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Measuring the distance between two bacterial genomes under the inversion process

is usually done by assuming all inversions to occur with equal probability. Recently, an

approach to calculating inversion distance using group theory was introduced, and is

effective for the model in which only very short inversions occur. In this paper, we show

how to use the group-theoretic framework to establish minimal distance for any weighting

on the set of inversions, generalizing previous approaches. To do this we use the theory

of rewriting systems for groups, and exploit the Knuth–Bendix algorithm, the first time

this theory has been introduced into genome rearrangement problems. The central idea

of the approach is to use existing group theoretic methods to find an initial path between

two genomes in genome space (for instance using only short inversions), and then to

deform this path to optimality using a confluent system of rewriting rules generated by

the Knuth–Bendix algorithm.

Keywords: genome rearrangement, inversion, group theory, Knuth-Bendix algorithm, rewriting systems

1. INTRODUCTION

Large scale changes in the arrangement of genes within a chromosome abound in biology and
are key agents of sequence evolution (Belda et al., 2005; Beckmann et al., 2007). The differences
in the order of genes along a chromosome were used as a phylogenetic marker as early as
1938 (Dobzhansky and Sturtevant, 1938) when Dobzhansky used them to determine different
strains of Drosophila melanogaster. Inversions of chromosomal fragments are believed to be the
main type of rearrangement event in bacterial genomes (Belda et al., 2005).

The first formalization of the problem of determining rearrangement distance between gene
arrangements was done byWatterson et al. (1982). A number of methods have been proposed since
then to determine the distance between genome arrangements in terms of a single rearrangement
operator or a combination of rearrangement operators. In addition to inversions, researchers have
considered translocations of chromosomal fragments (Bafna and Pevzner, 1995, 1998; Yin and
Zhu, 2013), fission/fusion of chromosomes, duplication of sequences (Chaudhuri et al., 2006),
deletion/insertion, and a combination of these different operators (Yancopoulos et al., 2005). These
choices of allowable operations constitute models of rearrangement, in which the genomes in the
data are assumed to only change according to specific rearrangement operators being considered.

The rearrangement distance between a pair of genomes is usually defined as theminimal number
of events from the set of allowed operations required to transform one of the genomes in the pair
into the other. For instance, in determining inversion distance between two genomes, the set of
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legal operations consists of all possible inversions on a gene
sequence. Initial solutions in the case of inversions involve
finding the smallest number of inversion events between two
genomes and the distance was the count of the events. Thus, each
inversion event carries the same weight. If the weight assigned to
an inversion event represents the probability of that event, then
a model where all events have the same weight can be thought of
as finding distances under the uniform distribution. This model
is used in the Hannenhalli and Pevzner (1999) approach, which
draws a graph based on the genomes and calculates the minimal
distance as a function of features of the graph (for example the
number of cycles and paths). These methods are simple and fast
and have been implemented in software for use by the research
community (Sankoff et al., 1991; Tesler, 2002; Shao et al., 2014).

As pointed out above, an implicit assumption underlying
most of these methods is that all rearrangement operators
included in the model are equally probable and thus are given
the same weight in the rearrangement distance. An inversion
model that lies at the other extreme is one that allows only very
short inversions. A group-theoretic model for sorting circular
permutations using inversions acting on two adjacent regions was
described by Egri-Nagy et al. (2014b). In a similar vein, Galvão
et al. (2015) presented an approximation algorithm for sorting
signed permutations by only length 2 reversals while Chen and
Skiena (1996) gave a characterization of linear and circular
permutations that can be sorted by only length k reversals,
for a fixed k.

The biological evidence, however, points somewhere between
these two extremes. For example, focusing only on the evidence
related to inversions, several studies have suggested that
inversions of a short chromosomal fragment are more frequent
than that of longer fragments (Eisen et al., 2000; Seoighe et al.,
2000; Lefebvre et al., 2003; Darling et al., 2008). Similarly, Seoighe
et al. (2000) found a high prevalence of short inversions in
the yeast genome. They observed that the conservation of a
small neighborhood of genes, without absolute conservation of
order or orientation, suggests that small DNA inversions have
contributed significantly to the evolution of ascomycete genomes.
In an analysis of four pairs of related bacterial genomes, Lefebvre
et al. (2003) report an over-representation of short inversions,
especially those involving a single gene, in comparison with a
random inversion model. Analysis of the genome of Y. Pestis has
also found that all inversions were shorter than expected under a
neutral model (Darling et al., 2008).

In view of this information, a natural extension to
the definition of rearrangement distance that allows for
assigning weights (derived from empirical information) to the
rearrangement operators, and calculates the minimal weighted
distance between genome arrangements, might be a better
approximation of the underlying biology. Thus, it would be
useful to have a method to determine weighted inversion
distance, where the use of an inversion operator can be penalized
based on the number of regions it affects, or where the different
operators in a model may be weighted based on type.

In fact, one of the first algorithms for determining
rearrangement distance, proposed in Sankoff (1992) and Sankoff
et al. (1992), is in principle capable of assigning weights for

inversions and transpositions. An approximation algorithm for
sorting a permutation under a particular class of length sensitive
cost models, where the cost function is additive i.e., f (x)+ f (y) =
f (x+y) was presented in Pinter and Skiena (2002). This approach
has been generalized to a wider class of cost functions (Bender
et al., 2008). This work also improved the bounds on the cost for
sorting using an additive cost function. Further pursuing this line
of inquiry, Swidan et al. (2004) extended the results for signed
permutations as well as circular permutations.

In this paper, we present a flexible group-theoretic framework
that can be used to determine the weighted rearrangement
distance for any model of genome rearrangement in which
the rearrangements allowed are invertible. Thus, the framework
we propose is applicable to models involving inversions and
translocations, but not, for instance, insertions and deletions.
The present work is based on the group theoretic approach
of Egri-Nagy et al. (2014b) and Francis (2014). Throughout
the paper, we will focus on determining the minimal weighted
reversal distance.

1.1. Overview of the Framework Introduced
in This Paper
The central idea of the method we propose in this paper is
“path deformation” in genome space. The genome space is the
collection of all possible genomes. A path in the genome space is
a sequence of genomes where consecutive elements are connected
through a single rearrangement operator, and the weight of a
path is the sum of the weights of the operators along the path.
The minimal weighted distance between two genomes is then the
minimal weight of all paths between the genomes.

To find the minimal weighted distance between two genomes,
we start by constructing a path between them. At the same time,
we have also constructed a library of rules in this space. These
rules consist of alternate paths, or shortcuts, for a number of small
paths. We scan the existing path for any subpaths that could be
replaced by a shortcut from our library, generating a new, shorter
path. In this way, the existing path is deformed into a new path
which is of lower weight than the original path (although it might
still not be the least weighted path). Successive iterations of the
deformation step should ideally lead us to an optimal path (this
is guaranteed only in certain circumstances described below).

The library of “rewriting rules” in itself is easy to generate,
given a group defined by a presentation (generators and relations,
defined in section 3). The relations, together with the weighting
functions, can be transformed to give a set of rewriting rules. It
is also not too difficult to construct an initial path between the
two genomes which can be edited using the rules in the library,
at least for some models of genome rearrangement. However it
is not clear at the outset in what sequence to apply the rules in
such a way that one is guaranteed to end with a minimal weight
path from one genome to another. This is where the theory of
rewriting systems is used.

A rewriting system that is guaranteed to produce a minimal
expression, regardless of the sequence in which the rewriting
rules are applied, is called a confluent rewriting system. In this
paper, we use the Knuth-Bendix algorithm to transform our
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rewriting system into a confluent system and use it to construct
a minimal weighted path between two genomes given an existing
path between them (Knuth and Bendix, 1983).

The Knuth–Bendix algorithm is a heuristic whose termination
may be affected by the ordering of the generators, which is
not an intrinsic property of the input (a group presentation),
but rather a choice made when applying the method. Thus, the
input determines neither the result nor the running time of the
algorithm, which means its complexity is not defined. On the
other hand, a confluent rewriting system, once obtained, provides
a simple algorithm that quickly finds a globally minimal weighted
distance between two genomes.

Note that while this process obtains the global minimal
weighted distance, and indeed a path that realizes this distance,
the path itself is not necessarily unique: several distinct paths
through the genome space may attain the globally minimal
weighted distance (see Clark et al., 2019 for a detailed discussion
of this).

We begin the paper by introducing the group based inversion
model, and formalizing the notion of weighted distance in
section 2. As a preliminary to the discussion about rewriting
systems, we briefly discuss group presentations in section 3
and Cayley graphs (section 4). This is followed by a discussion
of rewriting systems and their properties in section 5. In
section 6, with two concrete examples of rewriting systems, we
use weighted distances to draw some phlyogenies. We close off
with a discussion of the strengths and limitations of the present
work and some directions for future research (section 7).

2. GROUP THEORETIC INVERSION
SYSTEMS

The notion of an inversion system was formalized in Egri-Nagy
et al. (2014b). Since our work uses much of this language, we
briefly summarize the key concepts in this section followed by
an extension to a weighted inversion system.

2.1. Genomes as Permutations and
Inversion as an Action
A chromosome is represented as a map from a set of positions
n = {1, 2, . . . , n} to a set of regions X, usually also labeled with
the integers n = {1, 2, . . . , n}. If we denote the chromosome map
by π , we can write the arrangement in two-line notation as:

π =

(

1 2 · · · n
π1 π2 · · · πn

)

.

where πi is the region in the i’th position. The top row in this view
represents the n positions on the chromosome and the bottom
row represents the set of regions.

An unsigned inversion operator ti,j (with 1 ≤ i < j ≤ n) in
this paradigm is a map from positions to positions. When the
genome is modeled as a map from positions to regions and a
rearrangement operator is a bijection on the set of positions, we
require that the rearrangement operator act first on a position
and then we map the new position to a region using the genome
map, and so the function composition is from left to right. For

a detailed discussion of right and left actions (see Bhatia et al.,
2018). The inversion operator ti,j maps π as follows:

ti,jπ = ti,j

(

· · · i i+ 1 · · · j · · ·

· · · πi πi+1 · · · πj · · ·

)

=

(

· · · i i+ 1 · · · j · · ·

· · · πj πj−1 · · · πi · · ·

)

Thus the inversion operator ti,j flipping regions in positions i to j
can be written in cycle notation as follows:

ti,j : =

{

(i, j)(i+ 1, j− 1) . . . (
i+j
2 − 1,

i+j
2 + 1) if j− i is even,

(i, j)(i+ 1, j− 1) . . . (
i+j−1

2 ,
i+j+1

2 ) if j− i is odd.

For example, t1,4 = (1, 4)(2, 3), t1,5 = (1, 5)(2, 4), and t1,6 =

(1, 6)(2, 5)(3, 4).
Given genomes π and π ′, and a sequence of k inversion

operations ti1 ,j1 , . . . , tik ,jk that transform π into π ′ when applied
in order with ti1 ,j1 first, we write

tik ,jk · · · ti1 ,j1π = π ′.

Since π is a bijective map from the set of positions to regions,
π−1 is well-defined and we can compose with π−1, to give

tik ,jk · · · ti1 ,j1 = π ′π−1.

Now π ′π−1 is a bijective function from positions to positions
and therefore an element of the symmetric group on n objects,
Sn. Thus, the problem of determining a sequence of inversion
operations that transforms π into π ′ is equivalent to the problem
of expressing the group element π ′π−1 as a product of the group
elements corresponding to the rearrangement operators.

2.2. Inversion Systems
An inversion system is defined as a tuple (G, I) where G is the
group of permutations and I is a set of inversions such that G
is “generated by” I , written G = 〈I〉. In other words, every
permutation in G is expressible as a product of elements of I .

In general, if we have a subset S ⊂ G of non-trivial elements
from G, then a word over S is a finite sequence of elements of S.
In this paper, we will assume that S is closed under the operation
of taking inverses i.e., for all s ∈ S, we have s−1 ∈ S. We use S∗ to
represent the (infinite) set of all words over S.

If S generates G, then there is a natural map Ŵ : S∗ → G
that sends a word w = [s1, s2, · · · , sk] to the group element
g = s1s2 · · · sk. The brackets in w are used to emphasize that a
word is an ordered sequence of elements of S and to distinguish
the sequence from the product s1s2 · · · sk. The set S

∗ also contains
the empty sequence which maps to the identity element ofG. The
length of a group element g with respect to the generating set S is
the smallest r ∈ N such that there is some element w ∈ S∗, say
w = [s1, . . . , sr], such that Ŵ(w) = g, that is,

s1s2 · · · sr = g.

The inversion distance between permutations π1 and π2 is the
length of the group element π2π

−1
1 in the inversion system

(G, I). For details of inversion systems, the reader is referred to
Egri-Nagy et al. (2014b).
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2.3. Weighted Length
The notion of the length of a group element can be extended to
the weighted length of a group element. Suppose the elements of
S are assigned (positive) weights. The weighted length of a word
w = [s1, s2, . . . , sk] in S∗ is the sum of the weights of the si where
i runs from 1 through k. The weighted length of a group element
g is obtained by taking an infimum over the set of all words in S∗

that map to g.

Definition 2.1 (Weighted length). Let S be a set of generators of a
group G. Let ω be a bounded function ω : S → R

+. The weighted
length of a (non-identity) group element g ∈ G is defined as

ℓS,ω(g) : = inf

{

t
∑

i=1

ω(si)
∣

∣

∣
s1s2 · · · st = g, si ∈ S, t ∈ N

}

.

The weighted length of the identity element e of G is 0.

We define a weighted inversion system to be a 3-tuple (G, I ,ω)
where G = 〈I〉 as before and ω : I → R

+.

3. GROUP PRESENTATIONS

Wewill make use of the important notion of group presentations,
from group theory. A group presentation is an abstract description
of a group G in terms of a generating set S and set of relations
R among the generators. Following Coxeter and Moser (1980,
Chapter 1), these are defined as follows.

Definition 3.1 (Group Presentation). Let G be a group and let e
be the identity element of G. A presentation 〈S | R〉 for G consists
of a generating set S ⊆ G and a set of wordsR ⊆ S∗ such that

Ŵ(Ri) = e for all Ri ∈ R,

and for w ∈ S∗, if Ŵ(w) = e then w is an algebraic consequence of
the words inR and the group axioms.

That is, w is the same as the word we get by one or more of
the following algebraic transformations : replace any occurrence
of Ri ∈ R in w by the empty word; and replace any occurrence of
gg−1 or g−1g in w by the empty word for any g ∈ S.

The elements of R are called relators. A group presentation
may also be written as 〈S | ui = vi, i ∈ I〉 where ui, vi ∈ S∗ as
before and I is an indexing set. An equation of the form u = v
in S∗ is referred to as a relation. The relation u = v is equivalent
to the relator uv−1 as u = v ⇐⇒ uv−1 = e where v−1 is
the inverse of v in S∗. It is worth noting at this point that both a
relator and a relation can be thought of as an element of S∗×S∗ as
(Ri,∅) and (u, v), respectively. We make use of this formulation
later in section 5.

A group G can have many different generating sets and
consequently many presentations.

For example, a presentation for the symmetric group Sn with
the generating set S = {si | si = (i, i + 1), 1 ≤ i < n} consists of
the relations:

s2i = e ∀1 ≤ i < n

sisj = sjsi if |i− j| > 1

sisi+1si = si+1sisi+1 1 ≤ i < n− 1.

This is known as the Coxeter presentation (Humphreys, 1992).
In particular for S4, with the generating set {s1, s2, s3}, we have
the following set of relations

(R1) s21 = e (R2) s22 = e (R3) s23 = e

(R4) s1s2s1 = s2s1s2 (R5) s2s3s2 = s3s2s3 (R6) s1s3 = s3s1.

The word w = [s2, s3, s2, s1, s3, s1, s2, s3] satisfies
s2s3s2s1s3s1s2s3 = e in S4, meaning w = e is an algebraic
consequence of the group axioms and the relations in the
presentation of S4. This can be seen by rewriting w using the
relations in the presentation and the group axioms, for example
as follows.

s2s3s2s1s3s1s2s3 = s2s3s2s1s3s1(s3s3)s2s3 [R3, ge = g]

= s2s3s2(s1s3s1s3)s3s2s3 [R6, ge = g]

= s2s3s2s3s2s3 [R5,R2 and R3]

= e.

The above example suggests how the relations might be
developed into a set of rewriting rules and the process of rewriting
carried out in a systematic manner. In section 5, we will formalize
the notion of such a rewriting system and discuss the properties
that make a rewriting system effective.

4. WORDS ON A CAYLEY GRAPH

Another useful way to understand relations and rewriting of
words in groups is through a Cayley graph. For a group G and a
generating set S ⊆ G, the Cayley graph C(G, S) of G with respect
to S is a directed graph that has a vertex for each element of G.
There is an edge between vertices g and h if gh−1 ∈ S. That is,
there is an edge labeled s between g and h if there is some s ∈ S
such that sh = g.

The labels on the edges in a path from vertex h to g in C(G, S)
give a word w in S∗ such that Ŵ(w) = gh−1. Recall that Ŵ maps a
word in S∗ to an element in G. The length of a group element g is
the length of a shortest path between the identity vertex e and g. If
the edges of this graph are assigned weights, we can talk about the
weighted path length between two vertices. In particular, a path in
C(G, S) from a vertex g to itself concatenates to give a word w that
represents e. Thus, relators from the group are represented by
closed paths (loops) in the Cayley graph. Since the Cayley graph
of a group is vertex-transitive, any node in the graphmay be fixed
as the identity vertex.

In the context of genome rearrangement models, a
permutation is a genome arrangement. The generating set
is the set of allowed rearrangements under this model. For
instance, when inversions are considered to be the only allowed
rearrangements, then the generating set is S = I . The set of all
genome arrangements is the genome space which corresponds to
the vertex set of the Cayley graph C(G, I).

The process of rewriting words using relators is equivalent
to deforming a path in a Cayley graph using loops to identify
“shortcuts.” As we have seen, a word in S∗ that equals e can be
rewritten using the relators in the group presentation and the
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FIGURE 1 | A word in S∗ that equals e can be rewritten using the relators in

the group presentation and the group axioms. For instance, the word

s1s2s3s2s3s2s1s3 = e in S4. Walking along an edge is equivalent to multiplying

by a generator (edge label). Starting in the top left corner and tracing the word

clockwise, we get the word s1s2s3s2s3s2s1s3. The closed path

s1s2s3s2s3s2s1s3 is constructed using the relators s1s3s1s3 and s2s3s2s3s2s3.

group axioms. On a Cayley graph, this can be understood as
a closed path being constructed using the closed paths in the
presentation as building blocks (see Figure 1).

5. REWRITING SYSTEMS

As discussed earlier, a set of relators R is a subset of S∗ × S∗

and thus, R defines a binary relation on S∗. We write R∗ for the
reflexive transitive closure ofR. This relation is made compatible
with the multiplication in S∗ as follows:

if (l, r) ∈ R, then for words u, v in S∗, we say that

ulv rewrites to urv.

If we impose the constraint thatR be antisymmetric, (i.e., (l, r) ∈
R H⇒ (r, l) /∈ R), then the reduction process becomes
directional. In this case, R is referred to as a rewriting system.
For (l, r) ∈ R, we will write l → r and refer to l as the left side
of the rule and r as its right side. If (x, y) ∈ R

∗, this means that
x can be reduced to (rewritten as) y using the rules inR. We will
write this as x →

R
∗
y.

A word w ∈ S∗ is said to be reduciblewith respect toR if there
is some z ∈ S∗ such that w →

R

z. If no such z exists, then w is said

to be irreducible with respect toR.
In applying the rewriting rules to rewrite a word, onemay have

to make choices at each step. For instance, a word may contain
the left sides of more than one rule in R. For the process of
rewriting to be effective, we need to ensure that a given word can
be reduced to a unique irreducible word. In addition to this, an

FIGURE 2 | In a confluent rewriting system, if a word u can be reduced to the

words v and w, then v and w can be reduced to some word x. Here, we use

*as shorthand for R*.

essential requirement is that this irreducible representative can be
obtained by the application of rewriting rules in a finite number
of steps. Formally, we talk about confluence and termination of a
rewriting system.

Definition 5.1 (Terminating rewriting system). A rewriting
system R over S∗ is said to be terminating if there is no infinite
sequence of words wi ∈ S∗ such that w0 → w1 → . . .wk . . . .

Definition 5.2 (Confluence). A rewriting systemR over S∗ is said
to be confluent if for all u, v,w ∈ S∗, if u →

R
∗
v and u →

R
∗
w, then

there exists x ∈ S∗ such that v →
R

∗
x and w →

R
∗
x. (See Figure 2).

A set of defining relations (or relators) in a presentation can
be turned into a rewriting system. To ensure that the rewriting
system thus created is terminating and confluent, we will need to
do some more work.

5.1. Termination
The termination of a rewriting system R can be established by
imposing a reduction order on the set S∗. A reduction order on S∗

is a transitive relation > such that for any s, t ∈ S∗,

• exactly one of the following holds: s > t, t > s or s = t, and
• s > t H⇒ asb > atb, for all a, b ∈ S∗, and
• there is no infinite sequence of elements s0, s1, . . . , si, . . . of S

such that si > si+1.

The idea behind imposing > on S∗ is that if u → v H⇒ u > v,
then an infinite sequence of words wi such that wi → wi+1

induces an infinite decreasing sequence under >. Since the latter
is not possible,Rmust terminate.

We now define a reduction order on S∗, using a weight
function on S.

Definition 5.3 (Weighted Lexicographic Order). Let S be a non-
empty finite set. Fix any ordering ≻ on the elements of S. Let
ω : S → R

+ be a function that assigns a positive weight to each
element of S. Let u = s1s2 · · · sk and v = t1t2 · · · tl be in S∗. Define
u > v if either
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1.
∑k

i=1 ω(si) >
∑l

i=1 ω(ti), or

2.
∑k

i=1 ω(si) =
∑l

i=1 ω(ti) and si ≻ ti where i = min{p : sp 6=

tp}.

It is easy to see that the weighted lexicographic order is a
reduction order.

Proposition 5.4. For any finite set S, weighted lexicographic order
is a reduction order on S∗.

5.2. Confluence
If certain mathematical conditions are satisfied, a rewriting
system can be transformed into a confluent rewriting system
through a procedure due to Knuth and Bendix (1983). We will
discuss the Knuth-Bendix algorithm and the properties necessary
for it to return a terminating, confluent rewriting system later in
this section after introducing the necessary definitions.

Definition 5.5 (Critical Pair). Let R be a rewriting system over
S∗. Let u1a → v1 and au2 → v2 be two rules in R where
ui, vi, a ∈ S∗, a 6= e. That is, a non-empty suffix of the left hand
side of a rule overlaps a prefix of the left hand side of another rule.
Rules u1a → v1 and au2 → v2 are said to overlap. The word
w = u1au2 can be reduced to both v1u2 and u1v2. The words v1u2
and u1v2 are said to constitute a critical pair.

A critical pair (v1u2, u1v2) is said to be resolved if there exists
w ∈ S∗ such that v1u2 →

R
∗
w and u1v2 →

R
∗
w.

Theorem 5.6 ((Baader and Nipkow, 1999, Lemma 2.7.2)). A
terminating rewriting system is confluent if and only if all its
critical pairs are resolved.

The power of Theorem 5.6 derives from the fact that it allows
us to ascertain the (global) confluence of a rewriting system by
checking for confluence locally. This suggests a simple procedure
for making a rewriting system confluent. Resolve each critical
pair (u, v) by adding a rule u → v if u > v and v → u otherwise.
This is the gist of the Knuth-Bendix algorithm. However, we still
need to ensure that this loop of adding a rule and checking if
any critical pairs remain to be resolved will terminate. In fact,
the Knuth-Bendix algorithm is guaranteed to terminate with a
confluent and terminating rewriting system if the equivalence
relation generated by R has finitely many equivalence classes
(Holt et al., 2005, Corollary 12.21).

Definition 5.7 (Local Confluence). Baader and Nipkow (1999) A
rewriting system R over S∗ is said to be locally confluent if for all
u, v,w ∈ S∗, if u →

R

v and u →
R

w, then there exists x ∈ S∗

such that v →
R

x and w →
R

x.

Note that local confluence differs from confluence
(Definition 5.2) in that here, relations are from R rather
than its reflexive transitive closureR∗.

For a terminating and locally confluent rewriting system, each
equivalence class under the closure of the relation generated by
→ contains a unique, irreducible element. Since each element of
S∗ maps to a group element, each unique, irreducible element

maps to a unique group element. The number of equivalence
classes in S∗ must be finite if the group generated by S is finite.
Thus, for a finite group, the Knuth-Bendix algorithm will give us
the requisite set of rewriting rules.

The upshot of this observation is that for a genome
rearrangement model, where the rearrangement operators are
invertible, the Knuth-Bendix algorithm is guaranteed to generate
a finite, confluent, terminating rewriting system since we are
dealing with finite groups. The restriction that the operators
be invertible is necessary to ensure that the operators generate
a group.

In section 6, we construct rewriting systems for two different
weighted inversion models and use them to find the weighted
distance for genomes.

6. IMPLEMENTATION AND BIOLOGICAL
EXAMPLES

The first model consists of unsigned permutations on a linear
genome with 7 regions. The set of inversions I consists of all
inversions ti,j, for 1 ≤ i < j ≤ 7, as defined in section 2.
This set generates the symmetric group S7. A simple monotonic
weighting function ω is given by ω(ti,j) : = j − i. For 1 ≤ i1 <

j1 ≤ 7 and 1 ≤ i2 < j2 ≤ 7, letm = m(i1, j1, i2, j2) be the smallest
non-negative integer such that (ti1 ,j1 ti2 ,j2 )

m = 1. A presentation
for the group with this generating set is

G = {I | (ti1 ,j1 ti2 ,j2 )
m,

m = m(i1, j1, i2, j2), 1 ≤ i1 < j1 ≤ 7, 1 ≤ i2 < j2 ≤ 7}.

We used the software package KBMAG (Holt, 1995) to run
Knuth-Bendix on this presentation. The resulting confluent
rewriting system consists of 6,220 rules. KBMAG can also
use the rewriting system to find a minimal representative
for a given group element. The weighted distance for the
group element is then defined to be the weight of the unique
minimal representative.

We generated 4 random permutations in S7 and determined
the weighted distance matrix using the weight function ω, which
was fed into RPhylip (Felsenstein, 1993; Revell and Chamberlain,
2014) to construct a phylogenetic tree (Figure 3). For the
same permutations, we also constructed phylogenies with the
distance matrix from GRIMM (Tesler, 2002) and the Coxeter
distance matrix (also Figure 3). GRIMM assigns unit weight to
all inversions. Coxeter generators are reversals of adjacent regions
(i, i+ 1), and so the inversion model underlying Coxeter distance
assigns unit weight to reversals of adjacent regions and infinite
weight to all other reversals.

The three topologies presented in Figure 3 differ from each
other in either the clustering of nodes or the branch lengths.
An important point to be noted is that the weighted distance
model results in the clustering AC|BD while the uniform weight
model (GRIMM) clusters the nodes as AB|CD. This difference is
interesting since both themethods have the same set of inversions
but different weights assigned to the generators.

Our second example deals with circular rather than linear
genomes. In this case, we will use the method for returning
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FIGURE 3 | The topologies produced with the distance matrices from the different distance algorithms as input. The four permutations are A = (1, 4)(3, 7, 6),

B = (1, 3, 7, 5, 2, 6, 4), C = (3, 4, 6), and D = (1, 7, 6, 4, 2, 3, 5).

a minimal distance for adjacent inversions (Egri-Nagy et al.,
2014b) to confirm the weighted distance methods in this paper
are effective.

To construct the rewriting system, we used the same set of
generators and relations as those in the circular inversion model
presented in Egri-Nagy et al. (2014b). The generating set consists
of the inversions of adjacent regions (i, i + 1) for 1 ≤ i < n
and the inversion (1, n) that allows swap the positions n and 1.
Following the notation in Egri-Nagy et al. (2014b), we denote
these generators by si. The generating set is thus {si | i =

1, 2, . . . n} and the relations are:

s2i = e for each i = 1, . . . n,

sisj = sjsi if i− j mod n 6= 1,

sisi+1si = si+1sisi+1 for each i = 1, . . . n− 1, and

sn = sn−1sn−2 . . . s2s1s2 · · · sn−2sn−1.

All the generators are assigned unit weight as in the circular
inversion model of Egri-Nagy et al. (2014b), which we will refer
to as EGTF. We use this presentation as an input to KBMAG.
The confluent rewriting system in this case has 6,622 rules.
Once again, we generated 4 random permutations in the group
and found the distances using KBMAG, GRIMM, and EGTF.
The latter method has been implemented by the authors in
the package BioGAP (Egri-Nagy et al., 2014a) for the software
GAP (Sch -onert et al., 1997). Since EGTF and the method in
this paper have the same generating set and the same weights,
the phylogenies produced using the distance matrix from the
rewriting system and that from the EGTF method should be

identical, as indeed they are. The resulting phylogenies produced
using RPhylip are presented in Figure 4.

The topologies produced by the distances derived from the
rewriting system and EGTF model are the same as expected
since both these methods give the exact minimal reversal distance
between two circular permutations. Both the methods have been
set up to factor in the rotational and reflection symmetry of a
circular genome.

7. DISCUSSION AND FUTURE WORK

Researchers have recognized the need for methods to determine
weighted distances in the field of genome rearrangement right
from the start. Beginning with the pioneering work of Sankoff
(1992) and Sankoff et al. (1992), a number of approaches have
been tried. While they differ in the techniques employed, a
common feature of the previous studies is that the proposed
algorithms are tied to a particular model of rearrangement. The
novelty of our work is that the framework presented here can be
adapted to a wide variety of models. In addition, to the best of
our knowledge, this work presents the first use of the theory of
rewriting systems to a problem in comparative phylogenetics.

The current approach however has some limitations, which
present opportunities for interesting research. For instance,
the method presented here can only be used with invertible
rearrangement operators. The use of other algebraic structures
such as a semigroup might allow this restriction to be removed
allowing more rearrangement models to be included.

Another important limitation is that the method works by
distorting an existing path (in terms of the operators in the
model) between two genomes into an optimal path. This is not
a problem if the model includes all inversions, or all adjacent
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FIGURE 4 | The topologies produced for circular genomes on eight regions with the distance matrices from the different distance algorithms. The four permutations

are A = (2, 3)(6, 8), B = (1, 7, 6, 8)(4, 5), C = (1, 5, 6, 4, 3, 8, 7), and D = (1, 2, 4)(5, 6, 7).

TABLE 1 | Growth in number of rules.

n Rules

3 9

4 44

5 204

6 1049

7 6220

The size of a confluent rewriting system grows very quickly with the number of regions n.

The rewriting system is for a weighted lexicographic order with weight of ti,j being j− i for

a linear genome and generators (i, i + 1) for i ∈ {1, 2, . . . , n− 1}.

inversions—in which case methods such as GRIMM and EGTF
can provide an initial path. However, for some models, finding a
path between two arbitrary genomes may be non-trivial.

Even in the case where such a path is known, for instance
in the inversion model, the other deficiency at the moment is
the lack of a software implementation. We have used KBMAG
to derive the confluent rewriting systems. However, the use
of KBMAG with finite groups is not recommended by the
authors as it is optimized for infinite groups. It is not surprising
therefore that for larger values of n, KBMAG cannot return a
confluent rewriting system even though we know that a confluent
system exists. The size of a confluent rewriting system increases
very quickly with n (see Table 1). Thus an efficient software
implementation of Knuth-Bendix optimized for finite groups
and in particular for models arising from biology would be
very useful.

The application of rewriting systems to a new problem
also gives rise to new mathematical questions. For instance,
it would be interesting to investigate the effect of the
weighting function used on the size and efficiency of the
rewriting system.
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