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A B S T R A C T

A deterministic 𝑆,𝐸𝑚, 𝐸𝑐 , 𝐼𝑚, 𝐼𝑐 ,𝐻,𝑅 epidemic model that describes the spreading of SARS-COV-2 within a
community with comorbidities is formulated. Size dependent area is incorporated into the model to quantify
the effect of social distancing and the results indicate that the risk of community transmission is optimally
minimised when the occupancy area is increased. The reproduction number is shown to have a positive
relationship with the infection rate, the proportion of individuals with comorbidities and the proportion of
susceptible individuals adhering to standard operating procedures. The model exhibits a unique endemic
equilibrium whose stability largely depends on the rate of hospitalisation of individuals with underlying health
conditions (𝜔𝑚) as compared to those without these conditions (𝜔𝑐), such that stability is guaranteed if 𝜔𝑚 < 𝜔𝑐 .
Furthermore, if individuals with comorbidities effectively report for treatment and hospitalisation at a rate of
0.5 per day, the epidemic curve peaks 3-fold higher among people with comorbidities. The infection peaks are
delayed if the area occupied by community is increased. In conclusion, we observed that community infections
increase significantly with decreasing detection rates for both individuals with or without comorbidities.
. Introduction

Since the reporting of its first case in December 2019, Corona
irus Disease (COVID-19) has had a significant impact on global public
ealth with over 246 million reported cases and more than 4.9 mil-
ion deaths as of October 2021 coupled with an imaginable economic
evastation.1 In some countries, as hospitals run out of patient admis-
ion facilities, disease severity is being considered among the factors to
ecide on whether or not to admit a patient. This criteria calls for the
valuation of intervention scenarios with special consideration for the
ulnerable people such as the elderly and the comorbid individuals.

For COVID-19, it can be concluded based on clinical observations
nd studies that among infected individuals, adverse clinical outcomes
uch as case severity and mortality seem to vary regionally and also
ary within a given population. The elderly and comorbid individuals
eem to be the most vulnerable to severe outcomes of COVID-19. This
ariation is likely due to differences in immune response capacity
elated to age and the presence of medical comorbidities and pre-
xisting conditions that may exert pressure on the immune system.2
here are reports of a strong link between severe and/or fatal COVID-
9 and other communicable or non-communicable diseases and such as
ge and risk factors such as smoking, exposure to polluted air.

The relationship between comorbidities and disease severity seems
o have been observed globally. For example, Ye et al.,3 studied the

∗ Corresponding author.
E-mail address: joseph.ssebuliba@mak.ac.ug (J. Ssebuliba).

hospitalisation data for Zhejiang Province in China and reported that
COVID-19 patients with comorbidities had worse clinical outcomes.
The study also revealed that extreme and serious manifestations of
adverse outcomes were positively correlated with the number of comor-
bidities the patient suffered from. Older obese patients were reported
to experience more severe clinical outcomes.4 Comorbidities such as
diabetes,5,6 hypertension, cardiovascular disease,7 chronic lung dis-
ease, tuberculosis8 and the malnourished and those with HIV2 were
all reported to be more affected. For example, the incidences of hy-
pertension, cardio-cerebrovascular diseases, and diabetes mellitus were
2-3-fold higher in intensive care unit (ICU)/severe cases than in their
non-ICU/severe counterparts.7

In a French study of 124 consecutive hospitalised COVID-19 pa-
tients, obesity and severe obesity were present in 47.6% and 28.2% of
cases, respectively9 and for the United States, Thomas et al.10 reported
approximately 42% as being obese of whom 85% had type 2 diabetes.
Another modelling study with comorbidities parameterised using data
from Nigeria11,12 showed that the top ranked parameters that drive
the dynamics of the co-infection model were the effective contact rate
for COVID-19 transmission, the parameter accounting for increased
susceptibility to COVID-19 by comorbid susceptibles, the comorbidity
development rate, the detection rate for singly infected and co-infected
individuals, as well as the recovery rate from COVID-19 for co-infected
individuals.
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Fig. 1. Schematic diagram for COVID-19 co-morbidity disease dynamics.
w

Enhancing the overall efficiency of the public health responses,
requires a thorough understanding of the impact of COVID-19 on these
comorbidities and mathematical modelling permits evaluation of var-
ious comorbidity and age-dependence scenarios on disease dynamics.
Modelling comorbidity is not only seen from the perspective of the
dynamics of re-infection and co-infection with comorbidities, but may
be more to do with the impacts of the comorbidities on the severity
of COVID-19. It is well observed that individuals with underlying
health conditions are more likely to report to health facilities than
those without comorbidities. There is therefore high chance of persons
without comorbidities likely to remain in communities spreading the
infection as compared to persons with comorbidities.

Many aspects of the dynamics of COVID-19 are built on pre-existing
health conditions and adherence to standard operating procedures
(SoPs). Models that can provide insights on how individuals with
compromised health conditions are affected by COVID-19, need to be
developed to help in designing effective mitigation and intervention
strategies. Furthermore, size dependent area has been incorporated into
the model in order to measure the effectiveness of social distancing.
Therefore, a mathematical model has been developed to ascertain how
COVID-19 dynamics impacts underlying comorbidities, and then used
to investigate how early detection and reporting for treatment benefits
the overwhelmed health facilities, consequently minimising community
transmissions.

2. Model formulation

2.1. Model description

In this section, we present a model for the transmission dynamics
of COVID-19 amongst a population with a proportion of individuals
having underlying comorbidities. We consider the entire population
to be susceptible 𝑆(𝑡) and when infected with COVID-19, they are
classified as exposed individuals with comorbidities (𝐸𝑚(𝑡)) or without
comorbidities (𝐸𝑐 (𝑡)). Individuals will then progress to the infectious
classes (𝐼𝑚(𝑡)) and 𝐼𝑐 (𝑡) respectively depending on their comorbidity
status. Individuals in the 𝐼𝑚(𝑡) and 𝐼𝑐 (𝑡) will either by contact tracing or
self reporting join the hospitalised class (𝐻(𝑡)) . Recovered individuals

from hospitals are grouped in the 𝑅(𝑡) class.

2

The transition process is as follows: Susceptible individuals get
infected through contact with an infected person. Once infected, de-
pending on their co-morbidity status, a proportion 𝑚 will join the 𝐸𝑚(𝑡)
while the remaining proportion will be grouped in the 𝐸𝑐 (𝑡) class.
After a given latent period, latently infected individuals will progress
to the 𝐼𝑚(𝑡) and 𝐼𝑐 (𝑡) classes at rates 𝜌𝑚 and 𝜌𝑐 respectively. Due to
the underlying conditions of individuals in the 𝐸𝑚(𝑡) compartment, it is
assumed that 𝜌𝑐 < 𝜌𝑚. To explicitly capture and highlight the impact of
comorbidities, we assume similar characteristics for asymptomatic and
symptomatic and divide infected class into 𝐼𝑐 (𝑡) and 𝐼𝑚(𝑡). Individual
in the 𝐼𝑚(𝑡) and 𝐼𝑐 (𝑡) classes may be traced and hospitalised or do self
reporting at rates 𝜔𝑚 and 𝜔𝑐 respectively. It is assumed that those in the
𝐼𝑚(𝑡) class are likely to do self reporting much easier given their status
as compared to those in the 𝐼𝑐 (𝑡) class. It is assumed that the disease
related mortality rates will vary depending on whether the infected
individual has a co-morbidity. The disease related mortality rate for
individuals in 𝐼𝑚(𝑡) class is considered to be 𝛿𝑚 while that of individuals
in the 𝐼𝑐 (𝑡) is given as 𝛿𝑐 . Hospitalised individuals may recover from
COVID-19 at a rate 𝛼 or die at a rate 𝛿ℎ. The recovered individuals
have temporary disease induced immunity11 which wanes off and they
become susceptible again at a rate 𝜏.

The model captures entry of individuals at a constant rate 𝜋 of
hich a proportion 𝜃 being latently infected with a co-morbidity, 𝑒

latently infected without co-morbidity, 𝑐 being a proportion of those
that are confirmed to be infected at the entry points and immediately
hospitalised and the rest being susceptible. Susceptible and recovered
individual exit the community at a per-capita rate 𝜇.

To model COVID-19 transmission, we consider an area-dependent
force of infection term given as

(

𝛽𝑏𝑆(𝐼𝑐 + 𝐼𝑚 + 𝑔𝐻)
)

∕𝐴 where 𝛽 is the
transmission rate and 𝑏 is proportion of susceptible individuals that do
not adhere to standard operating procedures, 𝑔 is the percent reduction
of hospital acquired infections and 𝐴 is the total area occupied by the
given community.

2.2. Model equations

Taking into account the above description, along with the dynamics
as in Fig. 1, gives the model system as;

𝑑𝑆 = (1 − (𝜃 + 𝑐 + 𝑒))𝜋 −
𝛽𝑏𝑆(𝐼𝑚 + 𝐼𝑐 + 𝑔𝐻)

− 𝜇𝑆 + 𝜏𝑅,

𝑑𝑡 𝐴
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T
a


P

𝐿

T

𝑑𝐸𝑚
𝑑𝑡

= 𝜃𝜋 +
𝑚𝛽𝑏𝑆(𝐼𝑚 + 𝐼𝑐 + 𝑔𝐻)

𝐴
− 𝜌𝑚𝐸𝑚,

𝑑𝐸𝑐
𝑑𝑡

= 𝑒𝜋 +
(1 − 𝑚)𝛽𝑏𝑆(𝐼𝑚 + 𝐼𝑐 + 𝑔𝐻)

𝐴
− 𝜌𝑐𝐸𝑐 ,

𝑑𝐼𝑚
𝑑𝑡

= 𝜌𝑚𝐸𝑚 − 𝛿𝑚𝐼𝑚 − 𝜔𝑚𝐼𝑚, (2.1)
𝑑𝐼𝑐
𝑑𝑡

= 𝜌𝑐𝐸𝑐 − 𝛿𝑐𝐼𝑐 − 𝜔𝑐𝐼𝑐 ,

𝑑𝐻
𝑑𝑡

= 𝑐𝜋 + 𝜔𝑚𝐼𝑚 + 𝜔𝑐𝐼𝑐 − 𝛿ℎ𝐻 − 𝛼𝐻,

𝑑𝑅
𝑑𝑡

= 𝛼𝐻 − 𝜇𝑅 − 𝜏𝑅.

3. Mathematical analysis

We ascertain epidemiological feasibility of the model system (2.1),
by guaranteeing that starting with non negative initial conditions, the
solutions will remain non-negative for all 𝑡 ≥ 0. Consider the given
initial conditions of system (2.1) (𝑆(0) ≥ 0, 𝐸𝑚(0) ≥ 0, 𝐸𝑐 (0) ≥ 0, 𝐼𝑚(0) ≥
0, 𝐼𝑐 (0) ≥ 0,𝐻(0) ≥ 0 and 𝑅(0) ≥ 0, then the resulting solutions,
(𝑆(𝑡), 𝐸𝑚(𝑡), 𝐸𝑐 (𝑡), 𝐼𝑚(𝑡), 𝐼𝑐 (𝑡),𝐻(𝑡), 𝑅(𝑡)), will remain non-negative for all
𝑡 ≥ 0.

To prove this, it is sufficient to show that all the trajectories of
system (2.1) are non-negative for time 𝑡 > 0. From the first equation
of system (2.1), the evolution of susceptible individuals over time will
be given by the inequality;

𝑑𝑆(𝑡)
𝑑𝑡

≥ −

⎛

⎜

⎜

⎜

⎝

𝛽𝑏
(

𝐼𝑚(𝑡) + 𝐼𝑐 (𝑡) + 𝑔𝐻(𝑡)
)

𝐴
+ 𝜇

⎞

⎟

⎟

⎟

⎠

𝑆(𝑡).

By solving the inequality and taking the limit as 𝑡 → ∞, we have

𝑆(𝑡) ≥ 𝑆0 exp

⎧

⎪

⎨

⎪

⎩

−

⎛

⎜

⎜

⎜

⎝

𝜇𝑡 + ∫

𝑡

0

⎛

⎜

⎜

⎜

⎝

𝛽𝑏
(

𝐼𝑚(𝜏) + 𝐼𝑐 (𝜏) + 𝑔𝐻(𝜏)
)

𝐴

⎞

⎟

⎟

⎟

⎠

𝑑𝜏

⎞

⎟

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

,

lim
𝑡→∞

inf 𝑆(𝑡) ≥ 0.

Similarly, it can be shown that 𝐸𝑚(𝑡) ≥ 0, 𝐸𝑐 (𝑡), 𝐼𝑚(𝑡) ≥ 0, 𝐼𝑐 (𝑡) ≥
0,𝐻(𝑡) ≥ 0 and 𝑅(𝑡) ≥ 0. Hence all solutions of system (2.1) will remain
non-negative whenever we have non-negative initial conditions.

It is also important to note that, the closed set  =
{

(𝑆,𝐸𝑚, 𝐸𝑐 ,

𝐼𝑚, 𝐼𝑐 ,𝐻,𝑅) ∈ R7
+;𝑁 ≤ 𝜋

𝜇

}

, is positively invariant and attracts all pos-
tive solutions of the model since
𝑑𝑁
𝑑𝑡

= 𝜋 − 𝜇(𝑆 + 𝑅) − 𝛿𝑐𝐼𝑐 − 𝛿𝑚𝐼𝑚 − 𝛿ℎ𝐻,

= 𝜋 − 𝜇𝑁, at disease free equilibrium.

e observe that 𝑁 > 𝜋
𝜇

whenever 𝑑𝑁
𝑑𝑡

< 0. Since the right hand side of
𝑑𝑁
𝑑𝑡

is always bounded, then by standard comparison Theorem,13 it can
be shown that 𝑁(𝑡) ≤ 𝑁(0)𝑒−𝜇𝑡+𝜋

𝜇
(1−𝑒−𝜇𝑡). Therefore lim

𝑡→∞
sup𝑁(𝑡) = 𝜋

𝜇
,

implying that if 𝑁(0) ≤ 𝜋
𝜇

, then 𝑁(𝑡) ≤ 𝜋
𝜇

. The domain  is positively
nvariant under the flow of system (2.1). Therefore, system (2.1) is
iologically feasible and mathematically well posed in .

.1. Local stability of the disease free equilibrium and computation of 0

The model system (2.1) has a disease free equilibrium (𝜉0) given
y 𝜉0 = (𝜋∕𝜇, 0, 0, 0, 0, 0, 0). Using the next generation matrix described
y van den Driessche and Watmough,14 the local stability of 𝜉0 is
nvestigated. The basic reproduction number, 0 (defined as the aver-
ge number of secondary infections generated by COVID-19 infectious
ndividuals through out their infectious period if introduced into a
opulation with a proportion of individuals having a comorbidity)
s also determined by the same method. Let  denote the rate of
ppearance of new infections into the infected compartments and 
he transfer in and out of the infected compartments. We obtain the
3

erivatives of the matrix  and  evaluated at 𝜉0 and the obtained
esults are as given in Box I. The spectral radius, 𝜌, of matrix 𝐹𝑉 −1

gives the reproduction number as,

0 = 𝜌(𝐹𝑉 −1) = 𝐼𝑚 +𝐼𝑐 ,

here 𝐼𝑚 =
𝑏𝛽𝑚𝜋

(

𝛼 + 𝑔𝜔𝑚 + 𝛿ℎ
)

𝐴𝜇
(

𝛿𝑚 + 𝜔𝑚
) (

𝛼 + 𝛿ℎ
) , 𝐼𝑐 =

𝑏𝛽(1 − 𝑚)𝜋
(

𝛼 + 𝑔𝜔𝑐 + 𝛿ℎ
)

𝐴𝜇
(

𝛼 + 𝛿ℎ
) (

𝛿𝑐 + 𝜔𝑐
) .

The threshold quantity 0 is the basic reproduction of the model
ystem (2.1). It measures the number of new COVID-19 cases that
re generated by an infectious individual introduced into a population
ith a fraction of individuals having other comorbidities. It is given
s the sum of the respective reproduction numbers associated with
ew cases generated by individuals without any comorbidity (𝐼𝑐 ) and

those with any underlying comorbidity (𝐼𝑚 ). These threshold values
are observed to have a positive relationship with the infection rate,
proportion of susceptible individuals adhering to Standard operating
Procedures (SOPs) and a negative relationship with the habitat area
size.

The constituent reproduction number 𝐼𝑚 (𝐼𝑐 ) can be interpreted
s the product of effective transmission rate, proportion of individuals
dhering to SOPs, proportion of individuals with (without) comorbidi-
ies, time taken for a COVID-19 infected individual with (without)
omorbidity to report to hospital and the time it takes a hospitalised
ndividual to succumb or recover from COVID-19. Using the result
f Driessche and Watmough14 in Theorem 2, the following lemma is
stablished.

emma 3.1. The DFE, 𝜉0 of model system (2.1), is locally asymptotically
table if 0 < 1 and unstable if 0 > 1.

Lemma 3.1 epidemiologically indicates that if a small number of
OVID-19 infectives are introduced into a community where a fraction
f individuals are having comorbidities, then the resulting number of
econdary cases will not lead to an outbreak whenever 0 < 1. But
f 0 > 1, then the number of cases in the subsequent generation
ill be greater than the former and as a result the disease will spread
nd become endemic in the community. In this case the disease will
ontinue to spread until the proportion of susceptible individuals is too
mall such that the probability of infecting a new person is very low. To
nsure that elimination of the virus from the population is independent
f the initial population size, we investigate the global stability of the
isease free equilibrium.

.2. Global stability of disease free equilibrium

heorem 3.1. The DFE, 𝜉0, of the model system (2.1), is globally
symptotically stable in the invariant region  if 0 < 1 and unstable if
0 > 1.

roof. Consider the positively definite Lyapunov function,

=

(

𝛼 + 𝑔𝜔𝑚 + 𝛿ℎ
)

𝐸𝑚

𝑔
(

𝛿𝑚 + 𝜔𝑚
) (

𝛼 + 𝛿ℎ
) +

(

𝛼 + 𝑔𝜔𝑐 + 𝛿ℎ
)

𝐸𝑐

𝑔
(

𝛼 + 𝛿ℎ
) (

𝛿𝑐 + 𝜔𝑐
)

+

(

𝛼 + 𝑔𝜔𝑚 + 𝛿ℎ
)

𝐼𝑚
𝑔
(

𝛿𝑚 + 𝜔𝑚
) (

𝛼 + 𝛿ℎ
) +

(

𝛼 + 𝑔𝜔𝑐 + 𝛿ℎ
)

𝐼𝑐
𝑔
(

𝛼 + 𝛿ℎ
) (

𝛿𝑐 + 𝜔𝑐
) + 𝑑𝐻

𝛼 + 𝛿ℎ
. (3.1)

he time-derivative of function (3.1) is given by,

𝑑𝐿
𝑑𝑡

=

(

𝛼 + 𝑔𝜔𝑚 + 𝛿ℎ
)

𝑔
(

𝛿𝑚 + 𝜔𝑚
) (

𝛼 + 𝛿ℎ
)

𝑑𝐸𝑚
𝑑𝑡

+

(

𝛼 + 𝑔𝜔𝑐 + 𝛿ℎ
)

𝑔
(

𝛼 + 𝛿ℎ
) (

𝛿𝑐 + 𝜔𝑐
)

𝑑𝐸𝑐
𝑑𝑡

+

(

𝛼 + 𝑔𝜔𝑚 + 𝛿ℎ
)

𝑔
(

𝛿𝑚 + 𝜔𝑚
) (

𝛼 + 𝛿ℎ
)

𝑑𝐼𝑚
𝑑𝑡

+

(

𝛼 + 𝑔𝜔𝑐 + 𝛿ℎ
)

( ) ( )

𝑑𝐼𝑐 + 𝑑𝐻 ,

𝑔 𝛼 + 𝛿ℎ 𝛿𝑐 + 𝜔𝑐 𝑑𝑡 𝛼 + 𝛿ℎ
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i
𝜉
𝜉

a
i
o
q

𝐶

w

𝐶

𝐹 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 𝑏𝛽𝑚𝜋
𝐴𝜇

𝑏𝛽𝑚𝜋
𝐴𝜇

𝑏𝛽𝑔𝑚𝜋
𝐴𝜇

0 0 𝑏𝛽(1−𝑚)𝜋
𝐴𝜇

𝑏𝛽(1−𝑚)𝜋
𝐴𝜇

𝑏𝛽𝑔(1−𝑚)𝜋
𝐴𝜇

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, 𝑉 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜌𝑐 0 0 0 0
0 𝜌 0 0 0

−𝜌𝑚 0 𝛿𝑚 + 𝜔𝑚 0 0
0 −𝜌𝑐 0 𝛿𝑐 + 𝜔𝑐 0
0 0 −𝜔𝑚 −𝜔𝑐 𝛼 + 𝛿ℎ

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

with

𝐹𝑉 −1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑏𝛽𝑚𝜋(𝛼+𝑔𝜔𝑚+𝛿ℎ)
𝐴𝜇(𝛿𝑚+𝜔𝑚)(𝛼+𝛿ℎ)

𝑏𝛽𝑚𝜋(𝛼+𝑔𝜔𝑐+𝛿ℎ)
𝐴𝜇(𝛼+𝛿ℎ)(𝛿𝑐+𝜔𝑐)

𝑏𝛽𝑚𝜋(𝛼+𝑔𝜔𝑚+𝛿ℎ)
𝐴𝜇(𝛿𝑚+𝜔𝑚)(𝛼+𝛿ℎ)

𝑏𝛽𝑚𝜋(𝛼+𝑔𝜔𝑐+𝛿ℎ)
𝐴𝜇(𝛼+𝛿ℎ)(𝛿𝑐+𝜔𝑐)

𝑏𝛽𝑔𝑚𝜋
𝐴𝜇(𝛼+𝛿ℎ)

𝑏𝛽(1−𝑚)𝜋(𝛼+𝑔𝜔𝑚+𝛿ℎ)
𝐴𝜇(𝛿𝑚+𝜔𝑚)(𝛼+𝛿ℎ)

𝑏𝛽(1−𝑚)𝜋(𝛼+𝑔𝜔𝑐+𝛿ℎ)
𝐴𝜇(𝛼+𝛿ℎ)(𝛿𝑐+𝜔𝑐)

𝑏𝛽(1−𝑚)𝜋(𝛼+𝑔𝜔𝑚+𝛿ℎ)
𝐴𝜇(𝛿𝑚+𝜔𝑚)(𝛼+𝛿ℎ)

𝑏𝛽(1−𝑚)𝜋(𝛼+𝑔𝜔𝑐+𝛿ℎ)
𝐴𝜇(𝛼+𝛿ℎ)(𝛿𝑐+𝜔𝑐)

𝑏𝛽𝑔(1−𝑚)𝜋
𝐴𝜇(𝛼+𝛿ℎ)

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

Box I.
c

e
u
b
e
i
T
p

𝑥

≤ −
𝐼𝑚
𝑔

(

1 −
𝑏𝛽𝑚𝜋

(

𝛼 + 𝑔𝜔𝑚 + 𝛿ℎ
)

𝐴𝜇
(

𝛿𝑚 + 𝜔𝑚
) (

𝛼 + 𝛿ℎ
) −

𝑏𝛽(1 − 𝑚)𝜋
(

𝛼 + 𝑔𝜔𝑐 + 𝛿ℎ
)

𝐴𝜇
(

𝛼 + 𝛿ℎ
) (

𝛿𝑐 + 𝜔𝑐
)

)

−
𝐼𝑐
𝑔

(

1 −
𝑏𝛽𝑚𝑝

(

𝛼 + 𝑔𝜔𝑚 + 𝛿ℎ
)

𝐴𝜇
(

𝛿𝑚 + 𝜔𝑚
) (

𝛼 + 𝛿ℎ
) −

𝑏𝛽(1 − 𝑚)𝜋
(

𝛼 + 𝑔𝜔𝑐 + 𝛿ℎ
)

𝐴𝜇
(

𝛼 + 𝛿ℎ
) (

𝛿𝑐 + 𝜔𝑐
)

)

−𝐻

(

1 −
𝑏𝛽𝑚𝜋

(

𝛼 + 𝑔𝜔𝑚 + 𝛿ℎ
)

𝐴𝜇
(

𝛿𝑚 + 𝜔𝑚
) (

𝛼 + 𝛿ℎ
) −

𝑏𝛽(1 − 𝑚)𝜋
(

𝛼 + 𝑔𝜔𝑐 + 𝛿ℎ
)

𝐴𝜇
(

𝛼 + 𝛿ℎ
) (

𝛿𝑐 + 𝜔𝑐
)

)

,

≤ −
𝐼𝑚
𝑔
(1 −0) −

𝐼𝑐
𝑔
(1 −0) −𝐻(1 −0).

When 0 ≤ 1, 𝑑𝐿
𝑑𝑡

is negative semi-definite, hence the largest compact

nvariant set in  such that 𝑑𝐿
𝑑𝑡

= 0 when 0 ≤ 1 is the singleton

0. By the LaSalle Invariance Principle,15 the disease free equilibrium
0 is globally asymptotically stable in  if 0 ≤ 1 and unstable

otherwise. □

3.3. Existence of endemic equilibrium points

To find the conditions for existence of endemic equilibrium points,
let 𝜉∗ = {𝑆∗, 𝐸∗

𝑚, 𝐸
∗
𝑐 , 𝐼

∗
𝑚, 𝐼

∗
𝑐 ,𝐻

∗, 𝑅∗} be the generic equilibrium point
nd 𝜆 =

(

𝛽𝑏(𝐼𝑐 + 𝐼𝑚 + 𝑔𝐻)
)

∕𝐴 be the force of infection. System (2.1)
s set to zero and equilibrium point obtained in terms of the force
f infection at steady state denoted as (𝜆∗) to satisfy the following
uadratic equation.

2𝜆
∗2 + 𝐶1𝜆

∗ + 𝐶0 = 0, (3.2)

here

0 = −𝑏𝜋𝛽𝜇(𝜇 + 𝜏)
(

𝜔𝑚
(

𝑔𝜔𝑐 (𝜃 + 𝑐 + 𝑒) + 𝑒
(

𝛼 + 𝛿ℎ
))

+ 𝛿𝑐
(

𝜃𝛼 + 𝑔(𝜃 + 𝑐)𝜔𝑚 + 𝜃𝛿ℎ + 𝑐𝑔𝛿𝑚
)

+𝜃𝜔𝑐
(

𝛼 + 𝛿ℎ
)

+ 𝛿𝑚
(

𝑔(𝑐 + 𝑒)𝜔𝑐 + 𝑒
(

𝛼 + 𝛿ℎ
)))

,

𝐶1 = −𝛿𝑚
(

𝜋𝛼𝑏𝛽
(

𝑚𝜏(1 − 𝜃 − 𝑒) + (1 − 𝜃)𝜏 + 𝑘2𝜇
)

+ (𝜇 + 𝜏)
(

𝜔𝑐
(

𝛼(−𝐴)𝜇 − 𝐴𝜇𝛿ℎ + 𝜋𝑏𝛽𝑔𝑘4
)

+ 𝜋𝑏𝛽𝑘2𝛿ℎ
))

𝜔𝑚
(

−
(

(𝜇 + 𝜏)
(

𝜔𝑐
(

−𝛼𝐴𝜇 − 𝐴𝜇𝛿ℎ + 𝜋𝑏𝛽𝑔
)

+ 𝜋𝑏𝛽𝑘2𝛿ℎ
)

+𝜋𝛼𝑏𝛽
(

𝑘2𝜇 + (1 − 𝑚)𝜏
)))

+𝛿𝑐
(

(𝜇 + 𝜏)
(

𝛿𝑚(𝛼𝐴𝜇 − 𝜋𝑏𝛽𝑐𝑔) + 𝜔𝑚
(

𝛼𝐴𝜇 − 𝜋𝑏𝛽𝑔𝑘3
)

+ 𝛿ℎ
(

𝐴𝜇
(

𝛿𝑚 + 𝜔𝑚
)

− 𝜋𝑏𝛽𝑘1
))

−𝜋𝛼𝑏𝛽(𝜃(1 − 𝑚)(𝜇 + 𝜏) + 𝜇𝑚(1 − 𝑒 − 𝑐) + (1 − 𝑒)𝑚𝜏))

+𝜋 − 𝑏𝛽𝜔𝑐
(

𝑘1𝛿ℎ(𝜇 + 𝜏) + 𝛼𝑘1𝜇 + 𝛼𝑚𝜏
)

,

𝐶2 = 𝐴
(

𝜔𝑐
(

𝜔𝑚
(

𝛼𝜇 + 𝛿ℎ(𝜇 + 𝜏)
)

+ 𝛿𝑚
(

𝛿ℎ(𝜇 + 𝜏) + 𝛼(𝜇 + 𝑚𝜏)
))

+𝛿𝑐
(

𝜔𝑚
(

𝛿ℎ(𝜇 + 𝜏) + 𝛼(𝜇 + (1 − 𝑚)𝜏)
)

+ (𝜇 + 𝜏)𝛿𝑚
(

𝛼 + 𝛿ℎ
)))

,

and
𝑘 = 𝑚(1 − 𝜃 − 𝑒 − 𝑐) + 𝜃, 𝑘 = 1 − 𝜃 − 𝑐 − 𝑚(1 − 𝜃 − 𝑒 − 𝑐),
1 2

4

𝑘3 = 𝜃 + 𝑐 + 𝑚(1 − 𝜃 − 𝑐 − 𝑒) + 𝜃 + 𝑐,

𝑘4 = 1 − 𝜃 − 𝑚(1 − 𝜃 − 𝑒 − 𝑐).

In the absence of infected recruits, the parameters 𝜃, 𝑒 and 𝑐 (the
proportions of latently infected undetected individuals with or without
comorbidity and detected infected individuals respectively recruited
into a closed community) are zero. Therefore Eq. (3.2) reduces to;

𝐶2𝜆
∗2 + 𝐶1𝜆

∗ = 0.

Clearly, 𝜆∗ = 0 is a solution and in this case, corresponding to 𝜉0 and
when 𝜆∗ ≠ 0, the coefficient 𝐶1 summarises as

𝐶1 = 𝐴𝜇(𝜇 + 𝜏)
(

𝛿𝑐 + 𝜔𝑐
) (

𝛼 + 𝛿ℎ
) (

𝛿𝑚 + 𝜔𝑚
) (

1 −0
)

.

Since 𝐶2 is always positive, then if 0 > 1, we have 𝐶2𝜆∗ + 𝐶1 = 0

implying that 𝜆∗ = −
𝐶1
𝐶2

. In this case, a unique endemic equilibrium
point (𝜉1) is obtained as given in Box II;

where

𝑄1 = 𝜔𝑚
(

𝛼𝜇(𝜆∗ + 𝜇 + 𝜏) + 𝛿ℎ(𝜆∗ + 𝜇)(𝜇 + 𝜏)
)

+ 𝛿𝑚
(

𝛼𝜇(𝜆∗ + 𝜇) + 𝛿ℎ(𝜆∗ + 𝜇)(𝜇 + 𝜏) + 𝛼𝜏(𝜇 + 𝜆∗𝑚)
)

,

𝑄2 = 𝜔𝑚
(

𝛼𝜇(𝜇 + 𝜏) + 𝛿ℎ(𝜆∗ + 𝜇)(𝜇 + 𝜏) + 𝛼𝜆∗(𝜇 − 𝑚𝜏 + 𝜏)
)

+(𝜆∗ + 𝜇)(𝜇 + 𝜏)𝛿𝑚
(

𝛼 + 𝛿ℎ
)

,

𝑄3 = 𝜆∗(1 − 𝑚)𝛿ℎ(𝜇 + 𝜏) + 𝛼(𝜆∗𝜇(1 − 𝑚) + 𝜆∗(1 − 𝑚)𝜏).

Thus, the following lemma is established.

Lemma 3.2. The unique endemic equilibrium (𝜉1), of the ‘‘No-imported-
ase’’ model system (2.1), exists if and only if 0 > 1.

Lemma 3.2 implies that COVID-19 will persist in the community
ven when the population is closed off for entrants. The existence of a
nique endemic equilibrium also indicates the possibility of forward
ifurcation where a small positive asymptomatically stable endemic
quilibrium appears and the disease free equilibrium 𝜉0 loses it stabil-
ty. We now investigate this phenomenon using the Center Manifold
heorem,16 and the local stability of the unique endemic equilibrium
oint, (𝜉1).

Re-defining the state variables (𝑆,𝐸𝑚, 𝐸𝑐 , 𝐼𝑚, 𝐼𝑐 ,𝐻,𝑅) as (𝑥1, 𝑥2,
3, 𝑥4, 𝑥5, 𝑥6, 𝑥7), the associated system (2.1) is given as;
𝑑𝑥1
𝑑𝑡

= (1 − (𝜃 + 𝑐 + 𝑒))𝜋 −
𝛽𝑏𝑥1(𝑥3 + 𝑥4 + 𝑔𝑥5)

𝐴
− 𝜇𝑆 + 𝜏𝑅,

𝑑𝑥2
𝑑𝑡

= 𝑓2 = 𝜃𝜋 +
𝑚𝛽𝑏𝑥1(𝑥3 + 𝑥4 + 𝑔𝑥5)

𝐴
− 𝜌𝑚𝑥2,

𝑑𝑥3
𝑑𝑡

= 𝑓3 = 𝑒𝜋 +
(1 − 𝑚)𝛽𝑏𝑥1(𝑥3 + 𝑥4 + 𝑔𝑥5)

𝐴
− 𝜌𝑐𝑥3,

𝑑𝑥4 = 𝑓 = 𝜌 𝑥 − 𝛿 𝑥 − 𝜔 𝑥 , (3.3)

𝑑𝑡 4 𝑚 2 𝑚 4 𝑚 4
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Fig. 2. Simulations of the detected and undetected SARS-COV-2 individuals with comorbidity.
Fig. 3. Variation of the settlement area size.
𝑑𝑥5
𝑑𝑡

= 𝑓5 = 𝜌𝑐𝑥3 − 𝛿𝑐𝑥5 − 𝜔𝑐𝑥5,

𝑑𝑥6
𝑑𝑡

= 𝑓6 = 𝑐𝜋 + 𝜔𝑚𝑥4 + 𝜔𝑐𝑥5 − 𝛿ℎ𝑥6 − 𝛼𝑥6,

𝑑𝑥7
𝑑𝑡

= 𝑓7 = 𝛼𝑥6 − 𝜇𝑥7 − 𝜏𝑥7.

The bifurcation parameter 𝜙 obtained by equating 0 to one is given
in Box III. By Linearising system (3.3) at disease free equilibrium
(𝜉0) and with 𝜙 the bifurcation parameter, we obtain

𝐽𝜉0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

−𝜇 0 0 − 𝜋𝑏𝜙
𝐴𝜇

− 𝜋𝑏𝜙
𝐴𝜇

− 𝜋𝑏𝜙𝑔
𝐴𝜇

𝜏
0 −𝜌𝑚 0 𝜋𝑏𝜙𝑚

𝐴𝜇
𝜋𝑏𝜙𝑚
𝐴𝜇

𝜋𝑏𝜙𝑔𝑚
𝐴𝜇

0
0 0 −𝜌𝑐

𝜋𝑏𝜙(1−𝑚)
𝐴𝜇

𝜋𝑏𝜙(1−𝑚)
𝐴𝜇

𝜋𝑏𝜙𝑔(1−𝑚)
𝐴𝜇

0
0 𝜌𝑚 0 −𝛿𝑚 − 𝜔𝑚 0 0 0
0 0 𝜌𝑐 0 −𝛿𝑐 − 𝜔𝑐 0 0
0 0 0 𝜔𝑚 𝜔𝑐 −𝛼 − 𝛿ℎ 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

. (3.4)
⎝

0 0 0 0 0 𝛼 −𝜇 − 𝜏
⎠

5

The Jacobian matrix 𝐽𝜉0 has zero eigenvalue and the rest are negative.

The left eigenvector associated with the zero eigenvalue of (3.4) is
given by 𝑣 = (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣7)𝑇 where,

𝑣1 = 0, 𝑣2 =
𝑣6(1 −𝐼𝑐 )𝐴𝜇

(

𝛼 + 𝛿ℎ
)

𝑔𝑚𝜋𝑏𝛽
, 𝑣3 =

𝑣6
(

𝛼 + 𝑔𝜔𝑐 + 𝛿ℎ
)

𝑔
(

𝛿𝑐 + 𝜔𝑐
) ,

𝑣4 =
𝑣6

(

𝛼 + 𝑔𝜔𝑚 + 𝛿ℎ
)

𝑔
(

𝛿𝑚 + 𝜔𝑚
) , 𝑣5 =

𝑣6
(

𝛼 + 𝑔𝜔0𝑐 + 𝛿ℎ
)

𝑔
(

𝛿𝑐 + 𝜔𝑐
) , 𝑣6 > 0, 𝑣7 = 0.

(3.5)

Similarly, the right eigenvector of (3.4) associated with the zero eigen-
value is given by 𝑤 = (𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤6, 𝑤7)𝑇 , with 𝑣.𝑤 = 1, as shown
in Box IV. Next we compute the non-zero partial derivatives of system
(3.4) with respect to the state variables that are used in the computation
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𝐚

𝑆1 =
𝜋(𝜇 + 𝜏)

(

𝛿𝑐 + 𝜔𝑐
) (

𝛼 + 𝛿ℎ
) (

𝛿𝑚 + 𝜔𝑚
)

(𝜆∗ + 𝜇)(𝜇 + 𝜏)
(

𝛿𝑐 + 𝜔𝑐
) (

𝛼 + 𝛿ℎ
) (

𝛿𝑚 + 𝜔𝑚
)

− 𝛼𝜆∗𝜏
(

(1 − 𝑚)𝜔𝑐𝛿𝑚 + 𝜔𝑚
(

𝑚𝛿𝑐 + 𝜔𝑐
)) ,

𝐸𝑚1
=

𝜋
((

𝛿𝑚 + 𝜔𝑚
) (

𝜔𝑐
(

𝜆∗𝑚𝛿ℎ(𝜇 + 𝜏) + 𝛼𝜆∗𝑚(𝜇 + 𝜏)
)

+ 𝛿𝑐
(

𝜆∗𝑚𝛿ℎ(𝜇 + 𝜏) + 𝛼𝜆∗𝑚(𝜇 + 𝜏)
)))

𝜌𝑚
(

𝑄1𝜔𝑐 +𝑄2𝛿𝑐
) ,

𝐸𝑐1 =
𝜋
(

𝛿𝑐 + 𝜔𝑐
) (

𝜔𝑚
(

𝜆∗(1 − 𝑚)𝛿ℎ(𝜇 + 𝜏) + 𝛼𝜆∗(𝜇(1 − 𝑚) − 𝑚𝜏 + 𝜏)
)

+𝑄3𝛿𝑚
)

𝜌𝑐
(

𝑄2𝛿𝑐 +𝑄1𝜔𝑐
) ,

𝐼𝑚1
=

𝜋
(

𝜔𝑐
(

𝜆∗𝑚𝛿ℎ(𝜇 + 𝜏) + 𝛼𝜆∗𝑚(𝜇 + 𝜏)
)

+ 𝛿𝑐
(

𝜆∗𝑚𝛿ℎ(𝜇 + 𝜏) + 𝛼𝜆∗𝑚(𝜇 + 𝜏)
))

𝑄1𝜔𝑐 +𝑄2𝛿𝑐
,

𝐼𝑐1 =
𝜋
(

𝜔𝑚
(

𝜆∗(1 − 𝑚)𝛿ℎ(𝜇 + 𝜏) + 𝛼𝜆∗(𝜇(1 − 𝑚) + (1 − 𝑚)𝜏)
)

+𝑄3𝛿𝑚
)

𝑄1𝜔𝑐 +𝑄2𝛿𝑐
,

𝐻1 =
𝜋(𝜇 + 𝜏)

(

𝜆∗𝑚𝛿𝑐𝜔𝑚 + 𝜔𝑐
(

𝜆∗(1 − 𝑚)𝛿𝑚 + 𝜆∗𝜔𝑚
))

𝑄1𝜔𝑐 +𝑄2𝛿𝑐
,

𝑅1 =
𝜋𝛼

(

𝜆∗𝑚𝛿𝑐𝜔𝑚 + 𝜔𝑐
(

𝜆∗(1 − 𝑚)𝛿𝑚 + 𝜆∗𝜔𝑚
))

𝑄1𝜔𝑐 +𝑄2𝛿𝑐
,

Box II.
𝜙 = 𝛽∗ =
𝐴𝜇

(

𝛿𝑐 + 𝜔𝑐
) (

𝛼 + 𝛿ℎ
) (

𝛿𝑚 + 𝜔𝑚
)

𝜋𝑏
(

(1 − 𝑚)𝛿𝑚
(

𝛼 + 𝑔𝜔𝑐 + 𝛿ℎ
)

+ 𝜔𝑚
(

𝑔𝜔𝑐 + (1 − 𝑚)
(

𝛼 + 𝛿ℎ
))

+ 𝑚𝛿𝑐
(

𝛼 + 𝑔𝜔𝑚 + 𝛿ℎ
)

+ 𝑚𝜔𝑐
(

𝛼 + 𝛿ℎ
)) .

Box III.
Table 1
Parameter values used in the numerical simulations.
Parameters Description Values Source

𝐴 Settlement area size 250 km2 17

𝛽 Transmission coefficient 0.00056 km−2 day−1 17

𝜋 Constant arrival rate 0.17 day−1 17

𝜇 Per capita departure rate 6.2 × 10−7 day−1 17

𝑔 Infectivity reduction factor among hospitalised 0.01 varied
𝜔𝑚 Hospitalisation rate of comorbidity-SARS-COV-2 individuals 0.2 day−1 1,6,18,19

𝜔𝑐 Hospitalisation rate of SARS-COV-2 individuals 0.5 day−1 1,6,18–20

𝑐 Fraction of entrants diagnosed with SARS-COV-2 0.01 varied
𝜃 Fraction of undetected latently infected entrants with a comorbidity 0.1 varied
𝑒 Fraction of undetected latently infected entrants without a comorbidity 0.1 varied
𝛿ℎ Hospital SARS-COV-2 death rate 0.0029 day−1 17,19

𝛿𝑚 Death rate of undetected comorbidity-SARS-COV-2 individuals 0.0145 day−1 17,19

𝛿𝑐 Death rate of undetected SARS-COV-2 individuals 0.0073 day−1 17,19

𝑚 Fraction of latently infected comorbidity-SARS-COV-2 individuals 0.2 varied
𝜌𝑚 Progression of comorbidity-SARS-COV-2 individuals to infectious stage 0.333 day−1 18

𝜌𝑐 Progression rate of SARS-COV-2 individuals to infectious stage 0.25 day−1 18

𝑏 Fraction of susceptibles not adhering to SOPs 0.6 varied
𝛼 Hospital recovery rate 0.0475 day−1 6,17,19

𝜏 Waning rate of disease induced immunity 0.0083 day−1 assumed
S

of coefficients 𝐚 and 𝐛 defined as,

=
𝑛
∑

𝑖,𝑗,𝑘=1
𝑣𝑘𝑤𝑖, 𝑤𝑗

𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(0, 0), and 𝐛 =
𝑛
∑

𝑖,𝑘=1
𝑣𝑘𝑤𝑖

𝜕2𝑓𝑘
𝜕𝑥𝑖𝜕𝜙

(0, 0). (3.7)

Thus, we obtain,

𝜕2𝑓1
𝜕𝑥1𝜕𝑥4

= −
𝑏𝜙
𝐴

,
𝜕2𝑓1

𝜕𝑥1𝜕𝑥5
= −

𝑏𝜙
𝐴

,
𝜕2𝑓1

𝜕𝑥1𝜕𝑥6
= −

𝑏𝜙𝑔
𝐴

,
𝜕2𝑓1

𝜕𝑥4𝜕𝑥1
= −

𝑏𝜙
𝐴

,

𝜕2𝑓1
𝜕𝑥5𝜕𝑥1

= −
𝑏𝜙
𝐴

,
𝜕2𝑓1

𝜕𝑥6𝜕𝑥1
= −

𝑏𝜙𝑔
𝐴

,
𝜕2𝑓2

𝜕𝑥2𝜕𝑥4
=

𝑏𝑚𝜙
𝐴

,
𝜕2𝑓2

𝜕𝑥2𝜕𝑥5
=

𝑏𝑚𝜙
𝐴

,

𝜕2𝑓2
𝜕𝑥2𝜕𝑥6

=
𝑏𝑚𝜙𝑔
𝐴

,
𝜕2𝑓2

𝜕𝑥4𝜕𝑥2
=

𝑏𝑚𝜙
𝐴

,
𝜕2𝑓2

𝜕𝑥5𝜕𝑥2
=

𝑏𝑚𝜙
𝐴

,
𝜕2𝑓2

𝜕𝑥6𝜕𝑥2
= −

𝑏𝑚𝜙𝑔
𝐴

,

𝜕2𝑓3
𝜕𝑥4𝜕𝑥3

=
𝑏(1 − 𝑚)𝜙

𝐴
,

𝜕2𝑓3
𝜕𝑥5𝜕𝑥3

=
𝑏(1 − 𝑚)𝜙

𝐴
,

𝜕2𝑓3
𝜕𝑥6𝜕𝑥3

= −
𝑏(1 − 𝑚)𝜙𝑔

𝐴
.

(3.8)
6

The non-zero partial derivatives of system (3.3) with respect to state
variables and the bifurcation parameter, 𝜙 are obtained as;

𝜕2𝑓1
𝜕𝑥4𝜕𝜙

= − 𝑏𝜋
𝐴𝜇

,
𝜕2𝑓1
𝜕𝑥5𝜕𝜙

= − 𝑏𝜋
𝐴𝜇

,
𝜕2𝑓1
𝜕𝑥6𝜕𝜙

= −
𝑏𝜋𝑔
𝐴𝜇

,

𝜕2𝑓2
𝜕𝑥4𝜕𝜙

= 𝑏𝑚𝜋
𝐴𝜇

,
𝜕2𝑓2
𝜕𝑥5𝜕𝜙

= 𝑏𝑚𝜋
𝐴𝜇

,
𝜕2𝑓2
𝜕𝑥6𝜕𝜙

=
𝑏𝑚𝜋𝑔
𝐴𝜇

,

𝜕2𝑓3
𝜕𝑥4𝜕𝜙

=
𝑏(1 − 𝑚)𝜋

𝐴𝜇
,

𝜕2𝑓3
𝜕𝑥5𝜕𝜙

=
𝑏(1 − 𝑚)𝜋

𝐴𝜇
,

𝜕2𝑓3
𝜕𝑥6𝜕𝜙

=
𝑏(1 − 𝑚)𝜋𝑔

𝐴𝜇
.

(3.9)

ubstituting expressions (3.5), (3.6), (3.8) and (3.9) into Eq. (3.7) gives;

𝐚 =
2𝑏𝛽

(

(1 − 𝑚)𝑣3𝑤3
(

𝑔𝑤5 +𝑤3 +𝑤4
)

+ 𝑚𝑣2𝑤2
(

𝑔𝑤6 +𝑤4 +𝑤5
))

,

𝐴
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Fig. 4. Varying the hospitalisation rate of SARS-COV-2 individuals.
𝑤1 =
𝜏𝑤7
𝜇

−
𝜋𝑏𝛽𝑤7(𝜇 + 𝜏)

(

𝐴𝜇
(

1 −𝐼𝑐

)

(

𝛿𝑐 + 𝜔𝑐
) (

𝛼 + 𝛿ℎ
)

+ 𝜋𝛼𝑏𝛽(1 − 𝑚)
(

𝛼 + 𝑔𝜔𝑚 + 𝛿ℎ
)

− 𝐵𝑔
)

𝛼𝐴𝐵𝜇2
,

𝑤2 =
𝐴𝜇𝑤7

(

1 −𝐼𝑐

)

(𝜇 + 𝜏)
(

𝛿𝑐 + 𝜔𝑐
) (

𝛼 + 𝛿ℎ
) (

𝛿𝑚 + 𝜔𝑚
)

𝛼𝐵𝜌𝑚
,

𝑤3 =
𝜋𝑏𝛽(1 − 𝑚)𝑤7(𝜇 + 𝜏)

(

𝛿𝑐 + 𝜔𝑐
) (

𝛼 + 𝑔𝜔𝑚 + 𝛿ℎ
)

𝛼𝐵𝜌𝑐
,

𝑤4 =
𝐴𝜇𝑤7

(

1 −𝐼𝑐

)

(𝜇 + 𝜏)
(

𝛿𝑐 + 𝜔𝑐
) (

𝛼 + 𝛿ℎ
)

𝐵
,

𝑤5 =
𝜋𝑏𝛽(1 − 𝑚)𝑤7(𝜇 + 𝜏)

(

𝛼 + 𝑔𝜔𝑚 + 𝛿ℎ
)

𝐵
, 𝑤6 =

𝑤7(𝜇 + 𝜏)
𝛼

,

𝑤7 > 0, where 𝐵 = 𝜋𝛼𝑏𝛽(1 − 𝑚)𝜔𝑐 − 𝛼𝜔𝑚
(

𝜋𝑏𝛽(1 − 𝑚) − 𝐴𝜇
(

𝛿𝑐 + 𝜔𝑐
))

.

(3.6)

Box IV.
p
w
d
s
t

3

L
p

P
e
c
r

𝜆

w

𝐛 =
𝜋𝑏𝑚(𝑣2 + 𝑣3)(𝑔𝑤3 +𝑤4 +𝑤5)

𝐴𝜇
.

ccording to the Center Manifold Theorem,16 if 𝐵 > 0 (𝜔𝑐 > 𝜔𝑚) and
𝐼𝑐 < 1, then the coefficients 𝐚 > 0 and 𝐛 > 0. In this case, a backward

ifurcation would occur but it is not possible because the absence of
nfected entrants into the community yields a unique endemic equilib-
ium. If 𝐵 < 0 (𝜔𝑐 < 𝜔𝑚) and 𝐼𝑐 < 1, then the coefficients 𝐚 < 0
nd 𝐛 > 0. In this case, the model exhibits a transcritical bifurcation at
0 = 1 and the ‘‘No-imported-case’’ equilibrium is locally asymptotically

table. On the contrary, if 𝐼𝑐 > 1, then 𝐚 < 0 and 𝐛 < 0 implying that
he ‘‘No-imported-case’’ equilibrium is unstable. Therefore the following
heorem is established.

heorem 3.2. The unique endemic equilibrium point 𝜉1

(i) is locally asymptotically stable only if 𝜔𝑚 < 𝜔𝑐 ,𝐼𝑐 < 1 and0 > 1.
(ii) is unstable if 𝜔𝑚 > 𝜔𝑐 and 𝐼𝑐 > 1.

According to Theorem 3.2, it is important for COVID-19 comorbid
atients to report early for treatment and to also strictly observe SOPs
ince the reaped associated benefits of a significantly reduced infectious
 𝑄

7

eriod would consequently lead to halting the spreading of the disease
ithin the community. It is worth noting that in such a community, the
isease dynamics is driven by individuals without comorbidities. Since
ome of these individuals are asymptomatic, they continue transmitting
he disease and make its control very complicated.

.4. Endemic equilibrium point 𝜉2

emma 3.3. The model system (2.1) has a unique endemic equilibrium
oint 𝜉2 if COVID-19 infected individuals are recruited into the community.

roof. Suppose 𝜃, 𝑒, 𝑐 ≠ 0, then within a community, the endemic
quilibrium point will be given by roots of polynomial (3.2). In this
ase, the coefficient 𝐶0 < 0 and 𝐶2 > 0. Therefore the only positive
oot of polynomial (3.2) is

∗ =
−𝐶1 +

√

𝐶2
1 − 4𝐶2𝐶0

2𝐶0
,

hich gives the endemic equilibrium point shown in Box V; where

= 𝛿 (𝜇 + 𝜏)
(

𝜃𝜇 + 𝜆∗𝑘
)

+ 𝜃𝛼(𝜇 + 𝜏)(𝜇 + 𝜆∗(1 − 𝑚))
4 ℎ 1
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𝑆∗ =
𝜋
(

𝛼𝜏
(

𝜃𝜔𝑚
(

𝛿𝑐 + 𝜔𝑐
)

+
(

𝛿𝑚 + 𝜔𝑚
) (

𝑐𝛿𝑐 + (𝑐 + 𝑒)𝜔𝑐
))

+ 𝑘0(𝜇 + 𝜏)
(

𝛿𝑐 + 𝜔𝑐
) (

𝛼 + 𝛿ℎ
) (

𝛿𝑚 + 𝜔𝑚
))

(𝜆∗ + 𝜇)(𝜇 + 𝜏)
(

𝛿𝑐 + 𝜔𝑐
) (

𝛼 + 𝛿ℎ
) (

𝛿𝑚 + 𝜔𝑚
)

− 𝛼𝜆∗𝜏
(

(1 − 𝑚)𝜔𝑐𝛿𝑚 + 𝜔𝑚
(

𝑚𝛿𝑐 + 𝜔𝑐
)) ,

𝐸∗
𝑚 =

𝜋
(

𝛿𝑚 + 𝜔𝑚
) (

𝜔𝑐
(

𝛿ℎ(𝜇 + 𝜏)
(

𝜃𝜇 + 𝜆∗𝑘1
)

+ 𝜃𝛼𝜇(𝜇 + 𝜆∗(1 − 𝑚) + 𝜏) + 𝛼𝜆𝑚(𝜇(1 − 𝑒 − 𝑐) + 𝜏)
)

+𝑄4𝛿𝑐
)

𝜌𝑚
(

𝑄1𝜔𝑐 +𝑄2𝛿𝑐
) ,

𝐸∗
𝑐 =

𝜋
(

𝛿𝑐 + 𝜔𝑐
) (

𝜔𝑚
(

𝛿ℎ(𝜇 + 𝜏)
(

𝑒𝜇 + 𝜆∗𝑘2
)

+ 𝛼
(

𝑒𝜇(𝜇 + 𝜏) + 𝜆∗
(

𝑘2𝜇 + (1 − 𝑚)𝜏
)))

+𝑄5𝛿𝑚
)

𝜌𝑐
(

𝑄2𝛿𝑐 +𝑄1𝜔𝑐
) ,

𝐼∗𝑚 =
𝜋
(

𝜔𝑐
(

𝛿ℎ(𝜇 + 𝜏)
(

𝜃𝜇 + 𝜆∗𝑘1
)

+ 𝜃𝛼𝜇(𝜇 + 𝜆∗(1 − 𝑚) + 𝜏) + 𝛼𝜆∗𝑚(𝜇(1 − 𝑐 − 𝑒) + 𝜏)
)

+𝑄4𝛿𝑐
)

𝑄1𝜔𝑐 +𝑄2𝛿𝑐
,

𝐼∗𝑐 =
𝜋
(

𝜔𝑚
(

𝛿ℎ(𝜇 + 𝜏)
(

𝑒𝜇 + 𝜆∗𝑘2
)

+ 𝛼
(

𝑒𝜇(𝜇 + 𝜏) + 𝜆∗
(

𝑘2𝜇 − 𝑚𝜏 + 𝜏
)))

+𝑄5𝛿𝑚
)

𝑄1𝜔𝑐 +𝑄2𝛿𝑐
,

𝐻∗ =
𝜋(𝜇 + 𝜏)

(

𝛿𝑐
(

𝜔𝑚(𝜆∗(𝜃 + 𝑐 + 𝑚 − 𝑚(𝜃 + 𝑐 + 𝑒)) + 𝜇(𝜃 + 𝑐)) + 𝑐(𝜆∗ + 𝜇)𝛿𝑚
)

+𝑄6𝜔𝑐
)

𝑄1𝜔𝑐 +𝑄2𝛿𝑐
,

𝑅∗ =
𝜋𝛼

(

𝛿𝑐
(

𝜔𝑚(𝜆∗(𝜃 + 𝑐 + 𝑚 − 𝑚(𝜃 + 𝑐 + 𝑒)) + 𝜇(𝜃 + 𝑐)) + 𝑐(𝜆∗ + 𝜇)𝛿𝑚
)

+𝑄6𝜔𝑐
)

𝑄1𝜔𝑐 +𝑄2𝛿𝑐
,

Box V.
+ 𝛼𝜆∗𝑚(𝜇(1 − 𝑐 − 𝑒) + (1 − 𝑒)𝜏),

𝑄5 = 𝛼
(

𝜆∗𝜏(1 − 𝑚(−𝜃 − 𝑒 + 1) − 𝜃) + 𝑒𝜇(𝜇 + 𝜏) + 𝜆∗𝑘2𝜇
)

+ 𝛿ℎ(𝜇 + 𝜏)
(

𝑒𝜇 + 𝜆∗𝑘2
)

,

𝑄6 = 𝜔𝑚(𝜇(𝜃 + 𝑐 + 𝑒) + 𝜆∗) + 𝛿𝑚
(

𝜇(𝑐 + 𝑒) + 𝜆∗𝑘4
)

. □

Lemma 3.3 guarantees the possibility of an endemic equilibrium
point 𝜉2 and its existence reveals that the disease will persist as long as
the infected individuals are continuously recruited into the community.

4. Numerical simulation results

In this Section, numerical simulations are presented to gain more
insights on the model properties under various scenarios. Simulations
are performed using MATLAB, version 2020a (Math Works, Inc.) soft-
ware. The parameter values given in Table 1 are obtained from existing
literature and some are as estimated basing on the Ugandan data.

The simulations in Fig. 2 indicate that the number of detected
and undetected SARS-COV-2 cases increase with the increasing propor-
tion of the infected individuals with a comorbidity. This is consistent
with the reports of Emami et al.21 and Bajgain et al.22 which re-
vealed that asymptomatic individuals with chronic underlying illnesses
experience a much faster progression to the symptomatic stage as
compared to individuals without any comorbidity. Results in Fig. 3
show that the infection peaks are delayed and the risk of commu-
nity transmission is optimally minimised when the occupancy area
is increased (based on the observation of social distancing). There-
fore, policy makers should advocate for stratified settlement areas,
thus reducing crowdedness through improved connectivity, where the
standard operating procedures such as social distancing will easily be
adhered to.

When detected cases (hospitalised patients) and undetected cases
(infectious individuals with or without comorbidity) are simulated at
varying levels of hospitalisation rates as exhibited in Figs. 4 and 5,
it is observed that community infections grow significantly with de-
creasing detection rates. Conversely, increasing the hospitalisation rate
(through more screening and testing of SARS-COV-2 suspects) reduces
the community infection. Fig. 4 further shows that at a detection
rate of 𝜔𝑐 = 0.5day−1 (2 days), the pandemic curve for individuals
without comorbidity never peaks and remains flat implying that early
detection would lead to early hospitalisation thus alleviating would
be increments in community transmission. This would consequently
avert overwhelming the available limited resources. Nonetheless, the

simulations in Fig. 5 C suggest that maintaining the same detection rate

8

of 𝜔𝑚 = 0.5day−1 for COVID-19 patients with a comorbidity would
constrain the available resources since the curve peaks 3-fold higher
compared to individuals without any comorbidity.

Fig. 7 D shows that when the disease spreads to COVID-19 front-line
health-care workers through hospital acquired infections, the num-
ber of infected (Fig. 7 A and B) and hospitalised (Fig. 7 C) patients
increases, thus stretching health-care facilities and resources. An esca-
lation in hospital acquired infections compromises health-care services
and significantly increases the doctor to patient ratio, consequently
affecting the rate at which the patients recover as observed in Fig. 6 C.
Overburdening of the health-care systems results into increased mor-
tality of the SARS-COV-2 patients. Therefore, funders of health-care
systems should endeavour to avail quality personal protective equip-
ment (PPE) and put up plausible policies and strategies that would
protect health-care workers from the ongoing COVID-19 pandemic.

5. Discussion

This study develops and analyses a habitat-size dependent deter-
ministic mathematical model that is then used to gain insights into
the impact of early detection and treatment on the COVID-19 epidemic
curve in a community with some co-morbid individuals. The model for-
mulated by subdividing the population into susceptible, exposed with
and without comorbidities, infectious with and without comorbidities,
hospitalised and recovered classes. It considers a habitat area-size
dependent force of infection, whereby the transmission is based on the
possibility of individuals to social distance within the community.

The solutions derived from Lyapunov stability analysis show that
the model has a globally asymptomatically stable disease free equi-
librium (obtained when infected individuals are denied entry to the
community) whenever the basic reproduction number is less than unity.
This implies that, COVID-19 can be eliminated irrespective of the initial
number of infected individuals introduced in the community with some
individuals having underlying health conditions. The basic reproduc-
tion number was found to be directly proportional to the infection rate,
the proportion of individuals with comorbidities and those adhering
to standard operating procedures and inversely proportional to the
recovery rates, COVID-19 detection rates and the area size occupied by
the community. Our results indicate that without infected entrants, the
stability of the endemic equilibrium point when R0 > 1 also depends on
the basic reproduction number associated with the individuals without
comorbidities. It is shown that this endemic equilibrium is only locally
asymptotically stable if the basic reproduction number associated with
individuals without comorbidities is less than unity else it is unstable.
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Fig. 5. Varying the hospitalisation rate of comorbidity-SARS-COV-2 individuals.
Fig. 6. Variation of hospital recovery rate.
These results reveal that as long as the individuals without comorbidi-
ties fail to observe the standard operating procedures, then COVID-19
cases especially amongst individuals with underlying conditions will
increase which will overwhelm the health system.

Simulation result indicate that the number of detected and unde-
tected cases increases with increasing proportions of individuals with
comorbidity (see Fig. 2). This has been observed in several countries
where there is significantly high prevalence and number of deaths as a
result of comorbidities.23 Our results in Figs. 4 and 5 further highlight
the importance of early detection/reporting and effective treatment
in the mitigation of COVID-19. We note that the pandemic curve re-
mains flat when the detection/reporting rate is 0.5 amongst individuals
9

without comorbidities. On the other hand, if only individuals with
comorbidities effectively report for treatment and hospitalisation, then
the epidemic curve peaks within 300 days from the pandemic outbreak,
3-fold higher amongst people without comorbidities. This implies that
early detection and treatment of COVID-19 infected individuals without
comorbidities would reduce on their infectiousness thus decreasing
community transmissions.

In conclusion, our study emphasises adherence to standard oper-
ating procedures, early detection and treatment of COVID-19 patients
especially those that do not have underlying health conditions, so as to
lessen community transmission of the disease.
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Fig. 7. Variation of hospital acquired SARS-COV-2 infection.
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