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Abstract: Cloud radio access network (C-RAN) is a promising mobile wireless sensor network
architecture to address the challenges of ever-increasing mobile data traffic and network costs.
C-RAN is a practical solution to the strict energy-constrained wireless sensor nodes, often found
in Internet of Things (IoT) applications. Although this architecture can provide energy efficiency
and reduce cost, it is a challenging task in C-RAN to utilize the resources efficiently, considering
the dynamic real-time environment. Several research works have proposed different methodologies
for effective resource management in C-RAN. This study performs a comprehensive survey on
the state-of-the-art resource management techniques that have been proposed recently for this
architecture. The resource management techniques are categorized into computational resource
management (CRM) and radio resource management (RRM) techniques. Then both of the techniques
are further classified and analyzed based on the strategies used in the studies. Remote radio head
(RRH) clustering schemes used in CRM techniques are discussed extensively. In this research
work, the investigated performance metrics and their validation techniques are critically analyzed.
Moreover, other important challenges and open research issues for efficient resource management in
C-RAN are highlighted to provide future research direction.
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1. Introduction

Advances in Internet of Things (IoT) technology have increased the number and usage of wireless
sensor nodes [1,2]. The rapidly increasing smart devices and IoT modules in volume generate an
enormous amount of data traffic, putting an additional burden on existing mobile wireless sensor
networks. According to Cisco, the overall mobile data traffic is forecasted to increase to 77 exabytes
per month by 2022, which is a seven-fold increase over that in 2017 [3]. Moreover, the average traffic
generated by smartphones will be 11 GB per month, more than a four and half-fold increase over that
in 2017. To tackle this enormous data traffic, the capacity of traditional mobile network architectures
and the available resources are not sufficient. Therefore, mobile network operators (MNOs) need to
increase the number of active base stations to satisfy the increasing user demand. To achieve this,
the MNOs would be required to incur exceptionally high operational expenditures (OPEX) and capital
expenditures (CAPEX) for deploying more base stations or maintaining and operating the existing
stations [4]. Traditional radio access networks (RANs) would become exceptionally expensive if they
are to remain competitive in the future mobile internet world. The deployment of more base stations
would also increase the power and energy consumption [5]. Furthermore, owing to the dynamicity of
the user traffic load, some base stations would be overloaded, whereas others would not be used fully.
This would result in a low utilization rate and an inefficient use of base stations.
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One of the novel network architectures that can potentially address the above-mentioned challenges
is C-RAN architecture [4,5]. The key concept of C-RAN is to break down the base station functionalities
by decoupling the base station into Base band unit (BBU) and Remote radio head (RRH), and then
centralizing the BBUs from multiple sites into a single geographical point such as a cloud data center,
using cloud computing and virtualization techniques. BBUs are responsible for baseband signal
processing, whereas RRHs take responsibility for signal amplification and modulation. RRHs are
deployed with an antenna at the cell site and are connected to the BBU pool with a fronthaul link.
As the baseband processing is centralized in a virtualized BBU pool, it can adapt to non-uniform
traffic and utilize the resources effectively. Many operators can share the same BBU pool by renting it
as a cloud service. Moreover, the network performance is improved by reducing the delay caused
by handover. The operational cost can be reduced because the BBUs are centralized at a single site.
Furthermore, the addition and upgrade of a new BBU is more convenient compared to a traditional
RAN. MNOs only need to install an RRH to increase the network capacity. It also reduces the power
and energy consumption, which eventually decreases the network costs.

Although C-RAN appears to be a promising architecture for ensuring low cost and energy
efficiency, a few challenges need to be resolved for maximizing its advantages. The co-location of
many BBUs in a BBU pool connected to RRHs requires a reliable link with a high bandwidth capacity.
The BBU-RRH association needs to be done in a way so that the BBU resources are utilized effectively,
and user demands are also fulfilled. Effective strategies for base station mode switching must be
adopted considering the real-time environment.

The efficient management of the resources in C-RAN to satisfy user demand is a significant
challenge due to the user mobility and dynamic environment. The resource in wireless communication
mainly refers to the radio frequency (RF) spectrum, which is very limited. For optimal resource
management, the RF resource must be utilized effectively by maximizing the number of users getting
service. The objective of resource management is to utilize the limited radio frequency spectrum
resources and radio network infrastructure with maximum efficiency. Different resource allocation
mechanisms have been proposed for efficient resource management in C-RAN. Resource management
techniques could be static or dynamic depending on whether the environment is static or dynamic. In the
latter case, the dynamicity of trafficload, user positions, user mobility, QoS requirement, and base station
density are considered. Different RRM strategies for improving spectral efficiency have been proposed,
such as efficient static or dynamic channel allocation, transmit power control, spectrum management,
cache management, link adaptation, user association, beamforming, and handover criteria.

1.1. Review of Existing Surveys

Many surveys have been performed considering resource allocation and scheduling in cloud [6],
resource sharing in heterogeneous cloud radio access network (H-CRAN) [7], resource management
in 5G RAN [8], energy-efficient base station switching techniques in green cellular network [9],
energy-efficient wireless communication [10], radio resource management in machine-to-machine
communication [11], strategies for switching off base stations in heterogeneous networks [12],
and clustering techniques for RRHs [13]. The topics of the previous surveys along with their
respective publishing years, and the areas they covered in those surveys are listed in Table 1.

The authors in [6,14-18] presented surveys through investigating various works related to resource
management methods in a cloud computing environment. Guzek et al. discussed the studies on the
application of computational intelligence tools in cloud computing resource optimization problems by
dividing the resource management problems into static and dynamic problems [15]. This work further
identified a few alternative methods and unexplored territories with regard to the optimization of
cloud resource management, for future researchers. A short survey regarding the resource allocation
and scheduling methods for application in the cloud is presented in [6]. Jennings et al. outlined a
conceptual framework for cloud resource management and used it to structure the state-of-the-art
review; furthermore, they identified a few challenges for future investigation based on the review [14].
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Singh et al. presented a methodical analysis of resource scheduling in cloud computing, resource
scheduling algorithms, and resource management [16]. The study also analyzed the types and benefits
of resource management tools as well as resource scheduling aspects and resource allocation policies.
The article further recommended a few research directions for future works. Mohammadiah et al.
studied the research issues in the area of resource management, specifically, resource allocation and
monitoring in the cloud-computing environment. They also studied solution approaches [17]. Demicri
et al. presented a comparative study of the works that employed machine learning to offer solutions
for energy efficiency in cloud computing environments along with some future research directions [19].

The related works on resource management techniques for H-CRANs have been reviewed
in [7,12,20-22]. In [7], the resource sharing opportunities in H-CRAN were investigated considering
the spectrum, infrastructure, and network levels. The major challenges in deploying dynamic resource
sharing in this architecture and the research direction for addressing these challenges were also
discussed. In addition, a few trending technologies that are essential for resource sharing in an
H-CRAN were highlighted. Finally, a simulation of spectrum and infrastructure sharing in the
H-CRAN environment was presented with results. Meanwhile, in [20], a comprehensive review of
the works on the energy efficiency of H-CRAN and cloud computing was presented individually in
conjunction with a discussion of the challenges and continuing issues in joint deployment. The authors
discussed the energy efficiency issue for each building block of the network architecture. The authors
in [21] reviewed the recent advances in HetNets, in conjunction with the architecture evolution,
key techniques, and continuing research issues. They presented the system architectures of traditional
HetNets, H-CRANSs, and F-RANSs (fog radio access networks). Moreover, a novel performance metric
called economic energy efficiency was introduced with self-organizing HetNets and access slicing
techniques. In addition, the key techniques across the physical, MAC, and network layers were
elaborated. In [22], a comprehensive assessment was carried out to compare the existing radio resource
management schemes proposed for LTE/LTE-A femtocell and relay networks, in terms of interference
mitigation, radio resource utilization, fairness, complexity, and QoS. The authors also identified
future challenges and potential research directions for RRM development and HetNet enhancement.
The authors in [12] reviewed the works on designing base station switching-off strategies from different
design perspectives such as random; distance-aware; load-aware; auction-based; and joint design with
user association, resource allocation, and physical-layer interference cancellation strategies.

Many research works have been proposed considering the 5G mobile communication
systems. Furthermore, a few surveys have been conducted discussing the works on 5G networks,
such as [8,19,23,24]. The authors in [6] presented a comprehensive survey on radio interference and
resource management schemes for 5G RAN. They classified the schemes into radio interference,
energy-efficient, spectrum efficient, and hybrid resource management. They further made a few
recommendations on the continuing research issues of 5G RAN systems that were deduced from the
schemes reviewed. Meanwhile, a survey [17] was conducted recently on the research studies on C-RAN
focusing on throughput enhancement, interference management, energy efficiency, latency, security,
and system cost reduction for 5G cellular systems. The authors in [21] presented a comprehensive review
of the revolution of RAN architectures, wherein they mentioned the architectures of C-RAN, H-CRAN,
virtualized C-RAN, and F-RAN. Moreover, a comparative analysis based on the energy consumption,
security, CAPEX/OPEX, performance, spectrum, mobility, resource allocation, and system architectures
for fulfilling user requirements, was presented. In [24], a review of state-of-the-art technologies for
energy efficiency in 5G was presented. The authors addressed areas such as energy efficiency at the BS
level, with 5G NR; caching; and using SDN, energy-efficient NOMA, energy-efficient resource sharing,
and interference-aware energy efficiency.

A few reviews considered energy-efficient resource management in cellular networks and
other communication systems, such as [9-11,25]. In [8], the state-of-the-art techniques for
energy-efficient wireless networks are introduced, including EE metric, network deployment strategies,
resource management, relay, cooperative communication, and multi-input multi-output (MIMO) and
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OFDM technologies. Meanwhile, in [7], the authors reviewed sleep mode techniques to reduce power
and energy consumption in base stations, with the objective of developing a green cellular network.
Thereby, the authors highlighted the importance of green mobile networks. In [11], the authors
presented a survey on the research activities on radio resource management in machine-to-machine
(M2M) communications for LTE/LTE-A cellular networks. Here, they considered access control,
radio resource allocation, and power management. They also reviewed radio resource management for
M2M communications in heterogeneous networks in conjunction with recent standard activities and
continuing research issues. Furthermore, the authors in [25] presented a survey of the state-of-the-art
caching techniques developed in different types of cellular networks, such as macro-cellular networks,
heterogeneous networks, device-to-device networks, C-RAN, and F-RAN, by comparing different
algorithms in terms of performance metrics including throughput, backhaul cost, power consumption,
and network delay.

Table 1. Existing surveys on related topics.

Year of . Resource
Publication Ref. Topic(s) of Survey Management C-RAN
2013 [10] Energy-efficient wireless communications v X
2014 [14] Resource management in clouds v X
2014 [22] Radio resource management for heterogeneous LTE/LTE-A v/ F's
networks

2014 [17] Resource allocation and monitoring in cloud computing v X

2015 [7] Resource sharing in heterogeneous cloud radio access networks v v

2015 [18] Machine learr}mg apphcatlons. for ene}‘gy-efﬁaent resource v/ X
management in cloud computing environments

2015 9] Energy-efficient base-stations sleep-mode techniques in green v/ F's
cellular networks

2015 [15] Evolutlf)nmjy computation fF)r resource management of 4 F's
processing in cloud computing

2016 [8] Resource management toward 5G RANs v v

2016 [16] Resource scheduling in cloud computing v X

2016 [12] Strategies for switching off base stations in heterogeneous v v
networks for greener 5G systems

2017 [11] Radio resource management in machine-to-machine v/ X
communications

2017 [20] Energy efficiency on fully cloudified mobile networks v X

2018 [6] Resource allocation and scheduling methods in cloud v X

2018 [13] Clustering techniques for RRH in 5G networks v X

2018 [25] Caching techniques in cellular networks v X

2018 [21] Recent advancements of heterogeneous radio access networks X v

2019 [19] Cloud radio access network for 5G cellular systems X v

2019 [23] RAN architectures for 5G mobile communication system X v

2019 [24] Recent trends and open issues in energy efficiency of 5G v X

Our Resource management in cloud radio access networks v v
survey

Although substantial efforts have been undertaken to review the resource management in
different wireless network environments and clouds, none of these specifically cover the resource
management approaches proposed for C-RAN in recent years. A few articles presented a description



Sensors 2020, 20, 2708 5 of 32

of this architecture, wherein they mentioned the benefits and drawbacks of C-RAN for 5G cellular
systems [19,23]. However, computational and radio resource management are not specifically
considered in these articles. Radio resource management is discussed in the literature for C-RAN,
H-CRAN, and other communication scenarios [7,8,11,22], but computational resource management is
not covered in these surveys. Different techniques of base stations have also been reviewed in [9,12,13].
However, they do not explicitly include the recent techniques for RRH clustering, which is reviewed in
this survey.

1.2. Contributions of This Survey

To the best of the authors” knowledge, no recent survey exists that explicitly and dedicatedly
describes the resource management techniques for C-RAN, proposed in recent years. This survey paper
seeks to provide a holistic perspective of resource management techniques for C-RAN. Specifically,
it focuses on the recently proposed (i.e., from 2016) resource management mechanisms categorized
in terms of radio resource management (RRM) and computational resource management (CRM)
techniques. The aim of this study is to fill the research gaps in the literature. The contributions of this
paper are summarized below:

e A concise review of the existing surveys related to the topic of our interest.

e  The evolution of C-RAN architecture and the components of a C-RAN are overviewed so that new
researchers can gain a fundamental understanding of this architecture. The advantages of C-RAN
are discussed, and a short description of Heterogeneous C-RAN and Fog RAN are presented by
mentioning the challenges in C-RAN.

e A comprehensive survey of the resource management techniques for C-RAN is provided by
categorizing the techniques into CRM and RRM techniques. The CRM techniques cover the RRH
clustering techniques in C-RAN, which includes location-aware, load-aware, interference-aware,
QoS-aware, and throughput-aware RRH clustering. The RRM techniques include power control,
joint optimization, and sum-rate optimization techniques.

e  The problem formulation and techniques used in the reviewed papers and the goal of the papers
are presented together with a description of each approach. The evaluation techniques and
performance metrics used in the reviewed approaches are also discussed separately by presenting
a comparison among all the schemes. This allows for a better comprehension of the validation
techniques considered in C-RAN resource management techniques.

e  We highlight the challenges and future research directions in C-RAN resource management,
such as user mobility, QoS and QoE requirements, dynamic traffic load, demand forecasting,
and NB-IoT.

1.3. Paper Organization

The paper is organized as illustrated in Figure 1. In Section 2, the evolution of the C-RAN
architecture, components of a C-RAN together with the advantages of this architecture, and the
challenges in C-RAN are presented. In Section 3, a comprehensive survey on the state-of-the-art
resource management techniques for C-RAN is described. Section 4 briefly describes the challenges
and continuing research issues in the resource management of C-RANSs. Finally, the paper is concluded
with a brief summary in Section 5.
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Figure 1. Organization of this survey.

2. Evolution of C-RAN Architecture, and Its Types, Advantages, and Challenges

C-RAN is a mobile network architecture where baseband resources are pooled in a centralized
and virtualized manner so that the resources can be shared among different base stations. This section
provides an overview of the evolution of this architecture from the traditional base station through RAN
with distributed RRH. Different types of C-RAN architecture described in the literature, the advantages
of this architecture, and a short introduction of the H-CRAN architecture is also presented in this section.

2.1. Traditional Base Station

In cellular networks, the base station is an essential component that facilitates the communication
between users and the networks under whose coverage they are located. The base station has two
functionalities named as baseband processing and radio functions. The functions of the baseband
processing unit include coding, modulation, and Fast Fourier transform (FFT). The radio unit is
responsible for digital processing, frequency filtering, and power amplification [5]. In the traditional
architecture, both baseband processing and radio functions are carried out inside a base station.
The base station is situated at the base of a tower and connected to the antenna located at the top of the
tower using coaxial cable. Different base stations are connected to each other through the X2 interface.
Each base station is connected with the mobile core network through the S1 interface. This architecture
is being used since the 2G mobile network.

2.2. Radio Access Network with Distributed RRH

In the distributed RAN architecture, the base station is separated into two units called BBU and
RRH. The RRH is placed on the top of a tower with the antenna, and the BBU is placed in a convenient
location that is easily accessible from the RRH. These two units are interconnected by a common public
radio interface (CPRI), also known as fronthaul link, as shown in Figure 2a. The RRH functions as a
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transceiver for the mobile users, and the BBU processes calls and forwards traffic to the mobile core
network via carrier Ethernet backhaul, also called backhaul link. The RRH provides the interface to
the fiber and carries out digital processing, digital to analog conversion, analog to digital conversion,
power amplification, and filtering [26]. The distance between the BBU and RRH can be extended up
to 40 km, although this would result in processing limitation and propagation delay [5]. This RAN
architecture is developed for 3G and 4G mobile networks.

Il ssU ) sBU
= Backhaul link = Backhaul link
= Fronthaul link == Fronthaul link
Wﬁ RRH W) RRH
Core network Core network

(a) (b)

Figure 2. (a) Architecture of RAN with distributed RRH, (b) Architecture of cloud RAN.

2.3. Cloud Radio Access Network

In a C-RAN, the BBUs are relocated from the individual cell sites to a centralized and virtualized
BBU pool. A C-RAN is composed of three main components: BBU pool, RRH, and fronthaul link
(Figure 2b). C-RAN architectures proposed by both industries and academia are described in [27].
This subsection presents a brief overview of the components of a C-RAN.

2.3.1. BBU Pool

The BBU pool is a centralized, shared, and virtualized site functioning as a data processing center.
Individual units, i.e., virtual BBUs, can be stacked together without direct linkage or interconnected
to allocate resources based on the dynamic user demand on the connected RRHs. Each BBU pool
can support multiple RRHs. In the BBU pool, multiple BBUs are interconnected via the X2 interface,
which is highly cost-effective and yields improved performance. The S1 interface connects a BBU
to the mobile core network, also called backhaul link. BBUs are composed of high-performance
programmable processors and apply real-time virtualization technology. From the implementation
perspective, BBUs are installed on virtual machines (VMs) using a hypervisor over physical computing
cores present in the cloud data center [28]. Further details on the virtualization of BBUs are provided
in [4,5,28-31].
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2.3.2. Remote Radio Head

The RRHs are distributed over a geographical area where mobile users are provided with
communication services, which is referred to as service area or cell sites. The area around an RRH
where transmission conditions are favorable enough to maintain a connection between a user and an
RRH according to the required QoS is called the coverage area of the RRH. The RRH has two parts: a
transmitting part and a receiving part. In the transmitting part, a digital signal is received via a CPRI
interface, converted to analog, upconverted to an RF frequency, amplified, filtered, and then output via
an antenna. The receiving part receives a signal from the antenna, filters it, amplifies it, down-converts
it to an IF Frequency, and then converts it to a digital signal before sending it out via the CPRI to a fiber
for further processing.

2.3.3. Fronthaul Link

Fronthaul is the connection layer between a BBU and a set of RRHs. It provides high bandwidth
and low latency links to handle the requirements of multiple RRHs. This link can be setup using different
technologies including optical fiber communication, cellular communication, and millimeter-wave
(mmWave) communication [29]. Although optical fibers provide the highest bandwidth requirement,
they are highly expensive and not flexible for deployment. In the case of cellular or mmWave
communication, they are comparatively less expensive and more convenient for implementation.
However, these do not provide the required bandwidth as an optical fiber connection and also cause
more latency. The deployment of a C-RAN with cost-optimal fronthaul is discussed in [32].

2.4. Types of C-RAN

Two approaches for splitting the base station functionalities between BBU and RRH within a
C-RAN are presented by China Mobile in [4]. Based on these, C-RANSs can be categorized into two
types: fully centralized and partially centralized.

2.4.1. Fully Centralized

In this architecture, as shown in Figure 3a, layer 1 functionalities such as sampling, modulation,
resource block mapping, antenna mapping, and quantization; layer 2 functionalities such as
transport-media access control; and layer 3 functionalities such as radio resource control are located in
the BBU [23]. It has the capability of supporting the multi-standard operation, expanding network
coverage area, maximizing resource sharing, and providing multi-cell collaborative signal processing.
Notwithstanding the significant benefits of this architecture, the load on the fronthaul link is substantial
and the bandwidth requirement is very high.

2.4.2. Partially Centralized

In this architecture, as shown in Figure 3b, the RRH performs the radio functions as well as the
functions related to layer 1. Meanwhile, the functions of the higher layers, layer 2 and layer 3, are still
executed in the BBU. As the baseband processing is shifted to the RRH from the BBU, the bandwidth
requirements between the BBU and RRH become lower in a partially centralized C-RAN. However,
it also has certain drawbacks: as the baseband processing is integrated with the RRH, it is less flexible
for upgrade and less convenient in terms of multi-cell collaborative signal processing [4].

However, the authors in [29] extended this classification to three categories by adding another
architecture for C-RAN: hybrid centralized architecture. In this architecture, a part of the layer 1
functions is performed in the RRH, whereas the others are performed in the BBU. The RRH performs
the user- or cell-specific functions related to the signal processing. This architecture displays higher
flexibility for resource sharing and the facility for reducing the energy consumption and communication
overhead of a BBU
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Virtual BBU pool
a) C-RAN: fully centralized

Virtual BBU pool
b) C-RAN: partially centralized

Figure 3. Types of C-RAN: (a) fully centralized C-RAN, (b) partially centralized C-RAN.
2.5. Advantages of C-RAN

This subsection presents a brief description of the advantages of C-RAN architecture:
adapting dynamic traffic, load balancing, convenience of operation and maintenance, cost reduction,
and interference minimization.

2.5.1. Adapting to Dynamic Traffic Load

Mobile phone users perform dynamic movement throughout the day. This results in varying
traffic loads in different areas at different times of the day. At certain times of the day, a few BSs
are oversubscribed, whereas others are in the idle mode. Consequently, radio resources are utilized
inefficiently, and a large amount of processing power is wasted. After the centralization of the BBUs into
the BBU pool, the RRHs with low traffic loads can be merged and managed by one BBU, whereas the
RRHs with high traffic loads can be assigned to multiple BBUs according to the user demand. This can
improve the overall utilization rate and ensure the effective utilization of the computing resources,
which results in a significant statistical multiplexing gain. It has been demonstrated in [33] that
a flexible, reconfigurable mapping between a BBU and an RRH following different traffic profiles
maximizes the statistical multiplexing gain.

2.5.2. Load Balancing

In a C-RAN, load balancing can be performed on the BBU as well as RRH sides. This is because
BBUs from a large area are co-located in the same BBU pool [5]. Load balancing can be performed on
the BBU side by assigning appropriate BBU resources within a pool. Load balancing can be achieved
on the RRH side according to the capacity of the BBUs within a BBU pool, when users move from one
cell to another. C-RAN provides the facility to switch off a BBU or an RRH depending on the traffic
load in the network. BBU can be switched off by an appropriate association of BBU-RRH. When the
traffic load in the RRH is low, the associated BBU can be switched off by connecting that RRH to
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another BBU within that BBU pool. The RRH can also be turned on/off dynamically according to the
user demand on the cell site and by associating the users with another RRH.

2.5.3. Convenience of Operation and Maintenance

The centralized architecture of a C-RAN makes it scalable and simplifies its upgrade and
maintenance. Although the number of RRHs in C-RAN architecture may not be decreased, its
functionality becomes more convenient as the size of the tower reduces, and RRH can sit on poles with
minimum site support and management. To increase the coverage of a network, MNOs only have to
install an RRH on the cell site and associate a BBU with that RRH in the cloud data center. C-RAN
provides the facility to install virtual resources on the cloud depending on the user demand. Moreover,
the maintenance of an RRH becomes more convenient in C-RAN. In addition, as BBUs are centralized
in a cloud, in addition to cost reduction, the management of the BBU pool becomes simpler compared
to that for a traditional RAN.

2.5.4. Cost Reduction

MNOs deploy more base stations to process the ever-increasing amount of mobile traffic. This results
in higher network power consumption, eventually resulting in higher cost. The centralization of the
BBU pool enables the efficient utilization of BBUs and reduces the CAPEX for deploying base stations
in different areas and the OPEX for the operation, maintenance, and upgrade of the base stations.
The electricity cost required for a traditional RAN can also be reduced by deploying a C-RAN because
BBUs are absent in the cell site. Moreover, a few BBUs can be switched off during a period of low traffic
load, which would result in power savings. A C-RAN also reduces the requirement of cooling resources,
which accounts for 46% of the power consumption of cell sites in the traditional RAN [4].

2.5.5. Interference Minimization

In the traditional RAN, the movement of users from one cell to another, which alters the coverage
area of the associated base stations, causes interference. This, in turn, results in decreased QoS. In the
C-RAN architecture, many RRHs from different cell sites are connected to BBUs sharing the same
BBU pool. User dynamicity does not cause interference as the change in coverage area of RRHs by
users does. This is because BBUs from a large area are co-located to the same BBU pool, and the RRHs
connected to those BBUs are also attached to that BBU pool. This mitigates the interference caused by
user movement between different cell sites.

2.6. Challenges in C-RAN

There are two major challenges in C-RAN architecture, namely the fronthaul capacity issue and
complications of virtualization techniques [34]. The practical fronthaul is often capacity, and time-delay
constrained that significantly reduces spectral efficiency and energy efficiency gains [35]. The use of
virtualization techniques in cellular networks like C-RAN is far more complicated due to the unique
features of wireless communication. Two RAN architectures (Heterogeneous C-RAN and Fog RAN),
for compensating the challenges in C-RAN, are proposed and evaluated in the literature. This section
provides a brief discussion of these two architectures.

2.6.1. Heterogeneous C-RAN

H-CRAN is a novel paradigm that combines a heterogeneous cellular network architecture with
the cloud infrastructure. In a heterogeneous network, various classes of low power nodes (LPNs)
such as pico base stations, femto base stations, and small cell base stations are distributed throughout
the network. The LPN is one of the key components for increasing the cellular network capacity in
dense areas with a high traffic demand. It can be combined with a high-power node (HPN) such as
a macro or micro base station to form a heterogeneous network [7]. HPNs are generally employed
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for increasing network coverage and controlling network signals to prevent unnecessary handovers
in small cells. The full advantages of both heterogeneous network and C-RAN have been utilized in
an H-CRAN, by incorporating HPNs into CRAN, in which multiple heterogeneous networks can be
converged to provide seamless coverage [36]. This results in improved spectral and energy efficiencies
as well as increased data rates. In [23], the authors presented a few similarities and dissimilarities
between C-RAN and H-CRAN. According to this study, both architectures have a large number
of RRHs connected to the BBU pool to achieve a high cooperative gain and to increase the energy
efficiency. Moreover, the functional splits of both the architectures include higher layer functions that
perform in a BBU and radio functions that perform in RRHs. However, an H-CRAN has simplified
capacity and time delay in fronthaul links. The requirements of the fronthaul are alleviated with the
participation of HPNs, as control signaling, and system broadcasting data are transmitted to users
through HPNs [36]. Moreover, in H-CRAN, an RRH can be turned off for improving the energy
efficiency during low traffic demand, whereas the BBU pool is responsible for managing the RRHs that
are in the sleeping mode. The authors in [37] studied subchannel allocation and power optimization
in NOMA-based Heterogeneous networks, considering energy harvesting and cross-tier interference
mitigation. Energy harvesting is utilized due to the limited available energy at the base station nodes.
They considered simultaneous wireless information and power transfer for achieving the efficient
utilization of energy resources and ensure the QoS simultaneously.

2.6.2. Fog RAN

F-RAN is a promising paradigm that enhances the C-RAN architecture by allowing the RRHs to be
equipped with local caches for storing frequently requested contents and signal processing capabilities.
F-RAN takes the benefit of both fog computing and C-RAN, which extends the traditional cloud
computing to the network edge. The main idea is to ensure that all traffic is not offloaded directly from
the centralized cloud server, while some local traffic should be delivered from the caching of adjacent
RRHs or smart UEs [35]. This collaborative processing minimizes the overload of the constrained
fronthaul links as well as alleviates the queuing and transmission delay. The optimal design of an F-RAN
requires edge caching, fronthaul, and wireless transmission to be jointly optimized to leverage the edge
processing and virtualization. The authors in [38] presented an information-theoretic model for F-RAN,
aiming at characterizing the key tradeoff between the system performance in terms of delivery latency
and resources available for fronthaul, caching, and wireless transmission. In the F-RAN architecture,
UEs access F-RAN adaptively, and the transmission mode is selected based on UEs movement speed,
distance, location, QoS requirements, processing and caching capabilities. More details on four different
transmission modes in F-RAN and also the comparison on the characteristics of the three promising
architectures (C-RAN, H-CRAN, and F-RAN) are described in [35].

3. Resource Management Techniques in C-RAN

There are two types of resources in C-RAN, similar to other cellular network architectures:
computational resources and radio resources. The computational resources, which are required in the
base stations, include memory, processing power, data storage, time, and bandwidth. Computational
resource management can be performed by managing the resources in the BBU pool, i.e., by managing
the BBU resources. In this study, we focus on different RRH clustering techniques for BBU resource
management (also called BBU-RRH association techniques) by switching on/off BBUs to allocate
computational resources optimally according to the user demand. In cellular communication,
radio resource implies radio frequency spectrum, which is highly limited. RRM focuses on effectively
utilizing the limited radio frequency spectrum resources and radio infrastructure. It includes strategies
and algorithms for transmit power control, dynamic channel allocation, spectrum management,
cache management, and joint optimization. The resource management techniques reviewed in this
paper are categorized, as shown in Figure 4, into RRM and CRM. The RRM techniques are classified
into power control schemes, joint optimization schemes, and sum-rate optimization. For CRM,
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we considered the RRH clustering techniques. These are categorized into location-aware, load-aware,
interference-aware, QoS-aware, and throughput-aware techniques.

3.1. Radio Resource Management Techniques

Many techniques have been proposed by different researchers for radio resource management
C-RAN by optimizing different metrics and following various constraints to enhance QoS,
increase energy efficiency, and reduce cost. In this section, the state-of-the-art RRM techniques
(categorized into power control schemes, joint optimization schemes, and sum-rate optimization) are
reviewed considering the main objectives of the work, problem formulation, and techniques used
in the work. Moreover, the evaluation techniques used in the reviewed works and the performance
metrics considered for evaluating the schemes are discussed separately in Section 3.1.2.

3.1.1. Power Control Schemes

Xu et al. proposed a two-step deep reinforcement learning (DRL)-based framework for dynamic
allocation of resources in C-RAN, to minimize the total power consumption while satisfying the user
demand in the network [39]. The authors defined the states space, action space, and reward function
for the DRL agent and proposed a two-stage DRL technique: an offline deep neural network (DNN)
construction phase and an online dynamic deep Q learning phase. First, the DRL agent determines the
active set of RRHs by turning itself on or off, to reduce the action space size. It then determines an
optimal resource allocation solution (beamforming) with the active set of RRHs by solving a convex
optimization problem.

Power Control

Joint
Radio Resource Optimization
Management
RS OUCe Techniques S}lm.-rat.e
Management optimization
techniques in
C-RAN

Computational
Resource
Management

Location-
aware

Load-aware .

Interference-
aware

QoS aware .

Throughput-
aware

Figure 4. Resource management techniques in C-RAN.

RRH
Clustering
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Zhao et al. investigated the power and bandwidth allocation problem in C-RAN with the aim of
minimizing the total transmission power for a specified set of RRHs while satisfying the average rate
and spectral efficiency requirement [40]. The problem was formulated as a traffic density-based RRH
selection task with minimum power consumption. A series of network constraints were considered,
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such as transmission power budget, spectrum limitation, traffic demand, and spectral efficiency
requirement. To solve this problem, they developed an efficient local search algorithm based on the
optimal values of the power and bandwidth allocation problem and introduced three local improvement
operations (“add,” “open,” and “close”) to determine locally optimal solutions rapidly.

In [41], the work of [40] is extended. The authors designed a static RRH selection scheme for
load balancing among RRHs. Furthermore, based on this, a dynamic RRH switching mechanism
considering a fairness index to measure the imbalance degree of traffic load is presented. The RRH
selection is performed using an efficient local search procedure in conjunction with a user association
algorithm, considering the bandwidth and power budgets of the RRH and energy consumption of the
system. They designed a bandwidth and power allocation algorithm for determining the minimum
power consumption of the RRH while satisfying the rate requirements of users. Subsequently,
the fairness index was defined by introducing three local improvement operations: “open,” “close,”
and “exchange.” The RRH switching mechanism is designed such that when the bandwidth and
power requirements of the user are not satisfied and the fairness index is larger than a predefined
threshold, the switching is triggered for load rebalancing while the signaling overhead of the system
is controlled. However, the selection of the fairness index threshold is critical because a signaling
overhead may be generated and decrease the system performance because of the handover of users,
during RRH switching.

Aldaeabool et al. [42] proposed a strategy for switching a BBU on/off according to the traffic load
in the associated RRH by using a host server (HS) in the BBU pool, which assigns a newly arrived user
to a certain BBU. They formulated an optimization problem of reducing the number of BBUs with
low loads by transferring the load to neighboring BBUs with the available capacity. They proposed a
combined bin packing method (BPM) and modified the best fit decreasing (MFBD) algorithm to solve
this problem. Here, each BBU is considered as a bin for traffic load balancing.

In [43], Lee et al. investigated the power consumption tradeoff between BBUs and RRHs.
They formulated a theoretical model for BBU aggregation to determine the optimal traffic threshold for
RRH switching to minimize the total power consumption. The authors considered an architecture
involving (1) subareas, with three types of RRHs, based on the coverage area of RRHs and (2) two
modes for the subareas (LC mode and SC mode) based on the states and types of RRHs in that area.
First, the expected number of LC mode and SC mode RRHs are calculated. Next, the traffic loads
carried by the active RRHs are calculated. Then, the expected number of active BBUs is derived from
the BBU aggregation model, which is based on the BPM. Subsequently, the expected total power
consumption is determined from the expected number of active or sleeping RRHs and BBUs and their
power consumption. Finally, the authors presented a procedure based on the bisection method for
determining the optimal threshold.

3.1.2. Joint Optimization Schemes

In [44], Lyazidi et al. proposed DRAC, a two-stage design for dynamic resource allocation
in a C-RAN in conjunction with real-time BBU-RRH assignment, considering the constraints in
transmission power and Signal-to-interference-plus-noise-ratio (SINR) for user equipment (UE). In the
first stage, they formulated the resource allocation problem as a mixed linear integer problem (MILP).
They then solved it using the branch and cut algorithm (BCA), which associates the best spectrum set
of frequency/time resources dynamically to incoming UEs. In the second stage, the optimal number
of BBUs required and RRHs to be turned on to handle the traffic load is calculated. This problem
was formulated as a multiple knapsack problem (MKP). Here, the RRHs are the objects, and the BBU
capacity to handle the real-time traffic load is the knapsack. It was solved by IBM’s linear solver
CPLEX, which determined the optimal result using highly marginal computation time.

Lyazidi et al. investigated joint downlink resource allocation and admission control for mobile
users in an orthogonal frequency division multiple access (OFDMA)-based C-RAN as an optimization
problem [45]. The objective was to determine the optimal PRB allocation to maximize the total
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user throughput in the system while considering the QoS and mobile user data rate requirements,
maximum transmission power, and fronthaul link limitation constraints. They proposed a two-stage
resource allocation and admission control (RAAC) algorithm. The resource allocation problem was first
solved using the fixed time branch-and-cut algorithm without the data rate constraints. Then, the fast
admission control algorithm was utilized based on the output of the former problem to select the
largest set of mobile users to be accepted in the system, considering the dropped data rate constraint.

Wang et al. proposed a C-RAN structure with a mobile cloud (virtual machine) co-located in the
BBU pool with BBUs, to investigate the joint energy minimization and resource allocation. The objective
was to enhance both the performance and energy efficiency of the C-RAN in [46]. The architecture
is such that the mobile cloud executes the computationally intensive task, whereas the BBUs are
responsible for transferring the executed results to the RRH for sending it to the UE. The joint energy
minimization is formulated as a non-convex optimization problem, which is further reformulated into
an equivalent convex problem, based on power minimization and sum data rate maximization that is
transformed into a minimization of weighted sum mean square error (MSE) problem. The objective
is to minimize the energy cost of the mobile cloud and network considering the QoS, i.e., the time
constraints. A WMMSE-based iterative algorithm is proposed. It can solve the joint resource allocation
between the mobile cloud and C-RAN and thereby improve the system performance and energy saving.

3.1.3. Sum-rate Optimization

In [47], Liao et al. investigated the impact of available computing resources on the PHY
transmission characteristics by formulating a user-RRH association problem for uplink transmission
in a C-RAN. The main objective was to maximize the network sum-rate under limited computing
resources. At first, the binary integer non-linear programming problem was transformed to a general
non-linear programming problem for reducing complexity. Then, an iterative sub-optimal algorithm
was proposed to solve the problem by updating the objective function iteratively until the optimal
solution is achieved.

Table 2 presents the research activities mentioned in this paper on RRM techniques in C-RANSs.
The application, goal, problem formulation, and techniques that are used in the relevant works
are mentioned.

3.1.4. Evaluation Techniques for Radio Resource Management Methods

Different evaluation techniques and performance comparisons based on different metrics for
the RRM techniques in C-RANs have been proposed by researchers. Table 3 presents the evaluation
techniques together with the performance metrics for the RRM schemes reviewed in this work (which
are mentioned in Table 2).

The performance of the proposed two-step DRL-based approach in [39] is evaluated by comparing
it with two widely used baselines: single BS association (SA) and full coordinated association (FA). It is
illustrated that the approach yields better results in terms of the total power consumption and user
demand in each decision time. In this work, the reduction in the action space size and state transition
overheads (power consumption during a transition from active/sleep to sleep/active) via a two-step
DRL-based framework was considered. Zhao et al. used simulations to compare the efficient local
search algorithm as proposed in [40] with two other methods (no RRH selection and greedy-based
RRH selection) in terms of the power consumption during each iteration with different numbers of
RRHs as well as TDAs and with different spectral efficiency. It was demonstrated that the power
consumption for different spectral efficiency requirements is almost equivalent. This indicates that
the spectral efficiency is not a significant factor in the power consumption of the C-RAN. However,
in [41], which is an extension of [40], the performance of the proposed method is evaluated through
simulation and compared with the SINR-based scheme, cell range expansion, and the Min-power
scheme, in terms of the number of satisfied users, active RRH for current users, and outrage probability
for different call departure rates. The authors in [42] evaluated the performance of the proposed MBFD
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through simulation. They demonstrated that the MBFD algorithm yields higher performance than
BFD and traditional networks in minimizing the number of active BBUs and the power consumption
for normalized traffic load in C-RAN. This is because MBFD achieves load balancing while saving
energy, after modification from BFD. A simulation is presented and analyzed in terms of the traffic
threshold and total power consumption of the network, for evaluating the performance of the method
proposed in [43]. It was concluded that the consideration of only the power consumption of RRHs
results in increased total power consumption of the network, because of the BBUs. Notwithstanding
the marginal difference between the theoretical and simulation results, the proposed scheme reduces
the total power consumption while optimizing BBU aggregation.

In [44], the proposed DRAC algorithm was simulated in MATLAB, and the performance of
the approach was compared with those of a few state-of-the-art schemes to demonstrate the high
throughput satisfaction rate, minimal power consumption, and significant reduction in the number of
BBUs required with the maximum number of RRHs handled per BBU. The DRAC scheme performs a
good tradeoff between the satisfaction rate and overall power consumption for both the SINR threshold
levels. In [45], the performance of the proposed algorithm RAAC was evaluated by means of simulation
in a wireless LTE C-RAN environment with 19 hexagonal RRHs and three users uniformly distributed
in each cell. Then, it was compared with a semi-definite positive relaxation-based algorithm (SDPRA)
and a fast greedy algorithm (FGA) in terms of the number of admitted users, total transmission power,
and number of BBUs. It was demonstrated that it increases user admission by 9% and 11%, respectively.
Moreover, it saves 23% and 53%, respectively, more transmission power. In [46], the proposed approach
was simulated using MATLAB with CVX tool, considering five mobile clones co-located with the
BBUs in the BBU pool. The performance of the joint scheme was compared with the individual energy
minimization schemes in terms of the total energy consumption for varying QoS requirements and
CPU cycles of the task. The proposed method outperformed the separate solutions in all cases.

Table 2. Radio resource management techniques in C-RAN.

Strate; Ref. Application Goal Problem Formulation Technique Used
8y PP q
Minimize total power Second order cone
Power-efficient resource consumption by -
[39] . . . optimization DRL
allocation determining an optimal
. . problem
beamforming solution
RRH selection based on Reduce total power Mixed lnteger Efficient local search
[40] p rogramming problem
traffic density consumption prog &P algorithm (ELSA)
(MIPP)
Load balancing among
Power [41] Static RRH selection and RRHs and controlling MIPP ELSA and adaptive
Control dynamic RRH switching the signaling overhead trigger mechanism
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oo Reduce number of active . . .
[42] Switching BBU on/off BBUs and power Linear integer Combined BPM and
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Table 3. Performance evaluation techniques and performance metrics used in radio resource management.

Ref. Evaluation Technique Performance Metrics
[39] Performance comparison V\.Ilﬂ’-l Single BS association Total power consumption and user demand
and Full coordinated association
[40] Comparison with No RRH selection and Power consumption with different numbers of RRHs,
greedy-based RRH selection TDAs and spectral efficiency
[41] Comparison with SINR-based scheme, cell range Number of satisfied users and active RRH, outrage
expansion, and the Min-power scheme probability
[42] Comparison with BFD and traditional networks Number of active BBUs and power consumption
[43] Simulation of the theoretical analysis Optimal traffic threshold, total power consumption
/ Performance comparison with QP-FCRA, Tterative Throughput satisfaction rate, spectrum spatial reuse,
[44] . . . . o transmitted power, number of BBUs and RRHs
GSB algorithm and Semi-static, adaptive switching .
required
[45] Simulation and performance comparison with Number of admitted user, total transmission power,
N SDPRA and FGA number of BBUs
[46] Simulation and pe?f(')rn}an'ce comparison with Total energy consumption
separate energy minimization solution
[47] Simulation showing the impact of changing User-RRH association strategy, achievable sum rate

computing resources

In [47], simulations were conducted by varying the computing resource constraints. The effect of
the computing resources in both user-RRH association schemes and achievable system sum-rate was
depicted. The users could not obtain high data rates even if they had high SINR when the computing
resource was scarce. However, the optimal user association scheme can be achieved with sufficient
computing resources. Moreover, a knee point was presented. It indicated the computing resources
required by a BBU pool for achieving a satisfactory transmission rate in a C-RAN network.

3.1.5. Lessons Learned

The minimization of the number of BBUs required to handle traffic loads with a reduced number
of RRHs resulted in an improved network capacity as well as less overhead in fronthaul links of
the network. It also reduced the inter-cell interference. For improving the energy efficiency of a
CRAN, RRHs need to be selectively turned on/off such that they cause less overhead in the transport
network and reduce the number of active BBUs within the BBU Pool. However, the RRH switching
method results in load balancing among all the RRHs and minimum power consumption of the system.
Thereby, a stable scenario can be achieved for addressing unexpected future traffic demands effectively.

Power consumption is maximum during the peak traffic load because of the usage of a larger
number of BBUs, which results in more energy consumption. Therefore, it is more effective to
consider the dynamic traffic load for maintaining the QoS requirements as well as energy efficiency,
while designing algorithms for minimizing power consumption.

3.2. Computational Resource Management Based on RRH Clustering Techniques

In conventional RAN architectures, a one-to-one logical mapping exists between RRHs.
This implies that one BBU is assigned to one RRH. However, in a C-RAN architecture, it is feasible
to establish a one-to-many mapping by assigning one BBU to many RRHs. The former results in the
deployment of small cells wherein a user connects to one BBU through one RRH. In this mapping,
the BBUs in the BBU pool are not utilized efficiently because all the RRHs do not have equal traffic
load perpetually. In a one-to-many mapping, a user can connect to the same BBU through multiple
RRHs because multiple RRHs are assigned to the same BBU. This is similar to a distributed antenna
system (DAS). The mappings are depicted in Figure 5. The computational resource usage of the BBUs
in a C-RAN is minimized via assigning multiple RRHs to one BBU by clustering RRHs according to
the user rate requirements. Limiting the number of active BBUs decreases the power consumption
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and increases the radio resource utilization because commonly grouped RRHs share the same BBU
resource. Deciding which RRHs must be grouped together by forming a cluster to reduce the number
of active BBUs is known as an RRH clustering problem. Many techniques have been proposed for
formulating and solving the RRH clustering problem in C-RANSs. In [48], the authors formulated the
RRH clustering problem as a modified bin packing problem to reduce the number of active BBUs while
maintaining the QoS.

BBU 1 RRH 1

RRH 1
BBU 2 RRH 2 BBU 1 RRH 2
BBU 3 RRH 3 RRH 3

(b)

Figure 5. BBU-RRH mapping: (a) one-to-one mapping (b) one-to-many mapping.
3.2.1. Location-Aware RRH Clustering

Karneyenka etal. proposed a two-step resource management mechanism for minimizing expensive
handovers within the BBU pool while improving the QoS [49]. First, they designed a hierarchical
location-based clustering algorithm to cluster VBSs according to the location of their associated RRHs.
This strategy divides the entire area in a grid and places RRHs close to each other in a cluster. It accepts
the clustering distance and the entire RRH list as inputs and produces the clustered RRH as the output.
Then, they proposed a packing algorithm, which simultaneously addresses host overutilization and
improves cluster packing using location, mobility, and handover information. The complexity analysis
of the algorithms and performance comparison with other existing schemes in terms of the QoS
(number of expensive inter-cluster handover) and resource (RRH, hosts, and energy) consumption
was demonstrated.

3.2.2. Load-aware RRH Clustering

Mishra et al. formulated the RRH clustering problem as a generalization of the classical bin
packing optimization problem. Here, BBUs are considered as bins, and RRHs are the item sets to be
packed [50]. They designed DRA, a dynamic RRH assignment algorithm for offloading one or more
RRHs from an overloaded BBU to a less loaded BBU having computing resources available to serve
the incoming RRH(s), thereby forming a new cluster. DRA reduces the number of active BBUs by 87%
in comparison with one-to-one BBU-RRH mapping and consumes 25% of the time required by First-fit
Decreasing (FFD) for the urban cellular deployment of 1000 RRHs.

In [51], Taleb et al. formulated the RRH clustering problem as a coalition formation game.
The objective was to maximize the network performance by balancing the network throughput,
handover frequency, and power consumption. They proposed a centralized approach based on an
exhaustive search and a distributed approach based on the merge-and-split rule to form clusters,
following either the utilitarian order (which considers the global network utility) or the Pareto order
(which considers individual RRH utility). They defined the utility functions considering the network
performance (specifically, the throughput and handover frequency) as well as the network power
consumption at the cloud side. In the centralized approach, an exhaustive search algorithm explores
all the feasible partitions and selects the best one according to either the Pareto order or the utilitarian
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order. This search becomes intractable because the number of partitions increases rapidly. Therefore,
a distributed approach is adopted to overcome this complexity.

The author of [52] and [48] formulated a joint optimization problem in [53] for minimizing the
power consumption and handover rate of UEs. The author solved it via a hybrid algorithm consisting
of two stages. Unlike the previous works, this algorithm requires less amount of signaling load
information. In the first stage, a central controller predefines the number of active BBUs. In addition,
all the RRHs compete (based on a potential game among themselves) to select the most adequate BBU
with the lowest cost, until a Nash equilibrium is attained. The second stage is based on a centralized
scheme to activate or deactivate a BBU based on the throughput per cluster, and the number of users
served per cluster when a BBU is deactivated. This method reduces the signaling load over the
fronthaul link between BBUs and RRHs because RRHs are not required to send their load and radio
conditions to the BBUs.

Hesham et al. formulated the RRH clustering problem to minimize the number of activated BBUs
based on the current state of the user and dynamic resource requirement [54]. A modified k-means
clustering technique and two heuristic solutions are proposed to form the RRH clusters. In k-means,
the input is the matrix of resource blocks. Here, a row represents an RRH, and each RRH is clustered
based on the pattern of resource blocks that it provides to each user. This algorithm is modified
such that an overloaded BBU or cluster migrates its users to the least overloaded cluster, and the
migrated users who have the minimum difference in the reserved resource blocks between its current
cluster and the migrated cluster are selected. The two heuristic solutions (where one takes the next
maximum, and the other takes the subsequent minimum) create RRH clusters in two steps. This is
because both require user assignment to an RRH before it is assigned to a BBU prior to the clustering,
to achieve efficient load balancing. In addition, this study proposed the concept of developing an
independent mini distributed antenna system in an indoor C-RAN for 4G networks, to increase user
rate provisioning with fewer resource blocks as well as to minimize the number of BBUs.

In [55], Chen et al. proposed a deep learning-based framework in C-RAN optimization to maximize
the capacity utilization and minimize the deployment cost to achieve statistical multiplexing gain.
The framework is two-phased: (1) dynamic RRH profiling phase consisting of RRH traffic forecasting
and RRH complementarity measurement and (2) complementary RRH clustering phase consisting of
weighted-graph-based RRH modeling and distance-constrained RRH clustering. In the first phase,
a multivariate long short-term memory (MuLSTM) is utilized for traffic pattern forecasting of RRHs in
a future period based on historical traffic data. Furthermore, the complementarity of RRHs is measured
based on the traffic snapshot forecast. In the second phase, a weighted graph model is constructed
to represent the relationship of RRHs. In addition, a distance-constrained complementarity-aware
(DCCA) algorithm is proposed to cluster RRHs iteratively such that the complementarity among RRHs
is increased within each cluster and reduced across different clusters.

In [56], Yu et al. considered the selection of active RRUs and the allocation of multiple
computational resources in BBUs. The objective was to minimize the number of active BBUs required
to serve all the users in the network. They formulated the multi-resource allocation problem as a
multi-dimensional bin packing BP problem by first considering that the virtual machines (VMs) in BBUs
have diverse resource requirements, and then considering each BBU as a bin and each VM as an item.
In this problem, the number and sizes of items can be adjusted for packing by varying the associations
between the RRU and UEs. The size of the BBU indicates its resource capacities. They proposed an
iterative resource allocating (IRA) algorithm to solve this problem. It assigns a VM to the BBU with the
required resource allocation by following the largest-dot-product-first strategy. This strategy prevents
over allocation of computational resources and achieves a higher packing efficiency than the first-fit
strategy. However, while assigning VMs to BBUs, the VM's requirements of all the resource types need
to be considered.
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3.2.3. Interference-Aware RRH Clustering

In [52], Boulos et al. presented an interference-aware clustering algorithm (IACA) for RRH
clustering with the objective of minimizing the network power consumption, subject to a minimum
throughput requirement. They designed the system model to perform the clustering within a few hours
and divided the area into discrete zones using a square meshing method. The problem was formulated
as a set partitioning problem and solved using a greedy heuristic solution with complexity reduction.
The objective was to determine the RRHs that minimize the power consumption in accordance with
the throughput constraints. The results of the heuristic revealed performances very close to the optimal
solution and with less complexity. Although power saving is achieved using this approach, the energy
efficiency was lower than that with the bin packing approach. Moreover, the RRH clustering strategy
is designed considering a full buffer traffic model that does not take the traffic dynamicity into account.

The work of [52] is extended in [48]. Here, the objective was to minimize the power consumption
and to minimize the RRH re-association rate while forming a new cluster. This is because the
re-association of RRHs with different BBUs may cause handover for the users connected to the RRH.
Unlike the previous work, this work presented a two-stage heuristic solution. Here, the first stage
decided the RRH re-association with a BBU when the minimum throughput requirements per user are
not fulfilled. The second stage addressed the minimization of the number of active BBUs by moving
RRHs to the BBU with a moderate throughput per user. A tradeoff between the power saving and
re-association rate was illustrated via numerical results. That is, when the algorithm focused more on
power saving, the re-associate rate increased, and vice versa.

Extending [51], the authors formulated a joint user association and RRH clustering problem
in [57] considering inter-cluster interference. They divided it further into two sub-problems to reduce
complexity. The main goal was to maximize the network throughput and minimize the network
power consumption. The RRH clustering problem was solved by an iterative, low complexity heuristic
algorithm based on merge-and-split rules, in which the RRHs combined and organized themselves
into independent clusters such that the network utility was maximized. This process was repeated
until convergence, which implies that no more RRH clustering was required.

3.2.4. QoS-aware RRH Clustering

In [58], the authors investigated the load-balancing problem in a C-RAN. The objective was to
reduce the number of blocked calls and maximize the QoS. A key performance indicator (KPI) was used
to represent the QoS. It was defined as the number of blocked calls. The scenario was developed such
that 19 RRHs were distributed randomly and connected to a BBU pool consisting of two BBUs with
three sectors each. The particle swarm optimization (PSO) algorithm was used for BBU-RRH mapping.
Herein, the best particles were represented by a vector result, where each particle characterized a
feasible combination of RRHs distributed in the sectors of the BBUs.

In [59], Yao et al. formulated a QoS-aware joint BBU-RRH mapping and user association problem
in a C-RAN. The objective was to minimize the system cost by minimizing the power consumption of
the RRHs and the number of virtual BBUs (VBs). The joint optimization problem was decomposed
into two subproblems to reduce computing complexity. Accordingly, the user association problem
was solved first, and the optimal solution was utilized to solve the BBU-RRH mapping problem.
The former problem was solved using a Lagrangian relaxation algorithm, and the latter was solved by
the best fit decreasing algorithm (LAGA-BFD). The BBU-RRH mapping problem was formulated as a
bin packing problem. Here, VBs were backpacks, and the RRHs were the objects to be placed in the
backpacks. To solve this problem, the BFD was utilized such that one RRH will be connected to one
VB, which would be the best fit for it. This implies that the VB has the minimum remaining capacity
after the addition of the RRH, and a VB was added when there was no VB available to accommodate
the RRH.

Khan et al. investigated the dynamic RRH allocation considering a self-optimized C-RAN with
the objective of maximizing the network QoS by traffic load balancing and minimizing handovers
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in the network [60]. The problem was formulated as an integer-based optimization problem in a
self-organizing network (SON) by defining multiple KPIs. Based on this, a SON controller residing
inside the BBU pool can identify the network configuration and perform dynamic RRH allocation
as well as load balancing in the network. The KPIs considered here were for blocked users and
handovers. Here, inter-BBU, intra-BBU, and forced handovers were considered. The self-organized
C-RAN (SOCRAN) algorithm utilizing two evolutionary algorithms (genetic algorithm (GA) and
deterministic particle swarm optimization (DPSO)) was proposed for solving the problem. It was
demonstrated by numerical analysis that both the GA and DPSO provide optimal performance for
small networks and nearly optimal performance for large networks, whereas DPSO outperformed GA
in different network scenarios.

In [61], the self-optimized architecture for C-RAN (SOCRAN) proposed in [60] was utilized for
performing semi-static cell differentiation and integration (CDI) and dynamic BBU-RRH mapping
for load balancing simultaneously. CDI was investigated with the objective of utilizing the network
resources effectively while maintaining the overall network QoS. Herein, a cell was split into multiple
small cells and vice-versa, in response to the measured load information in one or more cells in the
network. A two-stage design was proposed, where the first stage computes the optimal number
of BBUs according to load demand and activates or deactivates RRHs based on the CDI concept
for handling traffic load. The second stage was modeled as an integer-based linear optimization
problem for effective BBU-RRH mapping, to maximize QoS while minimizing handovers for network
load balancing. Furthermore, this problem was solved using a DPSO algorithm. Three KPIs were
considered for BBU-RRH mapping, taking into account the load fairness index, network throughput,
and handovers.

The authors in [62] proposed a self-optimized algorithm for dynamic RRH clustering in C-RAN
based on load prediction. Meanwhile, the traffic load in each cell was predicted using the Markov
model, and the optimal solution for BBU-RRH mapping was determined using the GA. The objective
was to maximize the QoS by minimizing the connection blocking and handover failure with a balanced
load. The QoS was determined by two KPIs, which were represented as the inverse of the blocked calls
in the network and handovers. During the prediction phase, the Markov model considered the location
of the user and developed groups of cells by acquiring the neighbor cells to form a Markov state,
based on the user behavior. This was performed to reduce complexity. After predicting the number of
users in each cell, the GA was executed in advance according to the predicted load to determine the
optimal BBU-RRH mapping and obtain the appropriate configuration for minimizing the number of
blocked users with the minimum execution time delay. The QoS criteria of the existing mapping were
analyzed and compared with the predicted mapping. The new BBU-RRH mapping was attained if the
number of predicted users and the number of users in that time match.

3.2.5. Throughput-Aware RRH Clustering

Salhab et al. investigated a throughput-aware RRH clustering problem with the objective of
maximizing the throughput for end-users by maintaining multiple constraints on BBU resources [63].
A two-stage approach was proposed. Here, the throughput value and requirements of each RHH were
calculated first considering the SINR values and the distance of RRH and users. Then, a k-dimensional
multiple-choice knapsack problem (k-MCKP) was formulated considering the calculated result as
inputs. Unlike previous works, this work considers multiple BBUs with several constraints, based on
real hardware implementation. The arrival of UEs was modeled by a Poisson point process, in which
UEs were spread and connected to RRHs. They proposed a heuristic to solve the k-MCKP, which was
simple and efficient, and obtain values close to the optimal solution.
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3.2.6. Evaluation Techniques for RRH Clustering Methods

Different evaluation techniques and performance comparisons based on different metrics for RRH
clustering techniques have been proposed by researchers. Table 4 presents the evaluation techniques
and the performance metrics for the RRH clustering methods reviewed in this work (listed in Table 5).

Table 4. Performance evaluation techniques and performance metrics used in RRH clustering technique.

Ref. Evaluation Techniques Performance Metrics
Simulation and performance comparison with QoS (number of expensive inter-cluster
[49] . . handover) and resource (RRH, hosts, and
other existing C-RAN schemes .
energy) consumption
Slmu.lahon an.d comparison Wlth classical b.m. Number of active BBUs, energy efficiency,
[52] packing algorithm and comparison of heuristic .
. - . ; power-saving, and mean throughput per user
solution with optimal solution
[48] Simulation and comparison of heuristic Power saving, re-association rate of users, and
solution with optimal solution mean throughput per user
Simulation and comparison with FDD bin . . .
[50] . . Computational resource gain and power saving
packing algorithm
Simulation and comparison with the optimal Number of active BBUs, user interference, user
[57] exhaustive search-based solution, no-clustering  throughput, power consumption, and network
solution, and grand coalition utility
Simulation and comparison with a centralized = Power saving, re-association rate of users, mean
[53] . . . . —_—
algorithm and bin-packing algorithm throughput per user, and execution time
[51] Simulation and performance comparison with ~ Number of active BBUs, throughput, power
grand coalition and no-clustering method consumption, handover
[54] Simulation and performance comparison Number of active BBUs, number of clusters and
. among three proposed techniques resource blocks
[58] Slmulatlon and performance. comparison with BBU load balancing with number of users
literature model and the optimal approach
[59] Simulation and performance comparison with ~ System costs for different numbers of RRHs,
optimal ILP by CPLEX and nearest-first scheme  UEs, and average arrival rate
[63] Simulation and performance comparison with ~ End-users throughput, spectral efficiency, and
the optimal solution and no-clustering scheme  execution time
[60] Simulation and performance comparison with QoS, blocked users, and handovers
ES and k-means clustering
Simulation and performance comparison of . .
[61] DPSO with GA and ES, and CDI-CRAN with QoS, load fairness index, network throughput,
and handover
F-CRAN
Training the DL model and performance
[55] comparison of the test set with traditional, Traffic forecast error, average capacity utility,
- ARIMA-DCCA, WANN-DCCA and and overall deployment cost
MuLSTM-DC methods
[62] Slmulatlon and performance comparison of GA Number of blocked connections, QoS
with ES
Simulation and performance comparison with
[56] Main Resource Packing, No UE Aggregation, Number of active BBUs

Two-stage Optimization and ES
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Table 5. Comparison of RRH clustering techniques.
Strategy Ref. Optu'mz'atlon Goal Problem Formulation Technique Used
Objective
. Location-aware VBS
Reduce resource consumption clustering aleorithm and
Location-aware [49] Energy through virtual BBU N/A ering a gorLin
. location and mobility-aware
clustering and placement . .
packing algorithm
Minimize power consumption  Classical bin packing nghtwglght, load—avlva.re
[50] Power . L dynamic RRH association
and the number of active BBUs  optimization problem .
algorithm
Maximize network . Centralized approach based
Throughput, performance by balancing s . .
Coalition formation on exhaustive search and
[51] power, network throughput, A
game distributed approach based on
handover handover frequency and -
. merge and split rule
power consumption
Minimize power consumption Joint optimization
[53] Power and handover rate of UEs robler}; Two-stage hybrid algorithm
simultaneously P
Load-
oad-aware s Modified
C tational Minimize the number of K- based
[54] omputational . ivated BBUS to reduce means-base N/A
usage computational usage clustering and two
P 8 heuristic algorithms
Multivariate LSTM for
Maximize the capacity . . forecasting and
[55] Distance span  utilization and minimize the nglr: rl:lmty detection Distance-constrained
deployment cost P complementarity-aware
algorithm for clustering
Computational Minimize t.he numbeF of active Multi-dimensional bin  Iterative resource allocating
[56] BBUs required to satisfy VM ; .
usage packing problem algorithm
resource demand
Reduce ne.tworlf power Set partitioning Interference-aware clustering
[52] Power consumption with minimum R
. problem algorithm
throughput requirements
Interference- ) Reduce power consumption Tunable bi-objective Exhaustive search and
aware [48] Power and BBU-RRH re-association o - .
rate optimization problem  two-stage heuristic solution
Maximize network Mixed integer Low complexity heuristic
Throughput, L . .
[57] ower throughput and minimize non-linear algorithm based on
pow network power consumption ~ programming problem merge-and-split rules
Minimize the number of Particle swarm optimization
[58]  Blocked calls  blocked calls and load N/A Ao v OpRAT
balancing between BBUs &
Minimize power consumption Integer Linear
[59] System cost  of RRHs and number of Programming problem, LAGA-BFD
virtual BBUs Bin packing problem
Maximize network QoS by
[60] Blocked user, traffic load balancing and Inte.ge.r -ba.sed GA and DPSO
QoS-aware handover A optimization problem
minimize handovers
f’.flrll?:ss Maximize QoS and minimize Integer-based line
[61] mnaex, handovers for network load e.g r-oa mner CDI algorithm and DPSO
throughput, X optimization problem
balancing
handover
blocked calls, M?X.““.@e the QoS by . Markov decision Markov model for prediction
[62] handover minimizing the connection . and GA for optimization
ove blocking and handover failure process orop ©
- k-dimensional . - -
Throughput-aware  [63] throughput Maximize the system multiple~choice Simple and efficient heuristic

throughput for end-users

Knapsack problem

algorithm

In [49], a complexity analysis of the proposed location-aware VBS clustering algorithm and
location and mobility-aware packing algorithm, and a comparison of their performances with those of
other existing schemes in terms of QoS (number of expensive inter-cluster handover) and resource
(RRH, hosts, and energy) consumption were described. In [52], the performance of IACA was
compared with that of the classical bin packing algorithm through simulation. In addition, the
heuristic solution was compared with the optimal solution in terms of the number of active BBUs,
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energy efficiency, power saving, and mean throughput per user. However, in [48], which is an
extension of [52], whereas the performance evaluation was performed similarly, the performance
metrics considered were power saving, re-association rate, and mean throughput per user. The authors
in [51] compared the performance of the optimal centralized approach (as centralized Pareto or
centralized utilitarian, named based on the approach) with those of the grand coalition and the
no-clustering method through simulation. The comparison was in terms of the number of active
BBUs, throughput, power consumption, and handover for different traffic load scenarios. Furthermore,
the performances of the distributed and centralized approaches were compared using the Pareto
and utilitarian order, with respect to the number of active BBUs, utility function, and throughput.
It was demonstrated that the distributed approaches achieve performance very close to those of the
centralized approaches in all the cases.

The performance of the algorithm in [57] was compared with the optimal exhaustive search-based
solution, no-clustering solution (in which one BBU is exclusively dedicated to one RRH), and grand
coalition (in which all the RRHs are connected to one BBU). However, in [53], the performance of the
algorithm was evaluated by comparing it with a centralized algorithm and bin-packing algorithm,
which displays a good tradeoff between power saving and re-association rate. In [54], the modified
k-means technique and the two heuristic algorithms were simulated and tested on MATLAB and
compared in terms of the number of activated BBUs and the number of clusters and resource blocks.
K-means performed well in terms of the number of clusters and tightness of the clusters, although it
required a longer time to attain convergence. In [58], through simulation, the performance of the
proposed algorithm was compared with a solution proposed in the literature [60], having an identical
scenario and another optimal solution that divides the users between BBU sectors without considering
their distributions in the RRHs. The load balancing of BBUs considering a different number of users
was considered as the performance metric. It was demonstrated that the PSO could converge faster
with fewer iterations than those for the solution provided in the literature, and optimize the QoS by
reasonably balancing the BBU-RRH sectors.

In [59], the LAGA-BFD algorithm for solving the joint optimization of user association and
BBU-RRH mapping problem was simulated. Furthermore, the performance was evaluated with
different numbers of RRHs (6-14), a different number of UEs, and different traffic arrival rates,
considering more and less stringent QoS requirements. The impact of all the above parameters on
the system cost was compared while comparing the proposed method with the optimal ILP by using
CPLEX and the nearest-first scheme. In [63], the proposed heuristic for solving the k-MCKP-based
clustering technique was simulated via Monte Carlo simulation in MATLAB. Then, the performance
was compared with the optimal solution and two no-clustering approaches (no-clustering upper
bound and no-clustering lower bound) in terms of the end-user throughput, spectral efficiency, and
execution time. However, in [60], for analyzing and verifying the performance of the proposed
algorithm for RRH allocation (SOCRAN), three problem scenarios are presented by varying the
numbers of RRHs and BBUs, and the sector served by the BBUs. The algorithm was tested 30 times over
30 configurations for each benchmark. The average of the results obtained was considered for Monte
Carlo analysis. The performances of both the GA and DPSO in the SOCRAN algorithm were compared
with those of exhaustive search and the k-means clustering algorithm in terms of the QoS, the number
of blocked users, and the number of handovers, via simulation. In [61], the performance of DPSO
was analyzed in two problem scenarios considering small and large networks and compared with
those of the GA and ES algorithm. All the algorithms were executed 50 times with 50 configurations
for both the problem scenarios. The average of the results obtained was considered for Monte Carlo
analysis. Moreover, the CDI-based CRAN concept was also compared with a fixed-CRAN scenario
through simulation.

In [55], a real-world mobile network traffic dataset was collected for evaluating the performance
of the proposed framework. Furthermore, a set of 61 daily traffic snapshots was generated based on
that data. The snapshots of the first 70% were used for generating the training data. The remaining
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30% of snapshots were used for the test data. Then, the MuLSTM model with two stacked LSTM
layers was constructed and trained using TensorFlow, thereby ensuring that the network learns the
potential temporal and spatial structure. Then, the proposed method was compared with the traditional
approach as well as the ARIMA-DCCA, WANN-DCCA, and MuLSTM-DC methods, in terms of the
traffic forecast error, average capacity utility, and overall deployment cost. In [62], for simulation,
the network scenario was developed considering 19 RRHs grouped into six sectors with two BBUs.
Then, the algorithm was executed to determine the optimal BBU-RRH mapping by predicting the
number of users at that time. In addition, the performance of the GA is compared with that of ES in
terms of the QoS with varying numbers of iterations. Here, the number of blocked connections in
the network is minimized. The authors in [56] considered a network with densely deployed RRUs
at distances of 100 m, and for BBU, they considered CPU, memory, and disk as the computational
resources for simulation. The performance of the iterative resource allocating (IRA) algorithm in
solving the multi-resource allocation problem was evaluated by comparing it with main resource
packing, no UE aggregation, two-stage optimization, and exhaustive search, in terms of the number of
active BBUs, with different numbers of RRHs.

3.2.7. Takeaway Points

The assignment of multiple RRHs to a BBU enhances the transmission power density received by
the user. This minimizes the number of resource blocks required to satisfy user demand. Because each
BBU can support a larger number of users through one-to-many mapping of BBU-RRH, the number
of active BBUs required for providing the demand required in the network is decreased. Moreover,
RRH clustering results in reduced interference among the RRHs. This, in turn, results in an increased
throughput in the case of exploited interference. This is referred to as inter-cell interference cancellation.

Frequent re-association between BBUs and RRHs owing to RRH clustering results in the
degradation of the QoS of the network. This is because handovers occur when users become
connected to different BBUs. Therefore, a few authors considered the network QoS while solving the
RRH clustering problem.

4. Challenges and Open Research Issues

This section discusses the challenges of efficient resource management in C-RANs and future
direction for the researchers of this field. It is highly crucial to resolving a few of these issues for the
advancement of mobile networks.

4.1. User Mobility

User mobility has a remarkable impact on resource management in C-RANs. Understanding
user mobility is highly important for resource optimization and algorithm evaluation in mobile
network planning and handover mechanisms [64]. The virtualized BBUs in a C-RAN require resources
based on the mobility of the users in the network. Therefore, the disregard of user mobility in the
problem while managing resources may result in an inefficient solution. A few mobility-aware resource
management mechanisms have been proposed for C-RANSs. In [49], a location and mobility-aware
clustering and packing algorithm were designed for virtual BBU clustering and placement, to minimize
resource consumption.

In the future, researchers can design a user mobility-aware clustering algorithm for BBU or RRH
clustering in a C-RAN from a load balancing perspective. Moreover, machine learning techniques can
be applied for user mobility prediction such that resource allocation can be performed according to
the prediction.

4.2. QoS and QoE Requirements

Many researchers have worked with QoS-aware resource management problems in C-RAN in a
different manner. One of the potential methods to solve the problem can be the use of deep learning (DL)
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techniques. In [65], DL was applied to solve the QoS-aware power management problem because of its
efficiency of mapping inputs to outputs. The fundamental concept was to train a deep neural network
to obtain the optimal power management results by learning the potential relationship between the
input variables automatically. The same concept can be implemented for a C-RAN by training neural
networks to obtain optimal resource management.

Whereas QoS is related to the network services, the consideration of parameters such as throughput,
latency, jitter, and quality of experience (QoE) is another important subjective measurement that
addresses the satisfaction level of a user while using a telecommunication service. Considering the
forthcoming requirements of the 5G cellular network, it is also necessary to develop QoE-driven
resource management schemes and identify appropriate KPIs for the network. The knowledge of
the instantaneous and average QoE per user may aid the MNOs in modifying the network resource
usage for each cell size, set different bandwidth limits dynamically, and identify the minimum resource
required to achieve the desired QoE [66]. Developing efficient cache management can be a good
approach to improving QoE by reducing the transmit delay in the network.

4.3. Dynamic Traffic Load

The traffic load in a cellular network varies across areas and hours of the day. When resources
are not allocated based on the dynamicity of the traffic load, a few base stations are overloaded and
others underused. This results in inefficient resource management. Therefore, it is essential to design a
resource management mechanism considering this issue. Most of the works that have been performed
on traffic-aware resource management provided solutions based on the static traffic load rather than
the dynamic traffic environment.

A feasible solution could be the design of algorithms for traffic prediction such that resources
can be allocated accordingly. Deep learning techniques can be applied in that case. The authors
in [67-69] employed DL techniques for mobile traffic prediction. Here, they achieved significantly
higher accuracy than conventional approaches by extracting spatio-temporal features.

4.4. Forecasting Future Demand

Demand forecasting is a key issue in C-RAN resource management. Efficient forecasting techniques
can yield optimal resource allocation strategies to minimize energy consumption. Machine learning
techniques can be an appropriate solution for this problem, particularly the utilization of a neural
network-based predictor for forecasting the future demands in the network. Another feasible method
could be the adoption of reinforcement learning (RL) techniques, where the RL agent would learn the
network environment and forecast the future demand and allocate resources based on that learning.
The RL agent would allocate resources to the BBUs associated with those RRHs by learning from the
user demands of different RRHs in a BBU pool.

4.5. Fronthaul Capacity

The fronthaul link between a BBU and RRHs substantially impacts the performance of a C-RAN.
This link needs to have a high capacity and low latency. The fronthaul capacity must be considered
while allocating BBU resources to the RRHs through RRH clustering during the design of the clustering
algorithm. The mechanisms have to be designed such that the load on the fronthaul links does
not exceed the capacity of the links. Fronthaul-aware approaches must be considered during the
formulation of the optimization problem, for designing energy-efficient solutions while maintaining
the QoS requirements. Moreovert, other architectures such as H-CRAN and F-RAN, which are evolved
from C-RAN, can be considered for future research as they can be utilized to solve the high load
problem in fronthaul link. The authors in [70] studied the delivery phase of an F-RAN for an arbitrary
pre-fetching, with the goal of maximizing the delivery rate while satisfying fronthaul capacity and
per-RRH power constraints. They took into account two basic fronthauling modes, namely hard
transfer and soft transfer, and also a hybrid mode. In the soft transfer mode, C-RAN principle is
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followed for the fronthaul links for transferring quantized baseband signals, whereas, in the other
mode, the requested files that are not in the local caches are transmitted by the fronthaul links. Another
attractive technology is narrowband Internet of things that requires moderate fronthaul capacity as it
can operate in a narrow bandwidth and can be further investigated for implementation in C-RAN
environment [71].

4.6. Narrowband IoT

IoT will be a crucial part of future cellular networks. It is estimated that 212 billion IoT devices
will be connected in the near future. Therefore, the aggregated traffic from these devices would
account for almost half of all internet traffic [72]. Few studies have investigated C-RAN resource
management-integrating IoT devices. A new RAN technology introduced by 3GPP, called narrowband
Internet of Things (NB-IoT), is implemented on a flexible software-defined radio-based C-RAN in [71].
NB-IoT has the benefits of less complexity in transceiver design, low power consumption, reduced cost
for the radio chip, and increased coverage. Relaxed latency requirements along with simplified
baseband processing complexity make NB-IoT attractive for C-RAN platform. However, there exist
some challenges for this technology that requires further investigation, and it can be a potential
research area for future researchers. Another work presented in [73] utilized C-RAN architecture in
ambient backscatter communication, to jointly cope with direct-link interference suppression and
imperfect channel estimation. In this architecture, secondary edge nodes give network access to
ambient backscatter passive and semi-passive sensors with communication capabilities, and the
channel estimation and direct-link interference suppression are managed by the cloud processor.

Although these studies were able to manage the IoT support in cellular networks from the
perspective of centralized IoT transmission coding/decoding, further investigation is needed considering
IoT optimized control procedure. In addition, as RRHs are densely deployed in C-RAN network,
they may become congested when a small number of RRHs are overburdened with IoT devices.
Moreover, the mobility of IoT devices would deteriorate the situation [74]. It is essential to develop
techniques to support massive connections as well as ensure low-latency and highly reliable data
transmission. To address these issues, an H-CRAN can be developed as an effective solution in
conjunction with edge computing capability. Low latency can be provided by shifting data analysis
and decision making to the network edge.

4.7. Multi-Objective Resource Management

With the convergence of information and communication technology, the available types of
resources in C-RANs would comprise computational resources, network resources, radio resources,
and cache resources. Most of the ongoing researches has considered only one type of resource in
the C-RAN architecture while developing resource management schemes. Optimizing multiple
resources would simultaneously facilitate the achievement of higher system performance in this
network. The system model for linking various types of resources needs to be explored to simplify
the simultaneous optimization. A significant challenge for multi-dimensional resource management
would be the handling of multiple resources that are allocated at different time scales. This is known
as a two-timescale problem [75]. This challenge needs to be addressed in the future for efficient
multi-objective resource allocation.

4.8. Inter-Cell Interference

The C-RAN incorporates robust computing capability and large data storage, which requires proper
resource allocation and interference mitigation. Notwithstanding the design of a near-optimal algorithm
for resource allocation, the performance may be significantly sub-optimal and the measurement of
inter-cell interference tedious, time-consuming, and highly inaccurate, owing to the incorrect modeling
of interference among different cells [76]. It is necessary to design an algorithm that solves this dilemma
so that the optimization of resource management is achieved in conjunction with interference mitigation
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with appropriate measurement and reduced cost. This task can be challenging because, over time,
the interference estimated would be dynamic. Therefore, multiple measurements would be required to
ensure the accuracy of the measurements within each connection. The authors in [77] investigated the
resource management in a NOMA based F-RAN, focusing on the power and sub-channel allocation
considering the co-channel interference. The problem is designed as a non-cooperative game,
and many-to-many two-sided matching algorithm is studied for sub-channel allocation.

4.9. Software-Defined Networking and Network Function Virtualization

Software-defined networking (SDN) makes a separation between control and data planes,
in which network switches are considered as dummy packet forwarding devices logically controlled
by a centralized entity [5]. Network management, security policy deployment, scaling up or down,
and troubleshooting are some of the major advantages of this network paradigm compared to traditional
networking system [78]. In C-RAN architecture, SDN can be a suitable solution for dynamic resource
allocation, balancing traffic load among BBUs and automatic recovery in case of hardware failure [5].
However, the data forwarding flow in SDN is mainly at the IP layer, and combining the functions of
medium access control and the physical layer for C-RAN is a challenging task. For proper rollout of
C-RAN with SDN, this issue challenge needs to be overcome.

Network Function Virtualization (NFV) enables the transferring of network functionalities from
dedicated hardware to software-based applications, which can be shared in a flexible and dynamic
way [5]. It is essential to design the technique to virtualize the SDN controller to run on the cloud
server, which can be migrated to a location according to network needs. Implementation of a real-time
processing algorithm, virtualization of the BBU pool for C-RAN, and dynamic signal processing for
dynamic traffic load are challenging, and researchers are still working to find the optimal virtualization
technique for C-RAN.

5. Conclusion

Several techniques proposed for efficient resource management in C-RAN are analyzed and
discussed in this paper. This study explicitly presents an in-depth comparison among resource
management techniques proposed recently for C-RAN architecture, whereas previous surveys focused
on a few particular issues in resource management in different wireless networking scenarios or base
stations. Considering the continuous increasing traffic demand, it is highly necessary for researchers to
determine solutions for managing resources efficiently while maintaining the QoS requirements and
minimizing power and energy consumption. The selection of appropriate performance metrics is also
a crucial task. Therefore, this study focused on the performance metrics used in different works, as well
as the evaluation techniques performed. We have also presented the current and future challenges in
C-RAN as well as future research directions for solving the challenges effectively.
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Abbreviations

The following abbreviations are used in this manuscript:

BBU Base band unit
BCA Branch and cut algorithm
BPM Bin packing method

CAPEX Capital expenditures
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CDI
CPRI
C-RAN
CRM
DAS
DCCA
DL
DNN
DPSO
DRL
ELSA
FA

FFD
FFT
FGA
F-RAN
GA
H-CRAN
HPN
HS
IACA
IoT

IRA
k-MCPC
KPI
LAGA-BFD
LPN
M2M
MFBD
MILP
MIMO
MIPP
MKP
mmWave
MNO
MSE
MuLSTM
NB-IoT
NFV
OFDMA
OPEX
PSO
QoE
QoS
RAAC
RAN

RF

RL

RRH
RRM

SA

SDN
SDPRA
SINR

Cell differentiation and integration
Common public radio interface

Cloud radio access network
Computational resource management
Distributed antenna system

Distance constrained complementarity-aware
Deep learning

Deep neural network

Deterministic particle swarm optimization
Deep reinforcement learning

Efficient local search algorithm

Full coordinated association

First-fit decreasing

Fast Fourier transform

Fast greedy algorithm

Fog radio access network

Genetic algorithm

Heterogeneous cloud radio access network
High power node

Host server

Interference-aware clustering algorithm
Internet of things

Iterative resource allocating

k-dimensional multiple-choice knapsack problem

Key performance indicator

Lagrangian relaxation algorithm and best fit decreasing

Low power node

Machine to machine

Modified best fit decreasing

Mixed linear integer problem
Multi-input multi-output

Mixed integer programming problem
Multiple knapsack problem
millimeter wave

Mobile network operator

Mean square error

Multivariate long short-term memory
Narrowband internet of things
Network function virtualization
Orthogonal frequency division multiple access
Operational expenditures

Particle swarm optimization

Quality of experience

Quality of service

Resource allocation and admission control
Radio access network

Radio frequency

Reinforcement learning

Remote radio head

Radio resource management

Single BS association
Software-defined networking

Semi-definite positive relaxation-based algorithm

Signal-to-interference-plus-noise ratio
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SOCRAN Self-organized C-RAN

SON Self-organizing network

UE User equipment

VB Virtual BBU

VM Virtual machine
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