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While often represented as static entities, gene networks
are highly context-dependent. Here, we developed a multi-
task learning strategy to yield context-specific representa-
tions of gene network dynamics. We assembled a corpus
comprising ~103 million human single-cell transcriptomes
from a broad range of tissues and diseases and performed
a two stage pretraining, first with non-malignant cells to
generate a foundational model and then with continual
learning on cancer cells to tune the model to the cancer
domain. We performed multi-task learning with the foun-
dational model to learn context-specific representations of
a broad range of cell types, tissues, developmental stages,
and diseases. We then leveraged the cancer-tuned model
to jointly learn cell states and predict tumor-restricting fac-
tors within the colorectal tumor microenvironment. Model
quantization allowed resource-efficient fine-tuning and in-
ference while preserving biological knowledge. Overall,
multi-task learning enables context-specific disease mod-
eling that can yield contextual predictions of candidate
therapeutic targets for human disease.

Mapping gene regulatory networks in development and
disease enables the discovery of key network regulators
and network-correcting therapies that restore disease-
dependent networks back to the normal state1,2. How-
ever, mapping the gene network architecture using tradi-
tional methods requires large amounts of transcriptomic
data to learn the connections between genes, impeding
discoveries in settings with limited data, including rare
diseases and diseases affecting clinically inaccessible
tissues. Yet, advances in sequencing technologies have
driven a rapid expansion in the amount of single-cell
transcriptomic data available from tissues more broadly.
Standard approaches using task-specific data to train a
computational model to make predictions in that partic-
ular task require retraining from scratch with new task-
specific data for each new task, therefore not fully taking
advantage of this broader available data. On the other
hand, the machine learning approach of transfer learn-
ing leverages large-scale general datasets to pretrain
models to gain foundational knowledge that can then be

transferred to a vast array of downstream tasks, enabling
predictions with little or no task-specific training data3-5.

We previously developed a transfer learning strat-
egy for network biology, pretraining a foundational deep
learning model, Geneformer, on ~30 million single-cell
transcriptomes to gain a fundamental understanding of
network dynamics6. We demonstrated that this ap-
proach was able to drive biological insights that were ex-
perimentally verified with functional assays in cells. For
example, Geneformer discovered a novel transcription
factor in cardiomyocytes with zero-shot learning and pre-
dicted candidate therapeutic targets for cardiomyopathy
that improved contractility in an induced pluripotent stem
cell (iPSC) model of the disease6.

Overall, there has been a recent growth in the
adoption of transfer learning for network biology, and
multiple foundation models have been pretrained us-
ing large-scale single-cell -omics data to enable pre-
dictions in a diverse array of downstream tasks6-12.
Many of these foundation models, like Geneformer, em-
ploy a transformer3 architecture, which yields context-
aware embeddings and predictions. Context-aware ap-
proaches are critical for modeling gene regulatory net-
works, which are highly dependent on cell type, tis-
sue, disease state, and developmental and aging con-
texts. However, standard single-task fine-tuning, such
as learning cell types within normal tissues, or learning
disease states within a single cell type, limits the bio-
logical dimensions from which the model can learn in a
unified manner and may unintentionally collapse biologi-
cally meaningful variation within the embedding space.

Here, we developed a multi-task learning strategy
to yield context-specific representations of gene network
dynamics across cell types, tissues, diseases, and devel-
opmental stages. We assembled a large-scale pretrain-
ing corpus, Genecorpus-103M, comprising ~103 million
human single-cell transcriptomes from a diverse range of
tissues and disease states from publicly available data.
We performed an initial self-supervised pretraining with
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~95 million cells excluding cells with high mutational bur-
dens (e.g. malignant cells and immortalized cell lines)
and using an expanded input size of 4096 to model a
larger context of genes per cell. Pretraining with the
larger, more diverse corpus, increased model parame-
ters, and expanded input size boosted zero-shot predic-
tions in a diverse set of downstream tasks. We then per-
formed multi-task fine-tuning to jointly learn cell types,
tissues, disease states, and developmental stages, yield-
ing context-specific representations of gene network dy-
namics across these biological dimensions. Because the
initial pretraining excluded malignant cells, we designed
a strategy for domain-specific continual learning to tune
the model with ~14 million cells from a broad range of
cancer studies. We then leveraged this cancer-tuned
model to jointly learn cell states within the tumor mi-
croenvironment and predict factors that would shift cells
to a tumor-restricting or immune-activating state using in
silico treatment analysis. Furthermore, we demonstrated
that model quantization allows resource-efficient fine-
tuning and inference while preserving biological knowl-
edge. Overall, multi-task learning represents an ef-
fective method for jointly learning multiple biologically-
informative features to yield context-specific represen-
tations of gene network dynamics and predict context-
specific therapeutic targets for diseases with multicellular
pathology.

Results
Pretraining with larger and more diverse corpus en-
abled predictions in previously elusive tasks
We previously reported that increasing the size and di-
versity of the pretraining corpus for Geneformer consis-
tently improved the model’s predictive potential6. Since
the pretraining of Geneformer in June 2021, there has
been a significant expansion in both the amount and di-
versity of publicly available human single-cell transcrip-
tomic data, suggesting we could use this data to now
train an even more effective foundational model. There-
fore, we expanded our corpus to ~103 million human
single-cell transcriptomes from an even more diverse ar-
ray of tissue and disease contexts (Fig. 1a-b, Extended
Data Table 1, Extended Data Fig. 1a-c). We balanced
the data such that no tissue composed more than 25%
of the data and performed scalable quality control fil-
tering. We also performed deduplication of studies by
DOI to preclude training with duplicated cells, which can
significantly overestimate corpus size due to studies be-
ing deposited in multiple databases (Extended Data Fig.
1a). Because the technology has advanced since 2021
with more genes now being detected per cell that is se-
quenced, we expanded the model’s input size to 4096,
which fully encompasses 93% of the cells in the pretrain-
ing corpus (Extended Data Fig. 1d). Due to the quadratic
time complexity of dense attention, this doubling of the
input size increased the computational intensity quadrat-

ically, but allowed the model to learn from a larger gene
network context for each cell.

We then pretrained an updated Geneformer model
using the larger input size of 4096 per cell and the
expanded pretraining corpus with ~128 billion tokens,
where each gene is a token within the dictionary of
20,271 genes. Each cell was presented to the model
as a rank value encoding, as previously described6. For
this primary pretraining stage we used ~95 million hu-
man transcriptomes, excluding cells with high mutational
burdens such as malignant cells and immortalized cell
lines. We excluded these cells that may have a high
abundance of gain of function mutations that may lead
to genes having an unpredictably different function than
what the model would interpret from other cells with low
mutational burdens when observing only transcriptomic
data without accompanying genomic sequencing. To
match the increase in pretraining data, we also increased
the depth of the model, maintaining the width-to-depth
aspect ratio, and compared the pretraining loss per com-
putation and tokens observed by the model. Pretraining
loss improved with increasing floating point operations
(FLOPs), though the largest 20 layer model did not sur-
pass the intermediate-sized 12 layer model until nearly
three epochs of training (Fig. 1c, Extended Data Fig.
1e).

The updated models demonstrated enhanced zero-
shot learning capabilities across a diverse panel of bio-
logically meaningful downstream tasks in the domains of
disease genes, chromatin dynamics, network dynamics,
and gene regulation (Fig. 1c). The updated model en-
abled predictions in previously elusive tasks, such as un-
derstanding whether transcription factors act in short or
long range with their targets, which is especially difficult
to ascertain using only transcriptomic data as input with
no information about genomic distance. At the cell level,
the zero-shot embeddings captured multiple dimensions
of biologically meaningful attributes, including cell type,
tissue origin, developmental stage, and disease status
(Fig. 1d). Overall, increasing the size and diversity of the
pretraining data as well as the model size significantly
improved performance in a diverse panel of biologically
meaningful downstream tasks.

Model quantization allowed resource-efficient fine–
tuning with nearly equivalent predictive accuracy
Although fine-tuning is generally much less computa-
tionally intensive than pretraining, hyperparameter tun-
ing (optimizing the settings that control the model learn-
ing process) can rapidly increase the resource require-
ments due to the need for repeated training attempts to
search the space of possible settings. This can impede
the accessibility of the model in settings with low GPU re-
sources. To address this, we tested model quantization
to 4-bit precision using Quantized Low Rank Adapters
(QLoRA)13. This approach backpropagates gradients
through the frozen, 4-bit quantized Geneformer into low
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Fig. 1 | Geneformer transfer learning strategy. Legend on next page
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Fig. 1 | Geneformer transfer learning strategy. a, Initial self-supervised, large-scale pretraining on a generalizable learning objective yields a pretrained model with
a fundamental understanding of network dynamics. This baseline knowledge can be democratized to a vast array of downstream applications either through zero-shot
learning, where the pretrained model is used directly without fine-tuning, or with fine-tuning, where the model learns from limited task-specific data to make much
better predictions in the downstream tasks compared to if the model used that limited data alone without the fundamental knowledge gained during the large-scale
pretraining. Multi-task fine-tuning enables the model to learn context-specific representations of cell states from multiple cross-informative biologically-relevant tasks.
b, Organ representation of Genecorpus-103M. c, Pretraining loss (left) and zero-shot performance on a diverse panel of downstream tasks (right) for each pretrained
model (GF=Geneformer, L=Layers, M=Million cells, I=Input size). Number of cells for the downstream tasks indicates the number of cells from which zero-shot gene
embeddings were extracted for classification. d, Zero-shot cell embeddings from GF-12L-95M-I4096 for 779,905 representative cells from the CELLxGENE corpus
balanced across cell types, tissues, diseases, and developmental stages and colored by consolidated labels for those cell attributes.

rank adapters to reduce memory usage and training
time.

To test the benefit of quantization, we used the
largest 20 layer model that requires more compute at
baseline. Fine-tuning the 4-bit quantized Geneformer
with a relatively low adapter rank of 16 was sufficient
to preserve full 32-bit fine-tuning performance in tasks
across the four biologically diverse domains while reduc-
ing memory by 1/3 and taking 1/3 the time to train with
the same batch size as the 32-bit model (Fig. 2). Of note,
because the memory usage is lower, the true maximal
time-savings are significantly larger since larger batches
of data can be run through the 4-bit model at the same
memory scale.

We then tested the ability of the 4-bit quantized
model to replicate full fine-tuning in the few-shot setting
(Fig. 2c-d). Fine-tuning the 32-bit 20 layer model with
just 100 cells was sufficient to yield accurate predictions
of dosage-sensitive transcription factors, demonstrating
the ability of the model to learn from increasingly limited
task-specific data. However, in the few-shot setting, the
relatively low adapter rank of 16 was not able to match
the performance of full fine-tuning, and increasing the
adapter rank was necessary to closely approach the per-
formance of full fine-tuning. Nevertheless, the 128-rank
quantized model continued to provide roughly equivalent
time and memory savings as the 16-rank version, with no
change in time requirements and very minimal change
in memory usage. Overall, quantization of Geneformer
enabled resource-efficient fine-tuning with nearly equiv-
alent predictive accuracy.

Multi-task learning strategy yielded context-specific
representations of cell states
Fine-tuning provides a valuable method to instruct the
model about a specific gene characteristic or cell state,
such as distinguishing dosage-sensitive genes or dis-
ease states. For example, we previously fine-tuned
Geneformer-6L-30M to distinguish cardiomyocytes from
non-failing hearts vs. hearts affected by dilated or hy-
pertrophic cardiomyopathy. We then leveraged this fine-
tuned model to perform in silico treatment analysis that
predicted therapeutic targets which we experimentally
validated to improve the contractility of cardiac microtis-
sues in an induced pluripotent stem cell (iPSC) model of
the disease6.

However, many diseases are affected by multicel-
lular pathologies where jointly learning about variable

cell type, tissue, and developmental contexts relevant
to disease progression may yield critical information
that would be lost by fine-tuning on each context sep-
arately. Furthermore, simultaneously learning about a
broad range of diseases, cell types, tissues, and devel-
opmental stages may also yield a pre-fine-tuned model
that could be directly used for in silico treatment analy-
sis without the need to fine-tune to each setting sepa-
rately. This would additionally allow one to test in silico
perturbations for potential side effects in shifting towards
a compendium of alternate diseases as opposed to the
healthy state.

To address this, we developed a multi-task learn-
ing strategy to enable the model to learn context-
specific representations of cell states from multiple
cross-informative biologically-relevant tasks (Fig. 3a).
We leveraged the CELLxGENE database14, which
at the time of access contained ~43 million single-
cell transcriptomes with annotations across multiple
biologically-informative features including, after further
curation/consolidation, 71 cell types, 38 tissues, 68 dis-
eases, and 3 developmental stages. Because the dis-
tribution across these classes was significantly imbal-
anced, we iteratively balanced each feature to generate
a subsampled dataset that maintained the diversity of the
original corpus (Extended Data Fig. 2a).

Jointly fine-tuning across these multiple biologically-
informative tasks yielded a fine-tuned model with a val-
idation macro F1 score of 0.85 for cell types, 0.90 for
tissues, 0.85 for diseases, and 0.95 for developmental
stages (Fig. 3b-e, Extended Data Fig. 2b, 3). The
model was robust to decreasing amounts of input data
per class, with performance dropping only with increas-
ingly limited numbers of examples, such as cell type
classes with 52 cells or less (Fig. 3b). Furthermore,
many cases of label confusion were likely due to impre-
cise labeling, for example with the label of “digestive sys-
tem unspecified” being classified by the model as “large
intestine” or “small intestine” (Extended Data Fig. 2c). In
the cases of the disease features, there were certainly
some lowly represented diseases that were commonly
misclassified by the model. However, in many cases
of label confusion, the confused labels represented dis-
eases with shared pathologies, such as frontotemporal
dementia and amyotrophic lateral sclerosis, or Parkinson
disease and Lewy body dementia (Extended Data Fig.
2d). The model was also able to apply CELLxGENE cell
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Fig. 2 | Model quantization enabled resource-efficient fine-tuning. a, Validation macro F1 on a diverse panel of downstream tasks for GF-20L-95M-I4096 by zero-
shot learning or full fine-tuning or fine-tuning of the quantized 20 layer model with QLoRA rank 16. Number of cells for the downstream tasks indicates the number of
cells from which zero-shot gene embeddings were extracted for classification or number of cells used as examples for fine-tuning. b, Relative time to fine-tune for full
fine-tuning of GF-20L-95M-I4096 vs. fine-tuning the quantized 20 layer model. Of note, time was quantified per the same batch size, but quantized fine-tuning would take
even less time in actuality because the lower memory requirements of the model would allow larger batch sizes. c, Validation macro F1 on disease genes downstream
task (distinguishing dosage-sensitive vs. -insensitive transcription factors) with few-shot learning with only 100 example cells for GF-20L-95M-I4096 by full fine-tuning
or fine-tuning the quantized 20 layer model with increasing QLoRA rank. d, Relative GPU memory usage of GF-20L-95M-I4096 vs. the quantized 20 layer model with
varying QLoRA ranks.

type labels to an external cross-tissue atlas15 (Extended
Data Table 2, Extended Data Fig. 3).

The multi-task fine-tuning yielded context-specific
representations of the cell states, defining within the em-
bedding space a joint total of 2139 label combinations
comprising cell type, tissue origin, developmental stage,
and disease status of each individual cell (Fig. 3f). This
defined embedding space may now be utilized as a ref-
erence for embedding new cells and to predict perturba-
tions that shift between the represented states.

Multi-task model quantization allowed resource-effi-
cient in silico perturbation analysis
Because even inference with large models can be
resource-intensive, we tested whether 8-bit quantiza-
tion of the multi-task model could preserve the embed-
ding space while increasing computational efficiency. In-
deed, when testing normal adult cells from a broad range
of tissues and cell types, the quantized embeddings
mapped to nearly equivalent positions within the embed-
ding space while reducing memory usage by 63% (Fig.
3g-h, Extended Data Fig. 4a). The time for inference
was also 24% faster using the same batch size, though

the maximum speed gains are much greater due to the
ability to run larger amounts of data per batch given the
significant reduction in memory usage.

Given that the quantized model embedding space
preserved the context-specific biological representations
of the cells, we tested whether the quantized model
could be used for resource-efficient in silico perturba-
tion analysis. As an example, we tested in silico dele-
tion of genes from the transcriptional regulatory network
database (TRRUST)16 in intestinal fibroblasts from pa-
tients with inflammatory bowel disease to determine the
cosine shift towards the control intestinal fibroblast state
and observed that the quantized model resulted in nearly
equivalent shifts to the full model (Pearson correlation
0.9995) (Extended Data Fig. 4b). Thus, quantization of
the multi-task model enabled resource-efficient embed-
ding extraction and in silico perturbation analysis.

Continual learning enabled domain-tuning for can-
cer states excluded from pretraining to boost predic-
tions in colorectal cancer multi-task learning
The tumor microenvironment is an example of a disease
setting affected by multicellular pathology where context-
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Fig. 3 | Multi-task learning yielded context-specific representations of cell states. Legend on next page
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Fig. 3 | Multi-task learning yielded context-specific representations of cell states. a, Multi-task learning strategy starting from rank value encoding of each
transcriptome with a CLS token for cell state classification followed by transformer encoder units with shared weights (12 layers in the case of GF-12L-95M-I4096)
followed by a classification head for each task. The classification heads yield contextual predictions; contextual gene and cell embeddings can be extracted from each
layer of the model. b, Cell type (71 classes), c, tissue (38 classes), d, disease (68 classes), e, disease vs. normal (2 classes), and developmental stage (3 classes) task
confusion matrices and macro F1 scores for GF-12L-95M-I4096 jointly fine-tuned towards the aforementioned five tasks with the CELLxGENE corpus. Binary disease
classification task was meant to instruct the model to understand that multiple diseases may exist for a given cell state that are all varying subtypes of dysfunction
but altogether differ in a critical way from the normal state. Predictions (teal line) were robust to decreasing numbers of training examples (magenta line) down to an
increasingly minimal number of examples (e.g. 52 training cells in the case of cell type). f, Second to last layer CLS cell embeddings from the multi-task fine-tuned
GF-12L-95M-I4096 for a balanced subset of CELLxGENE with colors indicating concatenated class labels for the five tasks (total 2139 labels). g, Cosine similarity of
CLS cell embeddings from the multi-task fine-tuned GF-12L-95M-I4096 of 3000 representative normal adult cells from a broad range of cell types and tissues from the
CELLxGENE corpus. The top plot shows cosine similarity of embeddings generated from the 8-bit quantized vs. full model for the same exact cells. The below plots
show cosine similarities of the full model’s embeddings for cells that are the same or different cell types and/or from the same or different tissues. h, Relative time for
inference or relative GPU memory usage for the 8-bit quantized vs. full multi-task fine-tuned GF-12L-95M-I4096. Of note, time was quantified per the same batch size,
but the actual time gains would be greater because the lower memory requirements of the model would allow larger batch sizes.

dependent gene network dysregulation in immune, stro-
mal, and malignant cells influences tumor progression
and the anti-tumor immune response17. Our multi-task
learning strategy may be uniquely suited to modeling
these highly context-specific states to determine candi-
date therapeutic targets in each cell type and tumor con-
text that would promote anti-tumor immune responses.
Yet, as discussed above, during pretraining we excluded
malignant cells due to their propensity for gain of func-
tion mutations. These mutations would result in many
genes with very different functions than what the model
would observe in other contexts without accompanying
genome sequencing to provide this information to the
model. However, excluding cancer studies from the pre-
training may result in the model having a lower baseline
understanding of the gene network rewiring that occurs
in malignancy.

Therefore, we performed domain-specific continual
learning to tune Geneformer to the cancer domain by
extending the pretraining with ~14 million cells from can-
cer studies including matched healthy controls to provide
this contrasting context to the model (Fig. 4a). We also
included 1% of the non-cancer cells from Genecorpus-
103M to prevent catastrophic forgetting of the general
knowledge of gene network dynamics learned by the
model during the initial pretraining. We tested three
different continual learning strategies and observed the
lowest continual learning loss when the learning rate
was rewarmed to the maximum learning rate used dur-
ing the general pretraining and then decayed with a co-
sine schedule (Fig. 4b). When we used a learning rate
that was 10% of the maximum used in the initial pre-
training, there was minimal difference in the continual
learning loss whether we left the learning rate constant
or whether we rewarmed to that rate and decayed on a
cosine schedule thereafter.

We then performed multi-task fine-tuning to learn
context-specific representations of cell states within mis-
match repair-deficient (MMRd) or -proficient (MMRp)
colorectal cancer specimens as well as within non-
neoplastic colon epithelium from the same surgical re-
sections, respectively, using a colorectal cancer atlas17

(Fig. 4c, Extended Data Fig. 5a-c). Importantly, MMR

status distinguishes patients with a favorable (MMRd) or
poor (MMRp) rate of response to immunotherapy18. We
fine-tuned the model to distinguish cells based on MMR
status of the tumor, cell type classes, and finely labeled
cell state classes and tested the ability of the model to
predict these features in held-out patients.

When we binned all malignant cells into a single la-
bel of “malignant” in the cell subtype classes, the initial
pretrained model was able to match the performance of
the cancer-tuned models in distinguishing normal epithe-
lial cells from the general category of malignant cells.
However, the continually pretrained model that was re-
warmed to the maximum learning rate used in the ini-
tial pretraining, and therefore most highly tuned to the
cancer domain, outperformed the initial pretrained model
when tasked to distinguish finely labeled malignant cells.
Furthermore, the continual learning improved the abil-
ity of the model to distinguish the MMR status of each
cancer, which is an important feature associated with dif-
ferential immunotherapy response. Overall, the continual
learning on cancer cells improved the ability of the model
to distinguish the subtleties of malignant cells within the
colorectal tumor microenvironment.

In silico treatment analysis with multi-task colorec-
tal cancer model predicted core effectors and regu-
lators of malignant epithelial and activated T cells
We then leveraged the multi-task fine-tuned model for
colorectal cancer to predict regulators that shift highly
proliferative transit-amplifying/stem-like epithelial cancer
cells in MMRd colorectal cancer to differentiated and
thus likely less tumorigenic epithelial cell states found
in normal epithelium, namely Enterocyte 1, Enterocyte
2, and Goblet cells (Fig. 4d, Extended Data Table 3).
Genes whose in silico overexpression was predicted to
shift away from the malignant stem-like state towards the
differentiated states were significantly enriched for genes
involved in key functions of intestinal epithelial cells, in-
cluding nutrient transporters and microvillus structures,
as well as genes related to cell polarity, which is known
to get lost during cancer progression, promoting tumor
growth19 (Fig. 4e-f, Extended Data Table 4). These
genes included genes previously reported to inhibit tu-
mor progression upon experimental overexpression such
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Fig. 4 | Domain-specific continual learning boosted predictions in domain-relevant multi-task learning. Legend on next page
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Fig. 4 | Domain-specific continual learning boosted predictions in domain-relevant multi-task learning. a, Domain-specific continual learning strategy starting from
pretrained Geneformer and performing continual learning with ~14 million human single-cell transcriptomes from cancer studies plus 1% of the Genecorpus non-cancer
cells to prevent forgetting of baseline knowledge of network dynamics gained from the initial pretraining. The domain-tuned Geneformer can then perform zero-shot
domain-tuned predictions or be transferred to downstream multi-task models for domain-specific fine-tuning. b, Learning rate and pretraining loss for each continual
learning model. Teal indicates the initial pretraining of GF-12L-95M-I4096 prior to continual learning; the pretraining loss plot begins at the end of the initial pretraining to
primarily display the continual learning phase. c, Multi-task fine-tuning results for each continual learning model compared to the pretrained GF-12L-95M-I4096 without
continual learning. Models were fine-tuned using a colorectal cancer atlas17 to distinguish cell type, cell subtype, and MMR status of single-cell transcriptomes from
MMRd or MMRp colorectal cancer specimens as well as within non-neoplastic colon epithelium from the same surgical resections, respectively. In models displayed in the
left plot, all malignant cells were labeled as a single cell subtype; whereas in models displayed in the right plot, malignant cells were finely labeled as different malignant
epithelial cell states such as stem-like or Goblet-like. d, UMAP of colorectal cancer multi-task Geneformer model embeddings for MMRd malignant transit-amplifying
(TA)/stem-like epithelial cells and non-malignant differentiated epithelial cells of the Enterocyte 2, Enterocyte 1, and Goblet subtypes. Arrows indicate transitions modeled
by the in silico perturbation analysis. e, Area-proportional Venn diagram of overlap of genes whose in silico activation significantly shifted the malignant TA/stem-like
epithelial cells to each of the indicated non-malignant differentiated epithelial states (Wilcoxon with Benjamini-Hochberg (BH) correction, p<0.05 and greater shift than
mean shift of all genes). f, Heatmap of cosine shifts towards each goal non-malignant differentiated epithelial state from the start state of malignant TA/stem-like epithelial
cells in response to each gene’s in silico activation. Values are row-scaled. g, In silico treatment analysis to determine genes whose increased expression are predicted
to induce non-activated T cells in MMRp tumors to shift towards the activated T cell state found in MMRd tumors with higher anti-tumor immune activation. ISPa=in
silico perturbation, activation (Wilcoxon with BH correction, p<0.05 and greater shift than mean shift of all genes). DE=differential expression in goal end vs. start state
(Wilcoxon with BH correction, p<0.05). ISPa positive hits significantly overlapped with differential expression positive hits (p<0.05, X2 test).

as CA220 and ADH1C21. Furthermore, one of the top
transcription factors whose in silico overexpression was
predicted to shift towards the differentiated states was
FOXO3, which was previously shown to suppress ep-
ithelial stem/progenitor cell states22. By contrast, one
of the transcription factors that ranked specifically high in
the shift to Goblet cells, but not Enterocytes, was XBP1,
an endoplasmic reticulum stress transcription factor cen-
tral to mucus-producing Goblet cells that was previously
shown to be required to suppress intestinal tumorigen-
esis in a knockout mouse study23. The in silico pertur-
bation analysis using the multi-task model therefore pri-
oritized genes based on predicted shifts towards several
distinct alternate end states.

Next, we leveraged the multi-task fine-tuned model
for colorectal cancer to predict core effectors and
central regulators of activated T cells found in the
immunotherapy-responsive tumor microenvironment of
MMRd tumors. Such genes could be interesting ther-
apeutic targets to synthetically enhance the potency of
adoptive cell therapies. We performed in silico treatment
analysis to determine gene perturbations that shift the
cell embeddings from an immunologically quiescent T
cell state found in MMRp tumors to the activated T cell
state specific to the immunotherapy-responsive MMRd
colorectal cancer subtype (Fig. 4g, Extended Data Table
3). Overall, genes whose increased expression was pre-
dicted to shift T cells to the interferon gamma-producing,
MHCII-positive T cell state selectively found in MMRd
tumors17 were enriched for genes involved in type II inter-
feron response, cytokine activity, inflammatory response,
TNF-alpha signaling, and interleukin/STAT signaling (Ex-
tended Data Fig. 5d, Extended Data Table 5).

In silico perturbation analysis had higher concor-
dance with a prior CRISPR activation screen24 in primary
CD8+ T cells for interferon gamma-promoting perturba-
tions compared to differential expression analysis (Ex-
tended Data Fig. 5e, Extended Data Table 3). Among
the top 25 significant genes were CXCL13 (top hit),
which is a central gene in tumor-reactive T cells across

multiple tumor types25, granzymes and granulysin that
are important for T cell cytotoxicity, and components
of the T cell receptor. The top 3 significant transcrip-
tion factors26 were BATF, which counters T cell exhaus-
tion and promotes effector function27, ZEB2, which pro-
motes terminal differentiation of CD8+ effector and mem-
ory T cells28, and IRF1, a core driver of interferon stimu-
lated genes and Th1 differentiation programs in CD4+
T cells29. Thus, the multi-task learning approach en-
abled predictions of core genes of activated T cells
in immunotherapy-responsive tumor microenvironments,
including known targets previously shown to improve T
cell function.

Discussion
In sum, we developed a quantized multi-task learning
strategy to yield context-specific representations of gene
network dynamics that can be leveraged to make con-
textual predictions of key network regulators and can-
didate therapeutic targets for human disease. Expand-
ing the pretraining corpus from Geneformer’s initial ~30
million6 to now ~95 million cells as well as increasing
the model parameters and input context size to 4096 im-
proved zero-shot performance on diverse downstream
tasks relevant to gene network biology, chromatin dy-
namics, and disease modeling. As the quantity and di-
versity of available single-cell transcriptomic data con-
tinues to grow, future larger models pretrained on even
larger-scale corpuses may open opportunities to achieve
meaningful predictions in even more elusive tasks as
zero or few-shot learners.

For domains underrepresented in the pretraining
corpus, such as the case of the cancer domain pre-
sented here, continual learning may serve as a viable
method to tune the model for predictions in these specific
domains. Furthermore, multi-task fine-tuning allowed the
model to jointly learn diverse biological dimensions crit-
ical to defining a cell’s state, which may be particularly
important in modeling developmental dynamics and dis-
eases with multicellular pathology such as the tumor-
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immune microenvironment.
Finally, we demonstrate that model quantization with

QLoRA is an effective method for resource-efficient fine-
tuning, embedding extraction, and in silico perturbation
for biological applications. As model size and data grow
while available GPU resources remain a limitation, ap-
proaches for efficient fine-tuning and inference will be
critical to ensure widespread access to models for bio-
logical discoveries that have the potential to impact hu-
man health.

Overall, quantized multi-task learning enables
resource-efficient context-specific modeling in gene net-
work biology to yield contextual predictions of key net-
work regulators and candidate therapeutic targets for hu-
man disease.

Methods
Complete methods available in Extended Data.

Data Availability
Genecorpus-103M will be available on Hugging Face
Dataset Hub.

Code Availability
The pretrained Geneformer-95M models, cancer-tuned
model, and multi-task fine-tuned model and related
code are available on Hugging Face Model Hub at
https://huggingface.co/ctheodoris/Geneformer.
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Extended Data

Extended Methods

Assembly and rank value encoding of transcriptomes in Genecorpus-103M
Assembly and uniform processing of single-cell transcriptomes
We assembled a large-scale pretraining corpus, Genecorpus-103M, comprising ~103 million human single-cell
transcriptomes (post-filtering as described below) from a broad range of tissues from 4,610 publicly available datasets
(Fig. 1b, Extended Data Table 1). Importantly, DOIs were cross-referenced between all studies to ensure datasets
were unique to avoid inclusion of duplicated cells within the corpus. Of note, there are significant duplications of
datasets across public databases so the total number of unique cells would be highly overestimated if this procedure
were not performed (Extended Data Fig. 1a).

Publicly available datasets containing raw counts were collected from National Center for Biotechnology Informa-
tion (NCBI) Gene Expression Omnibus (GEO), NCBI Sequence Read Archive (SRA), CELLxGENE, Human Cell Atlas,
European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI) Single Cell Expression Atlas,
Broad Institute Single Cell Portal, Brotman Baty Institute (BBI)-Allen Single Cell Atlases, Tumor Immune Single-cell
Hub (TISCH) (excluding malignant cells), Panglao Database, 10x Genomics, University of California, Santa Cruz Cell
Browser, European Genome-phenome Archive, Synapse, Riken, Zenodo, National Institutes of Health (NIH) Figshare
Archive, NCBI dbGap, Refine.bio, China National GeneBank Sequence Archive, Mendeley Data, and individual
communication with authors of the original studies (Extended Data Table 1). Additional resources for collecting
information about suitable studies included Entrez Direct tools and the dataset summary from Svensson et al.,
Database 202030. Tools utilized in conversion of data to uniform files included loompy, scanpy, anndata, scipy, numpy,
pandas, Cellranger, and LoomExperiment. Gene annotation data was retrieved from Ensembl, NCBI, and HGNC
(2023-11-01) databases and additionally queried through MyGene31. Raw and unfiltered data files were processed to
remove empty droplets and debris using STAR version 2.7.8a32 with the CellRanger2.2 (run mode –soloCellFiltered).
Datasets were additionally filtered to retain cells that contained a minimum of seven detected Ensembl-annotated
protein coding genes given that the 15% masking used for the pretraining learning objective would not reliably mask
a gene in cells with fewer detected genes. Studies were annotated as one or more of the 52 consolidated organs as
listed in Fig. 1b.

Rank value encoding of single-cell transcriptomes
Each transcriptome was presented to the model as a rank value encoding as previously described6. The rank value
encodings are a nonparametric representation of the transcriptome that takes advantage of the many observations
of the gene’s expression across the entire Genecorpus to prioritize genes that distinguish cell state. Specifically,
this method will deprioritize ubiquitously highly-expressed housekeeping genes by normalizing them to a lower rank.
Conversely, genes such as transcription factors that may be lowly expressed when they are expressed but highly
distinguish cell state will move to a higher rank within the encoding. Furthermore, this rank-based approach may be
more robust against technical artifacts that may systematically bias the absolute transcript counts value while the
overall relative ranking of genes within each cell remains more stable.

The rank value encodings were constructed as previously described6. The scaling factor for each gene was
derived from the non-zero median value of expression of each detected gene across all cells in the pretraining corpus
passing quality filtering that were sequenced on droplet-based platforms, excluding cells with high mutational burdens
such as malignant cells and immortalized cell lines. After scaling the expression of each gene, the genes were ordered
by the rank of their scaled expression in that specific cell. The rank value encoding for each single-cell transcriptome
was then tokenized on the basis of a vocabulary of 20,271 protein coding genes detected within the pretraining corpus.
The vocabulary also included four special tokens: a padding, masking, CLS (classification), and EOS (end of state)
token, for a total vocabulary size of 20,275. A CLS and EOS token were added to the beginning and end of each rank
value encoding, respectively. The tokenized dataset was stored within the Hugging Face Datasets structure, which
is based on the Apache Arrow format that allows processing of large datasets with zero-copy reads without memory
constraints.

Of note, this strategy is also space-efficient as the genes are stored as ranked tokens as opposed to the exact
transcript values, and we only store genes detected within each cell rather than the full sparse dataset that includes all
of the undetected genes. This also prevents wasting computation on zeros, as the model learns from the absence of
genes from a rank value encoding without having to explicitly instruct the model that they have zero expression. This
is analogous, for example, to how natural language models learn that a statement may have “positive” meaning based
on the absence of “negative” words, without needing to present the remainder of the absent words from the natural
language dictionary at the end of every sentence to explicitly instruct the model they are not present.
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Geneformer architecture and pretraining
Geneformer architecture
In the initial pretraining phase, Geneformer was pretrained with ~95 million (94,222,639) single-cell transcriptomes
from Genecorpus-103M excluding cells with high mutational burdens such as malignant cells and immortalized cell
lines. Geneformer-95M is composed of 12 or 20 transformer encoder units, each composed of a self-attention layer
and feed forward neural network with the following parameters, respectively: input size of 4096 (fully represents 93%
of Genecorpus-103M), 512 or 896 embedding dimensions, 8 or 14 attention heads per layer, and a feed forward size
of 1024 or 1792. Further parameters are as follows: nonlinear activation function: rectified linear unit (ReLU); dropout
probability for for all fully connected layers: 0.02; dropout ratio for attention probabilities: 0.02; standard deviation
of the initializer for weight matrices: 0.02; epsilon for layer normalization layers: 1e-12. We additionally pretrained
a Geneformer-95M version with input size of 2048 that otherwise had the same parameters as the 12 layer model
above. We compared these Geneformer-95M models to the previous Geneformer models pretrained on ~30 million
transcriptomes that were either 6 layers as previously described6 or 12 layers with parameters as the 12 layer model
above except with input size of 2048. Modeling was implemented in pytorch and using the Hugging Face Transformers
library for model configuration, data loading, and training.

Geneformer pretraining and performance optimization
Pretraining was accomplished using a masked learning objective, which has been shown in other informational
fields3-4 to improve generalizability of the foundational knowledge learned during pretraining for a wide range of
downstream fine-tuning objectives. During pretraining, 15% of the genes within each transcriptome were masked, and
the model was trained to predict which gene should be within each masked position in that specific cell state using
the context of the remaining unmasked genes. A major strength of this approach is that it is entirely self-supervised
and can be accomplished on completely unlabeled data, which allows the inclusion of large amounts of training data
without being restricted to samples with accompanying labels. Pretraining hyperparameters were optimized to the
following final values: max learning rate: 20 layer (L)-Input size (I) 4096: 2.5e-4, 12L-I4096: 5e-4, 12L-I2048: 1e-4;
learning scheduler: cosine with warmup; optimizer: Adam with weight decay fix; warmup steps: 920 for 20 layer model
and 5,000 for 12 layer models; weight decay: 0.001; batch size: 1 with gradient accumulation 12 for 20 layer model
and 4 for 12 layer models. Tensorboard was used for experimentation tracking, and each model was pretrained for 3
epochs.

As the input size of 4096 is considerably large for a full dense self-attention model (for example, BERT3-4

input size of 512) and transformers have a quadratic memory and time complexity O(L2) with respect to input size,
we implemented measures to optimize efficiency of large-scale pretraining. The trainer from the Hugging Face
Transformers library was used for pretraining with the substitution of a custom tokenizer to implement dynamic,
length-grouped padding, which minimized computation on padding and achieved a 29.4x speedup in pretraining. This
process takes a randomly sampled megabatch and then orders minibatches by their length in descending order (to
ensure that any memory constraints are encountered earlier). Minibatches are then dynamically padded, minimizing
the computation wasted on padding due to being length-grouped. We also implemented distributed GPU training
algorithms33-34 to allow efficient pretraining on the large-scale dataset using Deepspeed, which partitions parameters,
gradients, and optimizer states across available GPUs, offloads processing/memory as possible to CPU to allow
more to fit on GPU, and reduces memory fragmentation by ensuring long and short term memory allocations do
not mix. Overall, pretraining for the 20L-I4096, 12L-I4096, and 12L-I2048 Geneformer-95M models was achieved in
approximately 134, 44, or 29 hours, respectively, each distributed across 8 Nvidia H100 80GB GPUs.

Zero-shot learning evaluation for the pretrained models
The five pretrained models (GF-6L-30M-I2048, GF-12L-30M-I2048, GF-12L-95M-I2048, GF-12L-95M-I4096, GF-20L-
95M-I4096) (GF=Geneformer, L=Layers, M=Million cells, I=Input size) were evaluated on gene classification tasks
including disease genes (dosage sensitive vs. insensitive transcription factors), chromatin dynamics (bivalent vs. lys4-
only methylated genes from 56 highly conserved loci), network dynamics (central vs. peripheral genes within the
defined NOTCH1-dependent gene network), and gene regulation (long range vs. short range transcription factors)
as previously described6. The example cells were as previously described6, except that in the chromatin dynamics
and network dynamics tasks the number of example cells was reduced to increase the difficulty of the task. The
example cells, as previously described6 for each task were: disease genes: 10,000 random cells from the respective
pretraining corpus of each model; chromatin dynamics: 10,000 embryonic stem cells35; network dynamics: 2,000
normal endothelial cells36; and gene regulation: ~34,000 cells from an iPSC to cardiomyocyte differentiation37. Training
was performed on 80% of the genes in each task by freezing all model layers and training a classification head on
the zero-shot gene embeddings for a single epoch. 25 hyperparameter trials for the classification on the zero-shot
embeddings were employed to ensure equitable comparison between the models with search ranges of maximum
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learning rate 1e-6 to 1e-3, weight decay 0.0 to 0.3, and seed 0 to 100 (to preclude the chance that a randomly selected
seed would be advantageous for classification of zero-shot embeddings of one model over another). Performance was
evaluated on classification of the zero-shot embeddings of the held-out genes.

Zero-shot cell embeddings were extracted from the second to last layer CLS token from GF-12L-95M-I4096 for
779,905 representative cells from CELLxGENE14 balanced across cell types, tissues, diseases, and developmental
stages as discussed in the Multi-task learning section below and colored by consolidated labels for those cell attributes
as discussed below.

Model quantization
Quantization of the GF-20L-95M-I4096 model was performed using 4-bit QLoRA13. For Fig. 2a, the four tested task
types were as described in the Zero-shot learning evaluations section above, with 80% of the genes being used for
training. Performance was evaluated on classification of the held-out genes. QLoRA models were trained with rank
of 16 and alpha of 32. Three maximum learning rates were tested (0.0005, 0.0001, and 0.00005), all with a warmup
ratio of 1% and learning rate decay on a cosine schedule, with either 0, 7, or 14 layers being frozen from fine-tuning.
Full fine-tuning was performed for the GF-20L-95M-I4096 model with 25 trials as described in the Zero-shot learning
evaluations section above but instead of freezing all layers, only 0, 7, or 14 layers were frozen, allowing the remainder
to be fine-tuned. Zero-shot learning with the GF-20L-95M-I4096 model was performed as described in the Zero-shot
learning evaluations section above. All models were trained for a single epoch with batch size of 1 and gradient
accumulation of 12.

For the few-shot learning application in Fig. 2c, the disease gene task was performed as described above but
with only 100 randomly subsampled example cells. All layers were allowed to be fine-tuned for both QLoRA and full
fine-tuning models (0 layers were frozen). QLoRA rank was either 16, 32, 64, or 128, and alpha was twice the rank.
For both QLoRA and full fine-tuning models, the maximum learning rate was 0.0001, decayed on a cosine schedule
with warmup ratio of 1%. All models were trained for a single epoch with batch size of 1. For each model, the training
was repeated with three different seeds. 80% of the genes were used for training and performance was evaluated on
classification of the held-out genes.

The multi-task model fine-tuned on cells from the CELLxGENE corpus was quantized from full precision (FP32)
to 8-bit precision for inference. Specifically, the quantization configuration loaded the model in 8-bit precision without
employing low-rank matrices A and B for fine-tuning. The full precision weights were directly converted to a lower
precision without additional low-rank factorization, such that the original architecture and weights remained intact
during the quantization process.

Domain-specific continual learning
During the initial pretraining phase, cancer studies were excluded due to the propensity for malignant cells to harbor
gain of function mutations that would result in many genes with very different functions than what the model would
observe in other contexts without accompanying genome sequencing to provide this information to the model. How-
ever, because this may result in the model having a lower baseline understanding of the gene network rewiring that
occurs in malignancy, we performed domain-specific continual learning to tune Geneformer to the cancer domain. We
extended the pretraining of the 12L-I4096 Geneformer model with ~14 million (13,628,457) cells from cancer studies
including both malignant cells and non-tumor cells in the tumor microenvironment and matched healthy controls to
provide this contrasting context to the model. We also included 1% of the non-cancer cells from Genecorpus-103M to
prevent catastrophic forgetting of the general knowledge of gene network dynamics learned by the model during the
initial pretraining. We tested three different continual learning strategies: one where we rewarmed (warmup ratio 1%)
to the maximum of the learning rate from the initial pretraining and decayed the learning rate on a cosine schedule
(“CL max LR rewarm”), one where we rewarmed (warmup ratio 1%) to 10% of the maximum of the learning rate from
the initial pretraining and decayed the learning rate on a cosine schedule (“CL 0.1 LR rewarm”), and one where we
continued pretraining at a constant learning rate that was 10% of the maximum used for the initial pretraining (“CL 0.1
LR constant”). The other hyperparameters were the same as the initial pretraining for the 12L-I4096 model except that
the models were continually trained for only 1 epoch.

Multi-task learning
Multi-task learning on CELLxGENE corpus
The multi-task learning architecture was composed of shared weights for all tasks within the trunk of the model
initialized from the pretrained GF-12L-95M-I4096 model with a classification head on top for each task. Weights
were updated during multi-task fine-tuning based on weighted task-specific losses, where each task’s cross-entropy
loss contribution was individually scaled depending on its importance or complexity. The five tasks represented
biologically meaningful attributes of cells annotated within the CELLxGENE14 corpus (accessed 4/12/2024) including
cell type (consolidated to 71 classes), tissues (consolidated to 38 classes), diseases (consolidated to 68 classes),
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developmental stages (consolidated to 3 classes), and a binary indicator of whether the cell was annotated to be
sampled from a healthy patient or one with one of the annotated diseases. The cell types represented the “cell
subclass” attribute annotated by CELLxGENE. The labels for the cell types, tissues, and diseases were consolidated
to reduce the occurrence of duplicate or imprecise labels or labels that occurred at varying levels of hierarchy within
the relevant ontology. The developmental stages were consolidated to the CELLxGENE annotated labels of prenatal,
immature (0-12 years of age), and mature (13+ years of age) as there was a substantial percentage of cells that were
only labeled at this level of hierarchy (e.g. “mature”) so this consolidation was required to bring all labels to the same
level of hierarchy. Cells without labels in all of the five tasks were excluded.

Of the ~43 million cells in CELLxGENE at the time of access, we iteratively downsampled the dataset to
better balance the classes in each of the above tasks. First, up to 5000 cells from each cell type were randomly
selected. Then, cells were added to increase the representation of each of the diseases up to 5000 cells by randomly
sampling from the underrepresented classes. Then, cells were added to increase the representation of each of
the tissues up to 5000 cells by randomly sampling from the underrepresented classes. Then, cells were added to
increase the representation of each of the developmental stages up to 100,000 cells by randomly sampling from the
underrepresented classes. (This subsampled dataset comprised the 779,905 cells that were utilized for extracting
zero-shot embeddings for GF-12L-95M-I4096 as discussed in the Zero-shot learning evaluations section above). For
the held-out validation set, the same procedure was followed except that up to 1000 cells were randomly selected for
each task class. For classes with less than 100 cells remaining in the CELLxGENE corpus after preparing the training
dataset, we re-assigned 5% of the data for that class to use for validation, with only the remaining 95% being used for
training. Ultimately, the training set comprised 776,709 cells and the validation set comprised 131,604 with no overlap
between the dataset splits.

The multi-task model was then trained with the following optimal hyperparameters selected from 35 trials: max
learning rate: 0.000355; learning scheduler: cosine with warmup; optimizer: Adam with weight decay fix; warmup
steps: 600; weight decay: 0.05; batch size: 4; task weights: consolidated_cell_subclass: 0.3, consolidated_tissue:
0.2, disease_binary: 0.1, developmental_stage: 0.1, disease: 0.3; frozen layers: 10; epoch: 1. Out of sample
performance was tested on the validation dataset described above. Cell embeddings were extracted from the second
to last layer CLS token for the 779,905 cells in the subsampled dataset described above and colored by concatenated
labels for each task for a total of 2139 labels.

Cell type label transfer was tested using an external cross-tissue atlas15 (not in CELLxGENE). First, a cell type
label translation dictionary was manually curated to translate between the cell type labels annotated by the authors
of the cross-tissue atlas and the cell type labels used by CELLxGENE. Of note, in many cases, there was not a
direct corollary to the cross-tissue atlas labels within the CELLxGENE labels, the labels occurred at varying levels of
hierarchy, and there was not a 1:1 mapping between label sets. The translation dictionary is provided in Extended
Data Table 2. The multi-task model fine-tuned on the CELLxGENE data as described above was then used for
inference, without further training, to predict CELLxGENE cell type labels for the cells within the external cross-tissue
atlas.

Domain-tuned multi-task learning on a colorectal cancer atlas
Multi-task learning was performed leveraging a colorectal cancer atlas17 (GSE178341) using the pretrained GF-12L-
95M-I4096 model (with or without cancer domain-tuning via the three methods described above in the Domain-specific
continual learning section) with a classification head on top for each of the three tasks as follows: MMR status (3
classes: MMRd, MMRp, non-malignant), cell type (19 classes, consistent with “ClusterMidway” annotation from
GSE178341), and cell subtype. The cell subtype consisted of 47 or 53 classes, depending on whether all malignant
cells were labeled as one class or as finer subclasses, respectively. Patients from the colorectal cancer dataset17

were split into training (80%, n=50), validation (10%, n=6), and test (10%, n=6) sets by individual patients, balancing
attributes including sex, MMR status, histological grade, and lymph node status. Hyperparameters were optimized
over 25 trials and the model with the best performance on the validation set was then tested for generalizability on
the held-out patients in the test set. The reported results are the performance on the held-out patients in the test
set. The final best hyperparameters were: max learning rate: 0.000122859; learning scheduler: cosine with warmup;
optimizer: Adam with weight decay fix; warmup steps: 680; weight decay: 0.036751018; dropout rate: 0.341148666;
batch size: 3; task weights: 0.234978 (MMR status), 0.392293 (cell type), 0.370729 (cell subtype); frozen layers: 2;
epoch: 1.

In silico treatment analysis
Inflammatory bowel disease in silico treatment analysis
In silico treatment analysis was performed as previously described6 with the multi-task model fine-tuned on the
CELLxGENE corpus, with or without quantization (as described above in Model quantization). We tested in silico
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deletion of genes within the transcriptional regulatory network database (TRRUST)16 expressed in at least 20% of
the start cells or goal end cells and measured the cosine shifts from the start population of fibroblasts from pediatric
patients with Crohn disease to the goal end population of fibroblasts from age-matched control patients38.

Colorectal cancer in silico treatment analysis: T cells
In silico treatment analysis was performed with the multi-task fine-tuned model for colorectal cancer as previously
described6 to determine genes whose increased expression would shift target cells within the tumor microenvironment
to immune activating states. We tested in silico perturbations to shift CD8 T cells from an interferon gamma (IFNg)
negative, non-activated state found in MMRp samples towards an IFNg positive, activated state observed in MMRd
samples that are more immune-active. Cell states were as defined by the original authors, namely pTNI06 high versus
low for activated versus non-activated T cells17.

We tested in silico activation of each gene that was detected in at least 20% of the start cells or goal end cells to
determine candidates that were expressed in T cells that may be more viable to activate therapeutically. The goal end
state was defined by the mean last layer CLS embedding position of a random subsample of 5000 cells from the goal
end cell state. We tested in silico activation of each gene in a randomly subsampled subset of 5000 start state cells,
where activation was modeled by moving the overexpressed genes to the first position in the rank value encoding
after the CLS token.

We determined the genes whose activation in the start state cells significantly shifted the embeddings towards
the goal end state embedding position within the 512-dimensional embedding space. Cosine similarities were
quantified using the last layer CLS token embeddings for the original and in silico perturbed cells (last layer prior to
the classification heads). Hits were defined as the genes whose in silico activation significantly shifted the cells from
their original embedding position to the goal embedding position by cosine similarity as compared to the random
distribution of random gene activation (p<0.05, Wilcoxon rank sum test, BH-corrected).

Gene set enrichment analysis was performed using the GSEApy39 implementation of Enrichr40 with the enrich-
ment set being the genes whose in silico activation statistically significantly shifted the cells towards the goal state
more than the average shift and the background set being all genes detected in at least 20% of cells. Enrichment sets
were compared to the MSigDB Hallmark 2020, Kegg Human 2021, and Gene Ontology Biological Processes gene
sets. For differential expression, raw counts were first preprocessed by count depth scaling with normalization of total
counts to 10,000 followed by log1p transformation and scaling to a max value of 10 using Scanpy41. Differentially
expressed genes were identified by comparing cells in the goal end state to the start cell state with Scanpy’s
rank_genes_groups using Wilcoxon with BH multiple hypothesis correction.

To compare results with a prior CRISPR activation (CRISPRa) screen24 for IFNg-promoting perturbations
in CD8+ T cells, CRISPRa hits annotated by the original authors were extracted from the referenced publica-
tion’s supplementary Table 2 with the following filters: “Screen_Version”=“Primary”, “CRISPRa_or_i”=“CRISPRa”,
“CD4_or_CD8”=”CD8”, and “Cytokine”=”IFNg”. Positive hits were defined as those with the label “Positive Hit” in the
column “Hit_Type”, while all other genes were considered not positive hits. These CRISPRa hits vs. not hits were
compared with in silico perturbation-activation (ISPa) hits vs. not hits and differential expression hits vs. not hits. ISPa
and differential expression analysis are described above. The ISPa start state was IFNg negative, non-activated state
observed in the MMRp tumors and the goal end state was IFNg positive, activated T cells observed in the MMRd
tumors. ISPa was performed with genes detected in at least 20% of the start cells or goal end cells to determine
candidates that were expressed in T cells that may be more viable to activate therapeutically. For comparison with
the CRISPRa results, ISPa positive hits were genes whose in silico activation in the non-activated T cell start state
caused a statistically significant greater shift towards the goal end activated T cell state compared to the random
distribution, whereas ISPa not positive hits were all other ISPa tested genes. Differential expression positive hits were
those ISPa tested genes that were statistically significantly increased in expression in the goal end activated T cell
state compared to non-activated T cell start state, whereas differential expression not positive hits were all other ISPa
tested genes. Accuracy of concordance was calculated as (TP + TN) / (TP + TN + FP + FN) where T=true, F=false,
P=positive, and N=negative for the CRISPRa positive hits vs. other genes compared to either the ISPa positive hits
vs. other genes or the differential expression positive hits vs. other genes.

Colorectal cancer in silico treatment analysis: malignant epithelial cells
In silico treatment analysis was performed with the multi-task fine-tuned model for colorectal cancer as previously
described6 and as detailed above, in this case to determine genes whose increased expression would shift stem-like
malignant epithelial cells to one of three differentiated non-malignant epithelial cell states within the colon. Cell states
were as defined by the original authors for transit-amplifying/stem-like malignant epithelial cells (cE01) and the three
differentiated non-malignant epithelial cell states: enterocyte 1 (cE04), enterocyte 2 (cE05), and goblet (cE08)17. As
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discussed above, we tested in silico activation of each gene that was detected in at least 20% of the start cells or goal
end cells and defined the goal end states by the mean last layer CLS embedding position of a random subsample
of 5000 cells from each goal end state. In silico activation of each gene was tested in a randomly subsampled
subset of 5000 start state cells. The cosine shift for in silico activation of each gene was compared to the random
distribution of random gene activation (p<0.05, Wilcoxon rank sum test, BH-corrected). Gene set enrichment analysis
was performed with ToppGene. The top 100 genes shifting from stem-like malignant to non-malignant epithelial cell
states were defined as genes whose in silico activation led to a statistically significant shift towards all of the three
differentiated states, ordered by the average shift to the three states. The background gene set was all genes tested
by in silico activation.
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Extended Data Table 1 Dataset composition of Genecorpus-103M.

Extended Data Table 2 Cell type label translation dictionary used to score correct vs. incorrect label transfer
between the external cross-tissue atlas author labels and the closest analogous CELLxGENE labels.

Extended Data Table 3 Sheet 1: Description of other sheets. Sheet 2-4: Genes whose in silico activation in
malignant stem-like epithelial cells in MMRd tumors were predicted to significantly shift the cell state towards one of
three non-malignant differentiated epithelial cells (Enterocyte 2, Enterocyte 1, or Goblet cells). Sheet 5: Genes whose
in silico activation in non-activated T cells in MMRp tumors were predicted to significantly shift the cell state towards
the activated T cell state found in MMRd tumors with higher anti-tumor immune activation. Sheet 6: Accuracy of
concordance between T cell in silico activation and CRISPR activation screen in primary CD8+ T cells for interferon
gamma production.

Extended Data Table 4 Gene set enrichments of the top 100 genes whose in silico activation in malignant
stem-like epithelial cells in MMRd tumors were predicted to significantly shift the cell state towards the three subtypes
of non-malignant differentiated epithelial cells (Enterocyte 2, Enterocyte 1, or Goblet cells). The top 100 genes were
ranked based on the largest average shift across all three non-malignant differentiated epithelial states.

Extended Data Table 5 Gene set enrichments of genes whose in silico activation in non-activated T cells in
MMRp tumors were predicted to significantly shift the cell state towards the activated T cell state found in MMRd
tumors with higher anti-tumor immune activation.
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Extended Data Fig. 1 | Pretraining corpus attributes. a, Overlap of single-cell transcriptome (scRNAseq) data from single-cell databases (excluding cancer / immor-
talized cell lines). Without deduplication by DOI, total cells are significantly overestimated. b, Database sources of Genecorpus-103M. c, Droplet-based vs. plate-based
platform composition of Genecorpus-103M. d, Number of detected genes per cell in Genecorpus-103M. Input size of 4096 fully encompasses 93% of cells. e, Pretraining
loss for each pretrained model (GF=Geneformer, L=Layers, M=Million cells, I=Input size) per number of tokens trained. Plot represents 3 epochs.
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Extended Data Fig. 2 | Multi-task learning dataset composition and predictions. a, Legend on next page.
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Extended Data Fig. 2 | Multi-task learning dataset composition and predictions. a, Composition of original CELLxGENE corpus compared to the balanced training
set used for multi-task learning for the four tasks of developmental stage, disease, tissue, and cell type. b, Total fine-tuning loss on all five tasks of cell type (71 classes),
tissue (38 classes), disease (68 classes), disease vs. normal (2 classes), and developmental stage (3 classes). Plot represents 1 epoch. c, Top 10 most confused cell
type classes and the top two most predicted labels excluding true (true was generally the top predicted label even in these top confused classes, as indicated by teal bar
stacks). Alternate predicted labels were often cell types within the same overarching category (e.g. connective tissue cell and fibroblast, T cell and CD4+ alpha-beta T
cell, dendritic cell and monocyte). d, Top 10 most confused disease classes and the top two most predicted labels excluding true (true was generally the top predicted
label even in these top confused classes, as indicated by teal bar stacks). Alternate predicted labels were often diseases with shared pathologies (e.g. ALS and FTD;
Parkinson and Lewy body dementia; influenza and COVID-19).
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Extended Data Fig. 3 | Cell type label transfer to external dataset. Cell type predictions for cells from an external cross-tissue atlas15 by the multi-task learning model
fine-tuned on CELLxGENE cell types (among other tasks). Cell type labels from authors of the cross-tissue atlas are shown on the left; the most predicted CELLxGENE
label for that class is shown on the right. In many cases there was not a direct corollary between cell type labels from the cross-tissue atlas study and the cell type labels
used by CELLxGENE. The cell type label translation dictionary used to score correct vs. incorrect label transfer is provided in Extended Data Table 2.
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Extended Data Fig. 4 | Quantized multi-task model embeddings. a, CLS cell embeddings from the 8-bit quantized or full multi-task fine-tuned GF-12L-95M-I4096 of
3000 representative normal adult cells from a broad range of cell types and tissues from the CELLxGENE corpus. b, Correlation of in silico treatment analysis results
from the 8-bit quantized vs. full multi-task fine-tuned GF-12L-95M-I4096 for an example disease task. Plot shows correlation of cosine shifts from Crohn disease to
normal intestinal fibroblasts within the embedding space by in silico deletion of TRRUST genes (each point represents a gene that was in silico deleted in the Crohn
fibroblasts) (Pearson correlation 0.9995).
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Extended Data Fig. 5 | Colorectal cancer multi-task model predictions. Legend on next page
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Extended Data Fig. 5 | Colorectal cancer multi-task model predictions. a, MMR status (3 classes), b, cell type (19 classes), and c, cell subtype (53 classes)
task confusion matrices and macro F1 scores for colorectal cancer multi-task learning model generated by fine-tuning GF-12L-95M-I4096 after cancer domain-specific
continual learning with CL max LR rewarm strategy (rewarming (warmup ratio 1%) to the maximum of the learning rate from the initial pretraining and decayed the
learning rate on a cosine schedule). Predictions (teal line) were robust to decreasing numbers of training examples (magenta line). Reported results are predictions for
individual patients entirely held-out from the training and validation sets. d, Gene set enrichment of genes whose in silico activation in non-activated T cells in MMRp
tumors were predicted to significantly shift the cell state towards the activated T cell state found in MMRd tumors with higher anti-tumor immune activation. e, Accuracy
of concordance with CRISPR activation (CRISPRa) screen24 for interferon gamma-promoting perturbations in CD8+ T cells. CRISPRa hits were compared to hits from
DEG or ISPa analysis in interferon gamma-producing activated T cells from MMRd tumors compared to non-activated T cells from MMRp tumors. Positive hits by ISPa
enriched for CRISPRa positive hits by 40% compared to ISPa non-hits. Positively differentially expressed genes were not enriched for CRISPRa positive hits compared
to not positively differentially expressed genes. DEG=differentially expressed genes. ISPa=in silico perturbation, activation.
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