. More specifically, we tested against the null hypothesis

that the corresponding feature is not correlated with the binary outcome variable. For all the

features mentioned in Table 5, p< 0.001 is obtained, which indicates significant correlation.

In Fig 3, we show the scatterplot of two prosodic features (normalized) with highest correla-

tion coefficient values: standard deviation of loudness (r = 0.2983) and mean pitch delta

(r = 0.2772). From the plot (as well as the positive sign of correlation coefficients), one can

infer that high changes in pitch (i.e., high values of mean pitch delta) and a high variation in

loudness (i.e., high values of its standard deviation) are associated with a positive outcome.

Table 5. Pearson’s correlation coefficients of top 5 features and the corresponding functionals (all correlations are statistically significant, i.e.,

p < 0.05).

Rank Feature Category Functional Coefficient p-value

1 MFCC spectral mean −0.2997 0.0003

2 Loudness prosodic std. dev. 0.2983 0.0003

3 MFB spectral median 0.2859 0.0005

4 Jitter voice-quality mean −0.2791 0.0006

5 Pitch delta prosodic mean 0.2772 0.0008

https://doi.org/10.1371/journal.pone.0185123.t005

Fig 3. Scatter plot of two prosodic features(normalized) with highest correlation: Loudness

(r = 0.2983) and pitch delta (r = 0.2772). The corresponding static functionals are standard deviation and

mean, in respective order. Class 0 and class 1 represent respectively no recovery and recovery cases.

https://doi.org/10.1371/journal.pone.0185123.g003
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Classification experiments

The goal of our classification experiments is to investigate the possibility of inferring dis-

tressed couple’s marital outcome using speech patterns of their interaction. As mentioned in

Section 1 and shown in Table 2, the outcome can be of 4 defined ratings [1–4]. It should be

noted from Table 2 that different number of couples belonging to different outcome

classes create a large imbalance, which affects the performance of most classification algo-

rithms [101]. So, we decided to conduct multiple classification experiments, which are listed

below:

Experiment 1: Classification of all data samples into 2 classes, i.e., complete recovery (rating 4)

vs. incomplete or no recovery (ratings of type 1, 2, 3 combined)

Experiment 2: Classification of instances of no (or incomplete) recovery into finer levels, i.e.,
rating 1 vs. rating 2 vs. rating 3

Experiment 3: Classification of each possible outcomes i.e., ratings 1 through 4.

As the number of classes increases from Experiment 1 to Experiment 3, the difficulty of the

classification also increases—Expt. 3> Expt. 2> Expt. 1.

Experiments with different feature sets

For each of these aforementioned experiments, we investigate the performance of various fea-

ture sets extracted from pre- and post-therapy sessions:

1. acoustic features with static functionals,

2. acoustic features with dynamic functionals (both short-term and long-term),

3. acoustic features (with all functionals),

4. manually(human)-derived behavioral codes as features,

5. all features (acoustic features with all functionals and behavioral codes combined)

For each of the classification tasks, we perform z-score normalization on every feature and

use a feature selection method to select an optimal subset of features. Also, to account for vari-

ability in the dataset, a 10-fold cross-validation is performed. While generating the cross-vali-

dation subsets, two post-therapy sessions from the same couple (after 26 weeks and 2 years)

are always put together in a single subset (either training or test). In this way, we ensured that

there was no data contamination between the training and test datasets.

Classifier

We set up the prediction problem as three different classification problems and use the well-

known Support Vector Machine (SVM) algorithm for all three. SVM is a binary classifier by

origin, yet it has been later extended to solve multi-class problems and been shown to perform

well [102]. In these multi-class problems, we used the one-against-all method, which, as the

name suggests, decomposes the multiclass problem into a number of binary classification

problems. Throughout all experiments we used the radial basis function (RBF) kernel. Stan-

dard parameters of RBF kernel SVM, namely C and γ were optimized by a simple grid search,

separately for each feature set and each experiment. As an example, C = 1000 and

gamma = 0.001 were optimally chosen for Expt. 1 with all features.
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Feature selection

The feature extraction (Section 1) leads to a high dimensional feature set, particularly com-

pared to the sample size of training data available. We perform feature selection to choose a

subset of the original features that provides the maximum information in the context of a par-

ticular classification problem. We consider two feature selection approaches in this work.

First, we use a simple correlation-based feature selection method, where we ranked all features

using Pearson’s correlation coefficient (discussed earlier in Section 1) as the selection criteria.

Next, we also use the Mutual Information Maximisation (MIM) [103] feature selection method

available as a part of the FEAST toolbox [104]. In this method, every feature Xk is given a

mutual information score with respect to the class label Y as follows:

JMIM ¼ IðXk;YÞ ð1Þ

Features with the highestmutual information scores are selected and the optimal number of

features is also determined using cross-validation. We obtained better prediction results using

MIM method and decided to utilize it for all the subsequent experiments.

Results

Table 6 shows the classification accuracy of different feature sets using SVM as the classifier. In

the table, mean accuracy and standard deviation over all cross-validation folds are reported for

each setup. In addition, the original dimensionality of each feature set is also reported. Every

feature set was reduced by using feature selection prior to actual classification. For different

experiments, around 10% to 20% of the original features were selected by feature selection.

The first row contains the accuracy by chance, computed as the percentage of samples belong-

ing to the largest class.

As our dataset is highly imbalanced (especially for the multiclass classification), we also

computed F-measures [105] of the predicted labels for each setup. The mean and standard

deviation of F-scores over all cross-validation folds are shown in Table 7. By definition, the F-

measure values lie in the interval (0, 1). A higher value of F-measure signifies better quality in

classification.

There are several observations to make from the obtained classification accuracy and F-

measures. First, in general classification based on speech acoustic features tends to outperform

the one with behavioral codes extracted by human experts. Specifically, acoustic features (with

all functionals) outperformed behavioral codes in terms of accuracy by 2.1% in Expt. 1, 6.9%

in Expt. 2, and 1.6% in Expt. 3 (absolute). It is encouraging to see that using acoustic features

directly derived from the signal can capture useful information relevant to predicting couples’

relationship status, better than even domain experts can via the manually coded behaviors.

Table 6. Classification accuracy (in terms of their mean and standard deviation over all folds of cross-validation) of different experiments (across

the columns) with different feature sets (across the rows).

Featureset Dim. Expt. 1 Expt. 2 Expt. 3

mean SD mean SD mean SD

Chance - 51.8 - 47.2 - 48.2 -

Behavioral codes 264 75.6 13.5 65.4 14.7 61.8 11.2

Static functionals 3552 76.4 10.0 70.9 13.8 63.2 11.4

Dynamic functionals 6696 78.9 7.6 71.1 12.8 61.5 12.3

Acoustic (all functionals) 10248 79.3 10.2 72.6 13.0 64.1 12.8

All features 9144 79.6 7.4 74.6 12.6 64.1 13.2

https://doi.org/10.1371/journal.pone.0185123.t006
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Comparing the different acoustic features, we observe that dynamic functionals perform

better than static ones in Expt. 1 and 2. In Expt. 3, however, static functionals achieved better

accuracy. The significance and complementarity of both can be seen through the use of all the

features.

The results of fusing manual rating based features and acoustic features are mixed. While

fusion appears to help in classification in Experiments 1 and 2, we obtain lower accuracy in

Experiment 3. We believe the reason for this might be due to overfitting of some behavioral

features. For this experiment, the training accuracy (averaged over cross-validation folds)

using all features is 73.4%, about 9% higher than the accuracy on the test subsets. This indicates

that it is possible that some behavioral codes were selected by the feature selection algorithm

from the combined feature set as it helped to achieve low accuracy in training subsets of cross-

validation, but it failed to do so in the test subsets. Moreover, issues like the data imbalance

and data sparsity become more prominent in Experiment 3 due to the higher number of clas-

ses. Another possible explanation for this pattern of findings is that Experiment 3 involves pre-

diction of both changes in and levels of relationship satisfaction while Experiments 1 and 2

involve prediction of only changes in relationship satisfaction. Previously published work on

this corpus [53] has found that associations between acoustic features and levels of relationship

satisfaction depend on wives’ pre-treatment relationship satisfaction and on the type of couple

therapy a couple received. The type of couple therapy and wife pre-treatment relationship sat-

isfaction, although known, were not considered in the analyses in the current paper. It is possi-

ble that introducing this additional prior knowledge could help further.

We also perform a two-tailed exact binomial test [106] to verify whether the difference in

classification results of different feature sets (reflected in accuracy and F-score measures) is sta-

tistically significant. In particular, our null hypothesis is that the results of two feature sets in

each test are not significantly different from each other. The p-values are reported in Table 8.

We observe that using acoustic features produce significantly different results in comparison

to using behavioral codes. The differences in performance of all acoustic features (including

dynamic functionals) vs. static functionals only are significant as well. Finally, in most cases,

Table 7. F-scores(in terms of their mean and standard deviation over all folds of cross-validation) of different experiments (across the columns)

with different feature sets (across the rows).

Featureset Expt. 1 Expt. 2 Expt. 3

mean SD mean SD mean SD

Behavioral Codes 0.68 0.12 0.49 0.11 0.48 0.11

Static functionals 0.56 0.10 0.60 0.07 0.52 0.09

Dynamic functionals 0.63 0.05 0.59 0.07 0.50 0.09

Acoustic (all functionals) 0.70 0.09 0.64 0.08 0.57 0.11

All features 0.78 0.07 0.64 0.09 0.56 0.10

https://doi.org/10.1371/journal.pone.0185123.t007

Table 8. p-values of statistical significance test against the null hypotheses that the there is no signifi-

cant difference in performance of the two feature sets compared. The entries in bold indicate statistically

signifcant difference (p < 0.05).

Comparison Expt. 1 Expt. 2 Expt. 3

Acoustic (all) vs. Behavioral Codes 0.016 0.028 0.027

Acoustic (all) vs. Static 0.034 0.042 0.039

All features vs. Behavioral Codes 0.013 0.008 0.025

All features vs. Acoustic (all) 0.025 0.045 0.079

https://doi.org/10.1371/journal.pone.0185123.t008
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combining acoustic features and behavioral codes make significant difference in performance,

which indicate presence of complementary information in behavioral codes and acoustic fea-

tures. The only exception is all features combined vs. acoustic feature set with all functionals

for Experiment 3. In addition, we report the 95% confidence intervals of the statistic computed

in each hypothesis test using Clopper-Pearson’s method [107] in Table 9. As we can observe,

the confidence intervals are narrow in most cases.

The software employed in this work can be found at http://scuba.usc.edu/software.

Conclusion

In this article, we presented a study on automatically predicting the marital relationship status

of distressed couples in therapy using acoustic information from their speech. We presented a

framework for capturing behaviorally significant acoustic features from the spoken interac-

tions of couples engaged in problem solving discussions. We also introduced knowledge-

driven features of capturing short-term and long-term acoustic descriptors inspired by previ-

ous studies on human interactions. We compared this automatic approach of capturing

important behavioral information directly from speech signal to the traditional approach

taken by psychologists, i.e.,manual coding of behavior from therapy sessions.

In the multiple classification experiments, we observed that the acoustic features from

speech capture more relevant information than the manually constructed behavioral dimen-

sions for predicting the marital outcomes from human experts. This is a promising finding

considering the fact that human coders had utilized multiple modalities (speech, visual and

lexical information) in their coding process. Even though behavioral codes are not designed to

predict outcomes itself, they function as behavioral descriptors of the couple and one can

expect them to be informative towards the outcome based on the observational methods of

psychology.

We also found that dynamic functionals are better than traditional static functionals of

acoustic features for outcome prediction. This work opens up avenues for many other research

applications and similar frameworks for various behavioral outcome prediction tasks such as

assessing results of treatment for various disorders and conditions.

In the future, we can also analyze the importance of other communication modalities

including language use (i.e.,what is being spoken), and visual (e.g., head-movement and other

face and body expressions). One can also investigate more complex temporal modeling (e.g.,
hidden Markov models, dynamical systems modeling) of the behaviors captured through the

acoustic features extracted from the speech signal. Also, automatic recognition of the mental

states (such as emotional arousal) of the speakers and investigation of the dynamics of local

behavioral cues might be useful.
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